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Abstract: This study uses mathematical modeling to attempt to provide computational information about bioheat transfer in elastic 

skin tissue generated by a moving heat source that depends on different relaxation times. To achieve success in implementing heat 

treatment procedures, it requires a precise understanding of the heat transfer mechanism and the thermo-mechanical interaction 

relevant to living tissues., phase delay parameters based on relaxation times were taken into account. Due to the importance of the 

role of the effect of different variables on thermal relaxation times, this effect on temperature distributions, thermal stress, and 

displacement in living tissues was studied. Because of our use of powerful mathematical methods such as Laplace transformations 

and others, we were able to obtain accurate evaluations and calculations of the distributions of displacement, thermal stress, and 

temperature. After that, the results are given in the form of a graph for displacement, temperature, and stress. Finally, to enhance 

our understanding of how living tissues behave in thermal environments and to customize hyperthermia treatments, these results 

and a good understanding of them will do this, which will lead to improved treatment results. 

Keywords: Laplace transforms; thermal relaxation times; biological tissue; Thermo-mechanical interaction; bio-thermo-

viscoelastic model. 
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1. Introduction 

Tumors are one of the most common and challenging 

diseases in the modern era, posing a significant challenge to 

the global medical community. Scientists and doctors have 

faced great challenges in finding an effective and safe 

treatment for this complex health condition. Among the many 

methods used to treat tumors, the use of thermal sources is one 

of the promising and innovative approaches in this field. 

Thermal sources are considered an effective tool in tumor 

therapy, where they are used to heat cancerous tissues at high 

temperatures, leading to their destruction. A variety of thermal 

sources are used in this treatment, including far ultraviolet 

rays, infrared rays, and air heating. Numerous studies 

conducted by global research institutions and medical centres 

have demonstrated the effectiveness of thermal therapy in 

treating various tumors. Recent results have shown the success 

of this treatment in reducing tumor size, decreasing cancer cell 

growth, and improving the quality of life for patients. 

Additionally, thermal therapy is believed to help reduce the 

side effects of other treatments used in tumor therapy, such as 

chemotherapy and radiation therapy, making it a favourable 

option for patients. 

The thermal characteristics of live tissue are only 

approximate due to the difficulty of monitoring in vivo. This is 

because necropsy can alter the thermal properties of the tissue, 

and there will be no perfusion effects in tissue that is analysed 

outside of the body. Because the thermal behaviour of 

biological tissues is dependent on various intricate events, such 

as metabolic heat generation and blood circulation, researchers 

have constructed some governing equations. Viscoelasticity 

refers to the property of materials that display both viscous and 

elastic qualities when deformed. Ilioushin and Pobedria's book 

[1] includes an explanation of the thermal viscoelasticity 

theory. Materials that display temperature and time 

dependency when subjected to a load are known as linear 

viscoelastic materials. All biological tissues have mechanical 

viscoelastic qualities, which are crucial to their distinctive 

activities. This is due to the presence of viscoelastic 

components in structural proteins, extracellular matrices, and 

tissue cells. Viscoelasticity has been demonstrated in even hard 

tissue. Pennes' [2] bio-heat transfer equation explains the 
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heated behaviour that depends on the original Fourier's law. 
Indeed, Fourier's law predicts an endlessly accelerating transfer 

of thermal signals, which manifestly contradicts reality. 

Furthermore, due to the substantial internal inhomogeneity of 

living biological tissues, heat nevertheless spreads through 

them at a finite rate. However, Several documented studies by 

Kaminski [3] and Luikov [4] have demonstrated that heat 

transfer in non-homogeneous media requires a longer 

relaxation period to accumulate enough thermal energy to 

travel to the nearest section. Pennes [2] developed a 

mathematical model to investigate heat response in the human 

forearm at rest concerning arterial blood temperature, 

commonly referred to as the Pennes bioheat transfer model. 

This is based on Fourier's law of heat conduction. Pennes' 

model has some shortcomings because it assumes that the 

spread speed of thermal disturbance is infinite. Thermal 

diffusion is limited in living tissues due to their highly 

heterogeneous internal structure. For this, other models have 

been offered to solve the dilemma that occurred in Pennes' 

concept. Vernotte [5] and Cattaneo [6] applied Fourier law to 

derive the C-V constitutive relationship. Thermalization The 

relaxation times are the times that pass between the heat flux 

and the temperature gradient. Furthermore, Lord and 

Shulman[7] developed the two well-known and thoroughly 

studied generalised thermocouple theories and Green and 

Lindsay[7]. Ezzat and El-Karamany [8] demonstrate the 

uniqueness of theories in the field of generalized thermo-

viscoelasticity under various contexts. Ezzat et al.[9] 

developed a model of the equation of generalized thermo-

viscoelasticity with one relaxation time and used a state-space 

approach to solve a one-dimensional thermal shock problem in 

half-space with or without heat sources Ezzat [10]. The precise 

equations for temperature distribution, displacement, and 

thermal stress components are computed using the normal 

mode analysis. To calculate the temperature and thermal 

damage in live tissue brought on by laser irradiation,  

Alzahrani and Abbas [11] introduced an analytical approach 

employing Laplace transformation, experimental temperature 

data, and a sequential time-based concept. Abbas [12-15] 

investigated thermoelastic problems caused by moving heat 

sources. In addition, Marin [16, 17] investigated the 

thermoelastic interactions in porous media. Some difficulties in 

this subject were handled by Abbas et al.[18, 19], Zenkour et 

al.[20], El-Bary et al.[21], Lotfy et al. [22-24] Youssef and El-

Bary [25], Ezzat and Youssef [26], Marin et al. [27]. Several 

researchers have solved the various causes of linear and 

nonlinear thermoelasticity and their solutions[28-36]. 

This study's main goal is to investigate numerical 

temperature effects and thermal damage in biological tissue 

using the SPL model. By the general theory of thermos-

viscoelasticity, the effects of volume relaxation are duly 

considered. Furthermore, the purpose of the study is to 

examine the transient bio-thermo-viscoelastic reactions of live, 

viscoelastic skin tissue under various heat-loading scenarios. 

One of the main elements of the approach is The Laplace 

transformation method is used, and the Tzuo [37] process is 

used to determine the reversal.  In addition For various 

theories, the effects of changing the thermal material 

characteristics and the relaxation period on thermal stress, 

displacement and temperature are discussed. The results are 

presented in a comprehensive graphical format. 

2. The Pennes model of biological tissue bioheat 

transfer 

The temperature change as a function of time in the heat 

response produced by thermal heating or a heat source was 

investigated using the bioheat transmission model. Based on 

Fourier's law of heat conduction, Pennes created the first 

model of biological tissues, which is as follows: 

𝑘𝛻2𝛳 = ( 𝜌𝑐
𝜕𝛳

𝜕𝑡
− 𝑄𝑏 − 𝑄𝑚 − 𝑄𝑒𝑥𝑡),                                  (1) 

𝑄𝑚  denotes the metabolic heat generated by the chemical 

reaction inside the tissue, 𝑄𝑏  Refer to the thermal sources of 

blood perfusion and it is constant, and  𝛻2 is the Laplace 

operator, Moreover. The external heat source is given by 𝑄𝑒𝑥𝑡 .  

3. The Vernotte-Cattaneo model of bioheat 

conduction (Modified Fourier law) 

Vernotte-Cattaneo (V-C) modified the traditional Fourier 

thermal drive law by assuming a limited speed of thermal wave 

propagation, this resulted in the following form of the thermal 

wave. 

𝑘𝛻2𝛳 = (1 + 𝜏0
𝜕

𝜕𝑡
)( 𝜌𝑐

𝜕𝛳

𝜕𝑡
− 𝑄𝑏 − 𝑄𝑚 − 𝑄𝑒𝑥𝑡),                    (2) 

where τ0 ≥ 0 is called the relaxation time parameter and is a 

material property. 

4. Basic equations 

The thermo-viscoelasticity theory's governing equations are 

concerning the heat conduction model of  Pennes' -1 [2] The 

equation for motion: 

(𝜆+µ)𝑢𝑗,𝑖𝑗 +  𝜇𝑢𝑖,𝑗𝑗 − 𝛾𝛳,𝑖 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2  .                                     (3) 

2- Displacement-stress-temperature relations: 

σij = (λuk,k − γϴ)δij + μ(ui,j + uj,i).                           (4) 

The displacement-strain relation: 

eij =
1

2
( ui,j + uj,i).                                          (5) 

3- The heat conduction equation of Lord-Shulman [38]: 

(1 + 𝜏𝑜
𝜕

𝜕𝑡
) 𝑞𝑖 = −𝑘𝛻2𝛳.                                                      (6) 

4- Pennes' equation for energy conservation [2]: 

𝑘𝛻2𝛳 = (1 + 𝜏0
𝜕

𝜕𝑡
)( 𝜌𝑐

𝜕𝛳

𝜕𝑡
+ 𝛾𝛳0

∂
2𝑢𝑗,𝑗

∂x∂t
− 𝑄𝑏 − 𝑄𝑚 − 𝑄𝑒𝑥𝑡),          (7)                                                                             

where i, j = 1, 2, 3 refer to general coordinates. 𝛾 =
(3𝜆 + 2 𝜇)𝛼𝑇, 𝑄𝑚 is the heat produced by metabolic 

procedures, the line-moving heat source 𝑄𝑒𝑥𝑡  that can be 

expressed by [13]. 

𝑄𝑒𝑥𝑡 = 𝑄𝑜𝛿(𝑥 − 𝑣𝑡),                                                              (8)               

where 𝑣 is constant velocity, 𝛿 is the delta function and 𝑄𝑜 is 

constant and Qb refer to the thermal sources of blood perfusion 

that can be expressed by 

𝑄𝑏 = 𝜔𝑏𝜌𝑏𝑐𝑏(𝛳𝑏 − 𝛳).                                                          (9) 

The production of metabolic heat is expressed by Mitchell et 

al. [39]. Such viscoelastic properties of isotropic materials are 

The production of metabolic heat is expressed by Mitchell et 
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al. [39]. Such viscoelastic properties of isotropic materials are 

described by the Kelvin-Voigt viscoelastic model. As well as 

in many domains of materials science, manufacturing 

processes, and biological systems, viscoelasticity research is 

critical. When the viscoelastic effect is considered, the 

parameters μ, λ, and γ are as follows: 

𝜇 = (1 + 𝜏1
𝜕

𝜕𝑡
)𝜇𝑒, 𝜆 = (1 + 𝜏2

𝜕

𝜕𝑡
)𝜆𝑒, 

 𝛾 = (3(1 + 𝜏2
𝜕

𝜕𝑡
)𝜆𝑒 + 2 (1 + 𝜏1

𝜕

𝜕𝑡
)𝜇𝑒)𝛼𝑇,                        (10) 

where τ1 and τ2 denote the viscoelastic relaxation times. 

5. Formulation of the problem 

Given the homogeneity and regularity of the cancer layer's 

surface, along with its linear and thermally elastic properties, it 

is assumed that the tumour surface extends infinitely in the y 

and z directions, with the x-axis chosen to be perpendicular to 

the tumour surface as in Fig. 1 [40]. 

 
Fig. 1: Schematic diagram of biological tissue. 

 

The problem can be treated as one-dimensional, where all 

functions depend solely on the position x and time t. The form 

of the displacement component is as follows: 

𝑢x = 𝑢(x , t)  , 𝑢y = 0, 𝑢z = 0.                                     (11) 

The strain-displacement relation: 

e =  
∂𝑢

∂x
.                                                                           (12) 

The stress tensor's x-component is: 

𝜎𝑥𝑥 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
− 𝛾(𝛳 − 𝛳𝑜).                                   (13) 

The motion equation has the following form: 

𝜌
𝜕2𝑢

𝜕𝑡2 = (𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2 − 𝛾
𝜕𝛳

𝜕𝑥
.                                           (14) 

It is possible to formulate the heat equation with varying 

thermal conductivity as: 

𝑘
𝜕2𝛳

𝜕𝑥2 = (1 + 𝜏0
𝜕

𝜕𝑡
)( 𝜌𝑐

𝜕𝛳

𝜕𝑡
+ 𝛾𝛳0

∂
2𝐿

∂x∂t
− 𝑄𝑏 − 𝑄𝑚 − 𝑄𝑒𝑥𝑡).     (15) 

6. The initial and boundary conditions 

𝜎(𝑥, 0) = 0,
𝜕𝜎(𝑥,0)

𝜕𝑡
= 0, 𝛳(𝑥, 0) = 𝜃𝑏 ,

𝜕𝛳(𝑥,0)

𝜕𝑡
= 0.  𝑡 ≤ 0.      (16) 

You can express the thermal boundary condition as: 

−𝑘
𝜕𝛳(0,𝑡)

𝜕𝑥
= 0 , −𝑘 

𝜕𝛳(𝐿,𝑡)

𝜕𝑥
=  0, 𝜎(0, 𝑡) = 0, 𝜎(𝐿, 𝑡) = 0  (17) 

The following non-dimensional variables are used for 

simplicity[13]: 

( 𝑥ˋ, 𝑢ˋ ) = ƺ𝑐( 𝑥 , 𝑢 ), 𝛳ˋ =
𝛳 − 𝛳𝑜

𝛳𝑜

, ( 𝑡ˋ, 𝜏ˋ𝑜) = ƺ𝑐2( 𝑡, 𝜏𝑜),  

𝜔ˋ𝑏 =  
𝜔𝑏

ƺ𝑐2 , 𝜎ˋ𝑥𝑥 =
𝜎

𝜆+2µ
, 𝑄ˋ =

𝑄

𝑘𝑇𝑜𝑐𝑒
2 ƺ2 , ƺ =

𝜌𝑐𝑒

𝑘
, 

 𝑐𝑒 = √
𝜆+2µ

𝜌
  .                                                                   (18) 

The governing Eqs. (13)– (15) can be stated in the 

following way by using the components of non-dimensional 

mentioned above and omitting the reference bullets for 

convenience: 

𝜎𝑥𝑥 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
− 𝛾(𝛳 − 𝛳𝑜),                                      (19) 

𝜌
𝜕2𝑢

𝜕𝑡2 = (𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2 − 𝛾
𝜕𝛳

𝜕𝑥
,                                             (20) 

𝑘
𝜕2𝛳

𝜕𝑥2 = (1 + 𝜏0
𝜕

𝜕𝑡
) ( 𝜌𝑐

𝜕𝛳

𝜕𝑡
+ 𝛾𝛳0

∂
2𝑢

∂x∂t
− 𝑄𝑏 − 𝑄𝑚 − 𝑄𝑒𝑥𝑡).      (21) 

  

 

Fig. 2: Variation of stress when the heat source 𝑄𝑜 changes. 

 

Fig. 3: Variation of displacement when the heat source 𝑄𝑜 changes. 

7. Methods of Solution 

Applying the Laplace transform with parameter S defined 

by the formulas: 

𝐹̅(𝑥, 𝑠) = 𝐿{𝑓(𝑥, 𝑡)} = ∫ 𝑓(𝑥, 𝑡)𝑒−𝑠𝑡∞

0
𝑑𝑡, 𝑠 > 0.             (22) 

Hence, we obtain the following system of differential 

equations. 
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𝜎𝑥𝑥 = 𝜁1
𝑑𝑢

𝑑𝑥
− 𝜁2𝛳̅,                                                              (23) 

𝑑2𝑢

𝑑𝑥2 − 𝜁3𝑢̅ = 𝜁4
𝑑𝛳̅

𝑑𝑥
 ,                                                              (24) 

𝑑2𝛳̅

𝑑𝑥2 − 𝜁5𝛳̅ = 𝜁6
𝑑𝑢

𝑑𝑥
−

𝑄̅𝑚

𝑠
−

𝑄̅𝑜

𝑣
𝑒

𝑠𝑥

𝑣  ,                                       (25) 

with the boundary conditions 

𝜎(0, 𝑠) = 0, 𝜎(𝐿, 𝑠) = 0,
𝑑𝛳̅(0,𝑠)

𝑑𝑥
 = 0,

𝑑𝛳̅(𝐿,𝑠)

𝑑𝑥
 =  0.           (26) 

Where 𝜁1 = (1 + 𝜏1𝑠),  𝜁2 =  
𝛾𝛳𝑜

(𝜆𝑒+2𝜇𝑒)
 ,  𝜁3 = 𝑠2, 

 𝜁4 =
(3𝜆+2µ)𝛼𝑇𝛳𝑜

(𝜆𝑒+2𝜇𝑒)
,  𝜁5 =  (1 + 𝜏𝑜𝑠)(𝑠 +

𝜔𝑏𝜌𝑏𝑐𝑏

𝜌𝑐𝑒
), 

𝜁6 =  (1 + 𝜏𝑜𝑠)(
𝑠𝛾

𝜌𝐶𝑒

) 

Now, we will solve the reduced problem Eqs. (23)– (25) to 

get the solution of ODEs by eliminating 𝛳 from the Eqs. (24) 

and (25) we get 
𝑑4𝑢

𝑑𝑥4 − ᵹ1
𝑑2𝑢

𝑑𝑥2 + ᵹ2𝑢̅ = 𝜁4ᵹ3ᵹ4𝑒−ᵹ3𝑥  .                                   (27) 

Where ᵹ1 =  𝑠2 + 𝜁5 + 𝜁4𝜁6,  ᵹ2 = 𝑠2𝜁5 , ᵹ3 =
𝑠

𝑣
 , ᵹ4 =

𝑄̅𝑜

𝑣
 , 

The solutions of Eq. (27) can be written in the form: 

𝑢̄ =  Ʀ1𝑒ϻ1𝑥  +  Ʀ2𝑒−ϻ1𝑥  +   Ʀ3𝑒ϻ2𝑥  +   Ʀ4𝑒−ϻ2𝑥 +
ᵹ3ᵹ4𝜁4

 ᵹ3
4−  ᵹ1ᵹ3

2+ᵹ2
𝑒−ᵹ3𝑥 ,                                                            (28) 

where Ʀ1, Ʀ2, Ʀ3and Ʀ4 determined from the boundary 

conditions, ϻ1, −ϻ1, ϻ2 and −ϻ2 are the roots of the following 

characteristic equation:  

ϻ4 − ᵹ1ϻ2 + ᵹ2 = 0.                                                          (29) 

Where ϻ1 and ϻ2 are given by 

ϻ1 = ±√ᵹ1+√ᵹ1
2−4ᵹ2

2
 ,  ϻ2 = ±√ᵹ1−√ᵹ1

2−4ᵹ2

2
  

Using Eq. (28) in Eqs. (24) and (25), The temperature 

expression can be expressed as follows: 

 

𝛳̄ =  ᶄ1Ʀ1𝑒ϻ1𝑥 − ᶄ1Ʀ2𝑒−ϻ1𝑥  + ᶄ2Ʀ3𝑒ϻ2𝑥 − ᶄ2Ʀ4𝑒−ϻ2𝑥 +
𝑄̅𝑚

𝑠𝜁5
 +

ᵹ4(𝑠2−ᵹ3
2)

 ᵹ3
4−  ᵹ1ᵹ3

2+ᵹ2
𝑒−ᵹ3𝑥 ,                                          (30) 

Where ᶄ1 =
ϻ1

3−ϻ1𝑠2−ϻ1𝜁4𝜁6

𝜁4𝜁5
  and ᶄ2 =

ϻ2
3−ϻ2𝑠2−ϻ2𝜁4𝜁6

𝜁4𝜁5
 

Substituting from Eqs. (28) and (30) into Eq. (23), we obtain 

𝜎𝑥𝑥 =  Ʈ1Ʀ1𝑒ϻ1𝑥 − Ʈ1Ʀ2𝑒−ϻ1𝑥  + Ʈ2Ʀ3𝑒ϻ2𝑥 − Ʈ2Ʀ4𝑒−ϻ2𝑥 −
𝜁2𝑄̅𝑚

𝑠𝜁5
+ Ʈ3𝑒−ᵹ3𝑥.                                                            (31) 

Where Ʈ1 = (1 + 𝑠𝜏1)ϻ1 − 𝜁2ᶄ1 , Ʈ2 = (1 + 𝑠𝜏1)ϻ2 −

𝜁2ᶄ2 and 

 Ʈ3=
−𝜁1𝜁4ᵹ4ᵹ3

2−𝜁2ᵹ4(𝑠2−ᵹ3
2)

 ᵹ3
4−  ᵹ1ᵹ3

2+ᵹ2
 

8. Numerical Results 

The research delves into examining temperature, displacement, 

and stress variations across skin tissue using the general theory 

of thermo-viscoelasticity, particularly under conditions of 

moving heat flow on the skin surface. Table 1 displays the 

values of the fundamental physical parameters employed in the 

current calculations. The numerical reversal process relies on 

the Riemann-sum approximation approach for  

 

Fig. 4: Variation of temperature when the heat source 𝑄𝑜 

changes. 

 
Fig. 5:  Stress changes with 𝜏𝑜 variation 

 
Fig. 6: Variation of displacement when 𝜏𝑜 changes. 

 studying numerical outcomes, wherein a numerical 

reversal procedure is employed to derive the final solution. 

This method facilitates the translation of any function in the 

Laplace domain into the time domain, as demonstrated. 

𝑓(𝑥, 𝑡) =  
𝑒ȿ𝑡

𝑡
{

1

2
𝑅𝑒(𝐹̅(𝑥, 𝑠)) + 𝑅𝑒 [∑ (−1)𝑘𝐹̅(𝑥, 𝑠 +

𝑖𝑘𝜋

𝑡
)𝑁

𝑘=0 ]}      (32) 

whereas Re is the real part. For quicker assemblage, numerical 

methods were decided. That ȿt = 3.7 that satisfies the above 

equation. MATLAB software is used to carry out the 
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computations, and the results are shown graphically. For 

numerical computations, exemplary thermal property values 

for living tissue have been selected [32]. 

 

Fig. 7: Variation of temperature when 𝜏𝑜 change. 

 

Fig. 8:  Stress changes with 𝜏1, 𝜏2 variation. 

 

Fig. 9: Variation of displacement when 𝜏1, 𝜏2 change. 

 
Fig. 10: Variation of temperature when 𝜏1, 𝜏2 change. 

 
Fig. 11: Stress changes with velocity variation. 

 
Fig. 12: Variation of displacement when velocity changes. 

9. Discussion 

The numerical values of the physical quantities calculated by 

the biothermal model will be presented, taking into account the 

consideration times and using the above-mentioned 

parameters. The onset displacement stress and temperature 

were determined by different values of physical information 
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formally examined by distance x, and a numerical calculation 

was performed at time t = 0.4. From Figures 2 - 13, we realized 

that the change in physical parameters, relaxation times, 

𝜏𝑜, 𝜏1, 𝜏2 the change in velocity v, and the heat source 𝑄𝑜, 

result. 

 
Fig. 13:  Variation of temperature when velocity changes. 

 

Table 1 The skin tissue's material characteristics. 

 

Parameter Value Unit 

𝝆𝒃 1060 (𝑘𝑔)(𝑚−3) 

𝝎𝒃 1.87 × 10−3 (𝑠−1) 

𝑪𝒃 3860 (𝐽)(𝑘𝑔−1)(𝑘−1) 

𝑪 3600 (𝐽)(𝑘𝑔−1)(𝑘−1) 

𝜭𝒃 37 ℃ 

𝝉𝒐 0.2 (𝑠) 

𝝉𝟏 0.002 (𝑠) 

𝝀𝒆 8.27 × 108 (𝑘𝑔)(𝑚−1)(𝑠−2) 

𝝆 1190 (𝑘𝑔)(𝑚−3) 

𝑸𝒎 1.19 × 103 (𝑊)(𝑚−3) 

k 0.235 (𝑊)(𝑚−1)(𝑘−1) 

𝑸𝒐 1 × 103 (𝑊)(𝑚−3) 

L 0.02 (𝑚) 

𝜶𝒕 1 × 10−4 (𝑘−1) 

𝝉𝟏 0.002 (s) 

𝝁𝒆 3.446 × 107 (𝑘𝑔)(𝑚−1)(𝑠−2) 

We note from the results and through the change of 

physical parameters that the displacement changes along the x-

axis with the change of physical parameters. We can see that 

the displacement starts from the lowest values on the surface of 

the tissue (x = 0). Before returning to zero, it progressively 

rises to maximum values near the surface. We also note that 

the temperature changes with the change of physical 

parameters and at its beginning it is on the surface of the tissue, 

where it peaks (x = 0) due to the heat flow, then it decreases 

and continues to decrease with the increase of the distance x, 

and we notice a steadily decreasing temperature. Also, through 

the change of physical parameters, we notice the change of 

stress 𝜎𝑥𝑥  along the x-axis, where it starts from its highest 

negative values and ends at zero to comply with the boundary 

conditions. Based on the provided information, we may infer 

that thermal relaxation periods result in a decrease in the 

maximum amplitude of stress, displacement, and temperature. 

This suggests that thermal relaxation times are a good way to 

lessen the impact of mechanical thermal diffusion. An increase 

Figs 2 - 4, considered the first group, show the change of 

stress, temperature, and displacement when (𝜏𝑜 = 0.02, 𝜏1 =
𝜏2 = 0.02, 𝑣 = 0.5) under different values of the intensity of 

the heat source (𝑄𝑜= 1, 1.5, 2, 2.5). Under varying thermal 

relaxation time values (𝜏𝑜 = 0.0, 0.01, 0.02) In the second 

group, Figures 5-7 illustrate the changes in stress, temperature, 

and displacement at (𝜏1 = 𝜏2 = 0.02, 𝑣 = 0.5, 𝑄𝑜 = 1). The 

third, Figures 8-10, illustrates the change in stress, temperature, 

and displacement when (𝜏𝑜 = 0.2, 𝑣 = 0.5, 𝑄𝑜 = 1) under 

different values of thermal relaxation time (𝜏1 = 𝜏2 = 0.0, 0.01, 

0.02). Figures 11-13 show the change of stress, temperature, 

and displacement when (𝜏𝑜 = 0.02, 𝜏1 = 𝜏2 = 0.02, 𝑄𝑜 = 1) 

under different values of velosity (v = 0.3, 0.5, 0.7).  

We note from the results and through the change of 

physical parameters that the displacement changes along the x-

axis with the change of physical parameters. We can see that 

the displacement starts from the lowest values on the surface of 

the tissue (x = 0). Before returning to zero, it progressively 

rises to maximum values near the surface. We also note that 

the temperature changes with the change of physical 

parameters and at its beginning it is on the surface of the tissue, 

where it peaks (x = 0) due to the heat flow, then it decreases 

and continues to decrease with the increase of the distance x, 

and we notice a steadily decreasing temperature. Also, through 

the change of physical parameters, we notice the change of 

stress 𝜎𝑥𝑥  along the x-axis, where it starts from its highest 

negative values and ends at zero to comply with the boundary 

conditions. Based on the provided information, we may infer 

that thermal relaxation periods result in a decrease in the 

maximum amplitude of stress, displacement, and temperature. 

This suggests that thermal relaxation times are a good way to 

lessen the impact of mechanical thermal diffusion. An increase 

in the time characteristic of the pulsating heat flow also 

weakens the effect of thermomechanical diffusion, which is 

indicated by a decrease in the maximum stress, displacement, 

and temperature. 

10. Conclusion 

This study aimed to create a mathematical model for heat 

transfer, exploring biological heat transfer processes and the 

response of living skin tissues to mechanical heat stress, 

considering variations in heat conduction coefficients and 

tissue viscoelastic properties. The research examined how the 

velocity of a moving heat source affects changes in living 

tissues, including biological temperature gradients and 

mechanical stresses. Numerical results demonstrated that heat 

waves propagate slowly in skin tissues, significantly 

influencing thermal distributions and mechanical stresses based 

on various relaxation times and thermal factors. These findings 

highlight the impact of thermal relaxation times on temperature 

distributions and mechanical stresses in living skin tissues. 

Given that thermal therapy is among the safest methods for 

treating tumors, this study aimed to provide a theoretical 

https://sjsci.journals.ekb.eg/
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framework to enhance understanding of the complex 

mechanical and thermal processes involved in thermal 

treatment. 
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