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Abstract  

The transportation problem is a special case from applications of linear programming and plays a 

vital role in the logistics supply chain. Its primary objective is to minimize the total cost of trans-

portation for a network that spans multiple sources and destinations while ensuring that the 

sources are available, and the destinations are fulfilled. This paper presents the mathematical 

formulations for four types of multi-index multistage transportation problems (MMTP1, 

MMTP2, MMTP3, and MMTP4), which cover the various conditions that apply to operating 

trucks fleets in real transportation networks. The algorithm introduced here is designed to solve 

MMTP1, a multi-index multistage transportation problem without any restrictions on transporta-

tion in the intermediate stages. The algorithm transforms the problem into a multi-index single-

stage problem using dynamic programming to find the minimum transportation cost for each 

means of transport between the first stage's sources and the last stage's destinations. The LINGO 

software is then used to validate the optimal solution. An illustrative example is provided to 

demonstrate the effectiveness of the proposed algorithm. 
 

KEYWORDS: Transportation Problems, Multi-Index Transportation Problem, Multistage Trans-

portation Problem, Dynamic programming 

 

1 Introduction 

The classical transportation problem can be described as the problem of finding the optimal dis-

tribution of certain commodities from many sources with certain availabilities to many destina-

tions with certain requirements to minimize the total transportation costs or/and any other re-

quired objective which could be minimizing transportation time, minimizing of deteriorations, or 

maximizing profit [1, 2]. “The transportation problem discovered by F. L. Hitchcock and pre-

sented by T. C. Koopmans for that it is known as Hitchcock Koopmans transportation problem” 

[3]. 
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It can be expressed as a linear programming problem. The key data needed to solve the problem 

include the availability of sources, the demand of destinations, and the unit transportation cost 

between the various sources and destinations. Several algorithms have been created to find the 

best solution to the transportation problem. Many computerized software programs have also 

been developed to solve the transportation problem more efficiently and in less time. For exam-

ple, LINGO software has proven its effectiveness in solving many transportation problems and 

addressing large-scale problems in a simple and short time [4]. The transportation problem is 

characterized by two indices representing the sources and destinations of the network. In real-

world scenarios, additional variables may be introduced, leading to a multi-index problem. This 

occurs when there are different types of commodities or transportation modes, resulting in a 

three-index or four-index problem, depending on the complexity of the variables involved. 

 

There are many studies and investigations that have been made on multi-index transportation 

problems. K.B. Haley [5] presented the multi-index transportation problem and the necessary 

conditions required for solving the problem. Moravek and Vlach [6] presented the mathematical 

model for three-index transportation problems and illustrated the necessary conditions required 

for finding the problem solution. An algorithm for three-index problem based on reducibility of 

the problem to flow problem is proposed by Afraimovich [7]. Jasim and Aljanabi [8] introduced 

a solution method for solving the three-index transportation problem. Gurwinder Singh et al. [9] 

modified an optimization algorithm to solve the multi-index transportation problem.  

In real world problems, the processes of transportation are done in more than one stage. So most 

real transportation problems are multistage problems. Ellaimony et al. [10] presented the bi-

criteria multistage transportation problem with the mathematical model for all types of the prob-

lem as the author classified it to four types which are BMTP1, BMTP2, BMTP3 and BMTP4. An 

introduction to dynamic programming is also presented. 

This paper presents formulations for various types of multi-index multistage transportation prob-

lems (MMTP1, MMTP2, MMTP3, and MMTP4). Additionally, it introduces an algorithm for 

solving MMTP1, a multi-index multistage transportation problem without transportation re-

strictions on intermediate stages. The algorithm utilizes dynamic programming in the first solu-

tion phase to identify the shortest route between the first stage’ sources and the last stage’ desti-

nations for each mode of transport, transforming the problem into a single-stage multi-index 

transportation problem. Given the current trend towards using computer software for solving real 

problems, especially large-scale ones, to save time and effort compared to manual techniques, 

LINGO software was employed to solve the second stage of the problem. This decision was 

based on the software's proven efficiency in swiftly solving various transportation problems. The 

importance of this study summarized in introducing the formulations for different types of trans-

portation problem which cover almost the majority of conditions that could be found in real 

transportation networks which help researchers to provide the optimal decisions for decision 

makers in several industrial and engineering sectors. 
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2 Methods/Experimental 

2.1 The Aim 

This study presents the formulations for different types of multi-index multistage transportation 

problems that are classified into four types which are MMTP1, MMTP2, MMTP3 and MMTP4 

which cover many conditions that apply to operating trucks fleets in real transportation networks. 

An algorithm for solving the first type (MMTP1) introduced and applied on an illustrative exam-

ple to prove its efficiency. 

 

2.2 Processes and Methodologies 

The multi-index multistage transportation problem studied in this paper as the formulation of 

four types of it which are MMTP1, MMTP2, MMTP3 and MMTP4 are represented. 

An algorithm for solving MMTP1 is introduced in two phases. Dynamic programming technique 

applied in phase one to find the minimum transportation cost for each means of transport be-

tween the first stage sources and the last stage destinations which represents the shortest path in 

the network. In phase two, Lingo software applied to find the optimal distribution in the network 

after it was transformed into multi-index single stage problem using backward recursion dynamic 

programming technique. 

 

2.3 Mathematical Formulation of Multi-index Transportation Problems 

The multi-index transportation problems can be solved using common techniques used for solv-

ing the classical transportation problem such as the simplex method, Stepping-Stone Method, 

Modified Distribution Method (MODI) and other techniques that developed specially to solving 

the multi-index problems by many researchers [9, 11].  

 

The mathematical formulation of the multi-index transportation problem represented as follow 

[12]: 

   Minimize: 

                                                                 ∑ ∑ ∑ 𝒄𝒊𝒋𝒌𝒙𝒊𝒋𝒌

𝒍

𝒌=𝟏

𝒏

𝒋=𝟏

𝒎

𝒊=𝟏

                                           (𝟏) 

    Subject to: 

                               ∑ 𝒙𝒊𝒋𝒌

𝒏

𝒋=𝟏

= 𝒂𝒊𝒌 , (𝒊 = 𝟏, 𝟐, … , 𝒎); (𝒌 = 𝟏, 𝟐, … , 𝒍)                       (𝟐) 

                                ∑ 𝒙𝒊𝒋𝒌 = 𝒃𝒋𝒌 , (𝒋 = 𝟏, 𝟐, … , 𝒏); (𝒌 = 𝟏, 𝟐, … , 𝒍)

𝒎

𝒊=𝟏

                       (𝟑) 

                                ∑ 𝒙𝒊𝒋𝒌

𝒍

𝒌=𝟏

= 𝒆𝒊𝒋 , (𝒊 = 𝟏, 𝟐, … , 𝒎); (𝒋 = 𝟏, 𝟐, … , 𝒏)                        (𝟒) 

  

       Where:  

                                           𝒙𝒊𝒋𝒌 ≥ 𝟎 ,                                                                                            (𝟓) 
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                                           ∑ 𝒂𝒊𝒌
𝒎
𝒊=𝟏 = ∑ 𝒃𝒋𝒌

𝒏
𝒋=𝟏 ,                                                                       (𝟔)                                                   

 

                                           ∑ 𝒂𝒊𝒌 = ∑ 𝒆𝒊𝒋
𝒏
𝒋=𝟏

𝒍
𝒌=𝟏 ,                                                                       (𝟕)  

 

                                           ∑ 𝒆𝒊𝒋
𝒎
𝒊=𝟏 = ∑ 𝒃𝒋𝒌

𝒍
𝒌=𝟏                                                                          (𝟖)  

  𝑾𝒉𝒆𝒓𝒆: 

𝒄𝒊𝒋𝒌   𝐼𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑜𝑛𝑒 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑜𝑟 𝑏𝑦  

            One type of different transport from source i to destination j. 

         

    𝒙𝒊𝒋𝒌   𝐼𝑠 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑎𝑛𝑡𝑖𝑜𝑛 𝑗 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 𝑜𝑟 𝑏𝑦  

             𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 k. 

     𝒂𝒊𝒌   𝐼𝑠 𝑡ℎ𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑖𝑡𝑦 𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖  𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘. 

     𝒃𝒋𝒌   𝐼𝑠 𝑡ℎ𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑗 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘. 

     𝒆𝒊𝒋   𝐼𝑠 𝑡ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 𝑜𝑟 𝑡ℎ𝑒  𝑙𝑜𝑎𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑘  

 

2.4 Formulations of Different Kinds of Multi-Index Multistage Transportation Problem 

In this section four types of multi-index multistage transportation problem are presented with 

their mathematical forms. The four types almost cover the different real problems conditions for 

operating trucks fleet which give the researchers and decision makers an overview of the prob-

lem. 
 

Multi-Index Multistage Transportation Problem of The First Kind (MMTP1). 

This kind is a multi-index multistage transportation problem without any transportation re-

strictions on the intermediate stages which means that no availabilities and no requirements at the 

nodes of these stages.  

The mathematical formula for this type represented as follow: 

                                               𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒛 = ∑ ∑ ∑ 𝒄𝒊𝒋𝒌

𝒍

𝒌=𝟏

𝒏

𝒋=𝟏

𝒎

𝒊=𝟏

𝒙𝒊𝒋𝒌                                       (𝟗) 

                 𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 

                                      ∑ 𝒙𝒊𝒋𝒌 = 𝒂𝒊𝒌 , (𝒊 = 𝟏, 𝟐, … , 𝒎); (𝒌 = 𝟏, 𝟐, … , 𝒍)                            (𝟏𝟎) 

𝒏

𝒋=𝟏

 

                                     ∑ 𝒙𝒊𝒋𝒌 = 𝒃𝒋𝒌 , (𝒋 = 𝟏, 𝟐, … , 𝒏); (𝒌 = 𝟏, 𝟐, … . , 𝒍)

𝒎

𝒊=𝟏

                           (𝟏𝟏) 

                                     ∑ 𝒙𝒊𝒋𝒌 = 𝒆𝒊𝒋 , (𝒊 = 𝟏, 𝟐, … , 𝒎); (𝒋 = 𝟏, 𝟐, … , 𝒏)

𝒍

𝒌=𝟏

                            (𝟏𝟐) 

                                                         𝒙𝒊𝒋𝒌 ≥ 𝟎      𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊 , 𝒋 , 𝒌.                                                (𝟏𝟑) 

     𝑾𝒉𝒆𝒓𝒆: 
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𝒄𝒊𝒋𝒌  𝐼𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒     

        𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑡𝑦𝑝𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑜𝑟 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑡𝑦𝑝𝑒𝑠  

𝑜𝑓 𝑡𝑎𝑟𝑛𝑠𝑝𝑜𝑟𝑡.  

𝒙𝒊𝒋𝒌   𝐼𝑠 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑎𝑛𝑡𝑖𝑜𝑛 𝑗 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 𝑜𝑟 𝑏𝑦  

              𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 k. 

 𝒂𝒊𝒌   𝐼𝑠 𝑡ℎ𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 

 𝒃𝒊𝒌   𝐼𝑠 𝑡ℎ𝑒 𝑑𝑒𝑚𝑎𝑛𝑑𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 

 𝒆𝒊𝒋   𝐼𝑠 𝑡ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑘 𝑜𝑟 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑘  

     

Multi-Index Multistage Transportation Problem of The Second Kind (MMTP2). 

This kind represents multi-index multistage transportation problem at which any stage can be 

treated as an independent multi-index transportation problem. 

The mathematical formula for this type represented as follow: 

                                            𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒛𝒔 = ∑ ∑ ∑ 𝒄𝒊𝒔𝒋𝒔𝒌𝒔

𝒔  𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔

𝒍𝒔

𝒌𝒔=𝟏

𝒏𝒔

𝒋𝒔=𝟏

𝒎𝒔

𝒊𝒔=𝟏

                                (𝟏𝟒) 

                 𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 

                            ∑ 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 = 𝒂𝒊𝒔𝒌𝒔

𝒔

𝒏𝒔

𝒋𝒔=𝟏

, (𝒊𝒔 = 𝟏, 𝟐, … , 𝒎𝒔); (𝒌𝒔 = 𝟏, 𝟐, … , 𝒍𝒔)                        (𝟏𝟓) 

                             ∑ 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 = 𝒃𝒋𝒔𝒌𝒔

𝒔 , (𝒋𝒔 = 𝟏, 𝟐, … , 𝒏𝒔

𝒎𝒔

𝒊𝒔=𝟏

); (𝒌𝒔 = 𝟏, 𝟐, … , 𝒍𝒔)                         (𝟏𝟔) 

                           ∑ 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 = 𝒆𝒊𝒔𝒋𝒔

𝒔

𝒍𝒔

𝒌𝒔=𝟏

, (𝒊𝒔 = 𝟏, 𝟐, … , 𝒎𝒔); (𝒋𝒔 = 𝟏, 𝟐, … , 𝒏𝒔)                         (𝟏𝟕) 

                                                     𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 ≥ 𝒐     𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊𝒔 , 𝒋𝒔 , 𝒌𝒔.                                             (𝟏𝟖) 

                     𝑾𝒉𝒆𝒓𝒆: 

𝒔 = 𝟏, 𝟐, … 𝑵           𝒘𝒉𝒊𝒄𝒉 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒕𝒂𝒈𝒆 

Multi-Index Multistage Transportation Problem of The Third Kind (MMTP3). 

This type represents multi-index multistage transportation problem with some additional re-

strictions on the intermediate stages which does not affect the problem formulation. 

The mathematical formula for this type represented as follow: 

                               𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒛 = ∑ ∑ ∑ ∑ 𝒄𝒊𝒔𝒋𝒔𝒌𝒔

𝒔

𝒍𝒔

𝒌𝒔=𝟏

𝒏𝒔

𝒋𝒔=𝟏

𝒎𝒔

𝒊𝒔=𝟏

𝑵

𝒔=𝟏

𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔                               (𝟏𝟗) 

                 𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 
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                        ∑ 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 = 𝒂𝒊𝒔𝒌𝒔

𝒔 , (𝒊𝒔

𝒏𝒔

𝒋𝒔=𝟏

= 𝟏, 𝟐, … , 𝒎𝒔); (𝒌𝒔 = 𝟏, 𝟐, … , 𝒍𝒔)                  (𝟐𝟎) 

                      ∑ 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 = 𝒃𝒋𝒔𝒌𝒔

𝒔

𝒎𝒔

𝒊𝒔=𝟏

, (𝒋𝒔 = 𝟏, 𝟐, … , 𝒎𝒔); (𝒌𝒔 = 𝟏, 𝟐, … , 𝒍𝒔)                   (𝟐𝟏) 

                      ∑ 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 = 𝒆𝒊𝒔𝒋𝒔

𝒔 , (𝒊𝒔 = 𝟏, 𝟐, … , 𝒎𝒔); (𝒋𝒔 = 𝟏, 𝟐, … , 𝒏𝒔)

𝒍𝒔

𝒌𝒔=𝟏

                   (𝟐𝟐) 

                                            𝑭𝒓𝒔
(𝒙𝒊𝒔−𝟏 𝒋𝒔−𝟏

𝒔−𝟏 , 𝒙𝒊𝒔𝒋𝒔

𝒔 , 𝒙𝒊𝒔+𝟏 𝒋𝒔+𝟏

𝒔+𝟏 ) = 𝒃𝟎;                                        (𝟐𝟑) 

                                 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 ≥ 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊𝒔, 𝒋𝒔 , 𝒌𝒔 , 𝒔 = 𝟏, 𝟐, … , 𝑵.                          (𝟐𝟒) 

      𝐖𝐡𝐞𝐫𝐞: 

  𝑭𝒓𝒔
 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

   𝑎𝑡 𝑡ℎ𝑒 𝑁 𝑠𝑡𝑎𝑔𝑒𝑠 𝑎𝑛𝑑 𝒓𝒔 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡ℎ 𝑠𝑡𝑎𝑔𝑒  

 

Multi-Index Multistage Transportation Problem of The Fourth Kind (MMTP4). 

This type represents multi-index multistage transportation problem with transportation re-

strictions that affect the formulation of the problem at each stage as there is a difference between 

the input and the output of the commodities transported to sources (destinations) at each stage. 

The mathematical formula for this type represented as follow: 

                                𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒛 = ∑ ∑ ∑ ∑ 𝒄𝒊𝒔𝒋𝒔𝒌𝒔

𝒔

𝒍𝒔

𝒌𝒔=𝟏

𝒏𝒔

𝒋𝒔=𝟏

𝒎𝒔

𝒊𝒔=𝟏

𝑵

𝒔=𝟏

𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔                              (𝟐𝟓) 

                𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 

∑ 𝒙𝒊𝟏𝒋𝟏𝒌𝟏

𝟏

𝒏𝟏

𝒋𝟏=𝟏

= 𝒂𝒊𝟏𝒌𝟏

𝟏  , ( 𝒊𝟏 = 𝟏, 𝟐, … , 𝒎𝟏); (𝒌𝟏 = 𝟏, 𝟐, … , 𝒍𝟏)                    (𝟐𝟔) 

                          ∑ 𝒙𝒊𝒔−𝟏  𝒋𝒔−𝟏 𝒌𝒔−𝟏

𝒔−𝟏 − ∑ 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔

𝒎𝒔

𝒊𝒔=𝟏

𝒎𝒔−𝟏

𝒊𝒔−𝟏=𝟏

= 𝒃𝒋𝒔−𝟏𝒌𝒔−𝟏

𝒔−𝟏                                                 (𝟐𝟕)  

 , (𝒋𝒔−𝟏 = 𝟏, 𝟐, … , 𝒏𝒔−𝟏);  (𝒌𝒔−𝟏 = 𝟏, 𝟐, … , 𝒍𝒔−𝟏);  𝒔 = 𝟏, 𝟐, … , 𝑵 

                    ∑ 𝒙𝒊𝑵 𝒋𝑵𝒌𝑵

𝑵

𝒎𝑵

𝒊𝑵=𝟏

= 𝒃𝒋𝑵𝒌𝑵

𝑵  (, 𝒋𝑵 = 𝟏, 𝟐, … , 𝒏𝑵); (𝒌𝑵 = 𝟏, 𝟐, … , 𝒍𝑵)                  (𝟐𝟖) 

∑ 𝒙𝒊𝒔𝒋𝒔𝒌𝒔

𝒔 = 𝒆𝒊𝒔𝒋𝒔

𝒔 , (𝒊𝒔 = 𝟏, 𝟐, … , 𝒎𝒔); (𝒋𝒔 = 𝟏, 𝟐, … , 𝒏𝒔)                        (𝟐𝟗)

𝒍𝒔

𝒌𝒔=𝟏
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                           𝒙𝒊𝒔𝒋𝒔

𝒔 ≥ 𝟎  𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊𝒔 , 𝒋𝒔 , 𝒌𝒔                                                  (𝟑𝟎) 

𝑺 = 𝟏, 𝟐, … , 𝑵 

2.5 Solution Techniques of The Different Multi-Index Multistage Problem Types 

The solution algorithm of MMTP1, MMTP2, MMTP3 and MMTP4 are mentioned in this sec-

tion. 

MMTP1 Solution Algorithm. This kind can be solved as a single stage multi-index transporta-

tion problem after applying the dynamic programming technique to find the minimum transporta-

tion cost for each mean of transport between the first stage’s sources and the last stage’s destina-

tions which represent the shortest path in the network. 

MMTP2 Solution Algorithm. This type can be solved as N multi-index single stage problem 

and as the minimum transportation cost for each stage could be obtained individually then the 

minimum total transportation cost of the problem obtained as follow: 

                                                                        𝒛 = ∑ 𝒛𝒔

𝑵

𝒔=𝟏

                                                                 (𝟑𝟏) 

            𝐖𝐡𝐞𝐫𝐞: 

𝒛𝒔   𝑖𝑠 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑚𝑖𝑛𝑚𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡)𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑔𝑒 𝑠. 

MMTP3 Solution Algorithm. The decomposition technique used for solving this kind. 

MMTP4 Solution Algorithm. This type can be solved using any linear programming solution 

techniques. 

2.6 Dynamic Programming. 

Dynamic programming is an optimization technique that used for solving many optimization 

problems and making a sequence for correlating decisions. It doesn’t have a standard mathemati-

cal formulation as it considers as an optimization strategy, it divides the problem into subprob-

lems which allow for obtaining the optimum solution in a simpler way after solving each sub-

problem. 

The solution technique of the dynamic programming relies on a recursive nature. Recursive com-

putations carried out in one of two ways which are forward recursion and backward recursion. 

Dynamic programming used backward recursion as it is more efficient so the solution of prob-

lems using D.P. obtained by moving from the end of problem toward the beginning which results 

in dividing the problem into smaller and simpler subproblems. 

We applied the dynamic programming for solving MMTP1 and finding the shortest path between 

the first stage sources and the last stage destinations which represent the minimum transportation 

cost for the transportation network as the technique prove its efficiency in solving the problem 

over any other technique beside it requires lower number of iterations compared to other tech-

niques. The number of problems required to be solved using backward D.P. equal the total num-

ber of destinations (n) at the last stage which results in lower number of computations to solve 
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the problem compared to other techniques that requires solving (m*n) problems where m is the 

total number of sources at the first stage. As a result, dynamic programming is an efficient, easy, 

and fast optimization technique. 

2.7 The Proposed Algorithm for Solving MMTP1. 

The proposed solution algorithm for solving MMTP1 consist of two solution phases. In phase 

one the problem transformed into single stage problem by finding the minimum transportation 

cost for each mean of transport between the first stage sources and the last destinations as we can 

apply the backward recursion dynamic programming technique for finding these values where 

the solution started from the last stage destinations and moving towards the beginning of the 

problem and the number of shortest route problem depend on the number of the last stage desti-

nations. After that the problem is transformed to a multi-index single stage problem and in this 

phase LINGO software applied to find the optimal network distribution that achieve the mini-

mum transportation cost in the network. 

Dynamic Programming Backward Recursive Equation. The dynamic programming backward 

recursive equation for the shortest route problem is illustrated in equation (32) which calculate 

the minimum transportation cost to a certain destination from all the sources at the last stage, and 

equation (33) which calculate the minimum transportation cost at all destinations from all sources 

at all other stages expect the last stage as follow: 

𝑭𝒐𝒓 𝒂𝒍𝒍 ( 𝒋𝑵 = 𝟏, 𝟐, 𝟑, … , 𝒏𝑵) ∶ 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 

                                         𝑭𝑵(𝒊𝑵) = 𝒄𝒊𝑵𝒋𝑵

𝑵  , 𝒊𝑵 = 𝟏, 𝟐, … , 𝒎𝑵                         (𝟑𝟐)       

                                    𝑭𝒔(𝒊𝒔) = 𝒎𝒊𝒏. {𝒄𝒊𝒔𝒋𝒔

𝒔 + 𝑭𝒔+𝟏(𝒊𝒔)};                          (𝟑𝟑) 

𝒋𝒔 = 𝟏, 𝟐, … , 𝒏𝒔 ; 𝒊𝒔 = 𝟏, 𝟐, … , 𝒎𝒔 ; 𝒔 = 𝑵 − 𝟏, 𝑵 − 𝟐, … , 𝟏 

         𝑾𝒉𝒆𝒓𝒆: 

 𝑭𝑵(𝒊𝑵) 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 (𝑁)   

  𝑭𝒔(𝒊𝒔) 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑡 𝑎𝑛𝑦 𝑠𝑡𝑎𝑔𝑒 

       𝑒𝑥𝑝𝑒𝑐𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 

 𝒄𝒊𝑵𝒋𝑵

𝑵  𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒(𝑁) 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑖𝑁 𝑡𝑜 𝑖𝑡𝑠  

     𝑑𝑒𝑠𝑡𝑢𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑗𝑁 

  𝒄𝒊𝒔𝒋𝒔

𝒔   𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑠𝑛𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑎𝑡 𝑎𝑛𝑦 𝑠𝑡𝑎𝑔𝑒 (𝑠) 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑘 𝑡𝑜 𝑖𝑡𝑠  

    𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑗𝑘 

   𝒊𝑵    𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 (𝑁) 

   𝒋𝑵   𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 (𝑁) 

   𝒊𝒔    𝑖𝑠 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑡 𝑎𝑛𝑦 𝑠𝑡𝑎𝑔𝑒 (𝑠) 𝑒𝑥𝑝𝑒𝑐𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 

   𝒋𝒔    𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑡 𝑎𝑛𝑦 𝑠𝑡𝑎𝑔𝑒 (𝑠) 𝑒𝑥𝑝𝑒𝑐𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 
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 𝒎𝑵  𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 (𝑁) 

  𝒏𝑵  𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 (𝑁) 

  𝒎𝒔 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑡 𝑎𝑛𝑦 𝑠𝑡𝑎𝑔𝑒 𝑒𝑥𝑝𝑒𝑐𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑡𝑎𝑔𝑒 (𝑠) 

  𝒏𝒔  is the total number of destinations at any stage expect the last stage (s) 

3 Illustrative Example. 

3.1 The Problem. 

The following figure represents the transportation network of the problem. A three stages trans-

portation network with three main sources at the first stage 𝐻1, 𝐻2 𝑎𝑛𝑑 𝐻3 with availabilities 

equal those the values of (𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3). The requirements of the last stage’s destinations  

𝐻8 𝑎𝑛𝑑 𝐻9  equal the values of (𝑏1 𝑎𝑛𝑑 𝑏2) while the middle stages have no transportation re-

strictions on the availabilities or requirements. Two means of transport used 𝐾1 𝑎𝑛𝑑 𝐾2 with load 

capacity 50 tons for the first one and 70 tons for the second. The values of the transportation 

costs per unit while transporting the product from any source  𝑖𝑠 to any destination  𝑗𝑠 through 

any stage (s) using the two means of transport are presented in tables 1, 2 and 3 as 

(𝑐𝑖𝑠𝑗𝑠𝑘1
 , 𝑐𝑖𝑠𝑗𝑠𝑘2

). It is required to find the optimal network distribution that minimize the total 

transportation costs. 

 

Fig. 1. The illustrative example transportation network. 

Table 1. Costs of transportation in dollars per ton kilometer for  𝐾1 𝑎𝑛𝑑 𝐾2 respectively & 

sources availabilities and destinations requirements in tons for stage 1. 

 

 

 

 

 

                                     Stage 1                   Stage 2                  Stage 3 

 

𝑎1 = 40𝑇                                                                                                                     𝑏1 = 47𝑇 

 

 

𝑎2 = 50𝑇 

 

 

 

  
𝑎3 = 30𝑇                                                 𝑏2 = 73𝑇 
 

𝐻1 

𝐻2 

𝐻3 

𝐻5 

𝐻4 𝐻6 

𝐻7 

𝐻9 

𝐻8 
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 Destinations 

Sources 

𝐻4 𝐻5 Availabilities 

𝐻1 (16,8) (3,13) 40 

𝐻2 (4,10) (5,5) 50 

𝐻3 (7,6) (5,3) 30 

Requirements No limit No limit  

Table 2. Costs of transportation in dollars per ton kilometer for  𝐾1 𝑎𝑛𝑑 𝐾2 respectively & 

sources availabilities and destinations requirements in tons for stage 2. 

 

Destinations 

Sources 

𝐻6 𝐻7 Availabilities 

𝐻4 (6,8) (5,2) No limit 

𝐻5 (14,7) (13,15) No limit 

Requirements No limit No limit  

 

Table 3. Costs of transportation in dollars per ton kilometer for  𝐾1 𝑎𝑛𝑑 𝐾2 respectively & 

sources availabilities and destinations requirements in tons for stage 3. 

Destinations 

Sources 

𝐻8 𝐻9 Availabilities 

𝐻6 (13,9) (10,3) No limit 

𝐻7 (5,12) (8,12) No limit 

Requirements 47 73  

 

3.2 Problem Solution (Phase 1). 

In this example backward dynamic programming technique is applied to find the minimum 

transportation cost between the first stage main sources and the last stage destinations for each 

mean of transport so the problem can be solved as a single stage problem after that. Since the 

number of the last stage destinations in this example is two destinations so we need to solve two 

D.P. problems for each transport (K). For more simplification, we applied the D.P. solution steps 

to find the shortest routes for just one destination 𝐻8  to sources 𝐻1, 𝐻2 𝑎𝑛𝑑 𝐻3 by 𝐾1 𝑎𝑛𝑑 𝐾2 in 

tables 4 and 5, where the same procedures is applied to find the shortest routes from destination 

𝐻9  to sources 𝐻1, 𝐻2 𝑎𝑛𝑑 𝐻3 by 𝐾1 𝑎𝑛𝑑 𝐾2 after that. Solution steps showed as follow: 

Table 4. Dynamic programming technique steps to find the shortest routes from (𝐻1, 𝐻2 𝑎𝑛𝑑 𝐻3) 

to 𝐻8 by transport 𝐾1 . 
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Stage 3 for destination 𝐻8 and transport  𝐾1: 

 

State 

(𝑆3) 

Alternatives Optimal solution 

𝐻8 𝐹3(𝑋3) 𝐷3
∗ 

𝐻6 13 13 𝐻8 

𝐻7 5 5 𝐻8 

 

Stage 2 for destination 𝐻8 and transport  𝐾1: 

 

State 

(𝑆2) 

Alternatives  Optimal solution 

𝐻6 𝐻7 𝐹2(𝑋2) 𝐷2
∗ 

𝐻4 6+13=19 5+5=10 10 𝐻7 

𝐻5 14+13=27 13+5=18 18 𝐻7 

 

Stage 1 for destination 𝐻8 and transport  𝐾1: 

 

State 

(𝑆1) 

Alternatives  Optimal solution 

𝐻4 𝐻5 𝐹1(𝑋1) 𝐷1
∗ 

𝐻1 16+10=26 3+18=21 21 𝐻5 

𝐻2 4+10=14 5+18=23 14 𝐻4 

𝐻3 7+10=17 5+18=23 17 𝐻4 

 

Table 5. Dynamic programming technique steps to find the shortest routes from (𝐻1, 𝐻2 𝑎𝑛𝑑 𝐻3) 

to 𝐻8 by transport 𝐾2 . 

 

   Stage 3 for destination 𝐻8 and transport  𝐾2: 

 

State 

(𝑆3) 

Alternatives Optimal solution 

𝐻8 𝐹3(𝑋3) 𝐷3
∗ 

𝐻6 9 9 𝐻8 

𝐻7 12 12 𝐻8 

Stage 2 for destination 𝐻8 and transport  𝐾2: 

 

State 

(𝑆2) 

Alternatives  Optimal solution 

𝐻6 𝐻7 𝐹2(𝑋2) 𝐷2
∗ 

𝐻4 8+9=17 2+12=14 14 𝐻7 

𝐻5 7+9=16 15+12=27 16 𝐻6 
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Stage 1 for destination 𝐻8 and transport  𝐾2: 

 

State 

(𝑆1) 

Alternatives  Optimal solution 

𝐻4 𝐻5 𝐹1(𝑋1) 𝐷1
∗ 

𝐻1 8+14=22 13+16=29 22 𝐻4 

𝐻2 10+14=24 5+16=21 21 𝐻5 

𝐻3 6+14=20 3+16=19 19 𝐻5 

 

After applying phase 1, the three stages transportation network is converted into a single stage 

network and the problem now can be solved as a multi-index single stage transportation problem. 

The results of solving the four dynamic programming problems and the equivalent transportation 

network outlined in table 6 and figure 2 as follow: 

 

Table 6. Dynamic programming results for finding the shortest path for destinations 

𝐻8 𝑎𝑛𝑑 𝐻9 by the two transports  𝐾1 𝑎𝑛𝑑 𝐾2. 

 

 

Destination 

Transport (𝐾1)  Transport (𝐾2)  

Shortest Route Min. Cost Shortest Route Min. Cost 

 

𝐻8 

𝐻1 − 𝐻5 − 𝐻7 − 𝐻8 

𝐻2 − 𝐻4 − 𝐻7 − 𝐻8 

𝐻3 − 𝐻4 − 𝐻7 − 𝐻8 

21 

14 

17 

𝐻1 − 𝐻4 − 𝐻7 − 𝐻8 

𝐻2 − 𝐻5 − 𝐻6 − 𝐻8 

𝐻3 − 𝐻5 − 𝐻6 − 𝐻8 

22 

21 

19 

 

𝐻9 

𝐻1 − 𝐻5 − 𝐻7 − 𝐻9 

𝐻2 − 𝐻4 − 𝐻7 − 𝐻9 

𝐻3 − 𝐻4 − 𝐻7 − 𝐻9 

24 

17 

20 

𝐻1 − 𝐻4 − 𝐻6 − 𝐻9 

𝐻2 − 𝐻5 − 𝐻6 − 𝐻9 

𝐻3 − 𝐻5 − 𝐻6 − 𝐻9 

19 

15 

13 

 

 
Fig. 2. The equivalent single stage transportation network.  
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      3.3 Problem Solution (Phase 2). 

Problem Mathematical Model. 

    Objective function:      

                                             𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒛 = ∑ ∑ ∑ 𝒄𝒊𝒋𝒌𝒙𝒊𝒋𝒌

𝟐

𝒌=𝟏

𝟐

𝒋=𝟏

𝟑

𝒊=𝟏

                               (𝟑𝟒) 

 

   Objective function extended form: 

𝑀𝑖𝑛. 𝑍 = 21𝑥111 + 22𝑥112 + 24𝑥121 + 19𝑥122 + 14𝑥211 + 21𝑥212 + 17𝑥221 + 15𝑥222

+ 17𝑥311 + 19𝑥312 + 20𝑥321 + 13𝑥322 

 

       Sources constraints: 

                                                                ∑ 𝒙𝒊𝒋𝒌 = 𝒂𝒊𝒌

𝟑

𝒋=𝟏

                                                       (𝟑𝟓) 

 

𝑥111 + 𝑥112 + 𝑥121 + 𝑥122 = 40 

𝑥211 + 𝑥212 + 𝑥221 + 𝑥222 = 50 

𝑥311 + 𝑥312 + 𝑥321 + 𝑥322 = 30 

      Destinations constraints: 

                                                                 ∑ 𝒙𝒊𝒋𝒌

𝟐

𝒊=𝟏

= 𝒃𝒋𝒌                                                       (𝟑𝟔) 

𝑥111 + 𝑥112 + 𝑥211 + 𝑥212 + 𝑥311 + 𝑥312 = 47 

𝑥121 + 𝑥122 + 𝑥221 + 𝑥222 + 𝑥321 + 𝑥322 = 73 

    Transports constraints: 

                                                                    ∑ 𝒙𝒊𝒋𝒌

𝟐

𝒌=𝟏

= 𝒆𝒊𝒋                                                       (𝟑𝟕) 

𝑥111 + 𝑥121 + 𝑥211 + 𝑥221 + 𝑥311 + 𝑥321 = 50 

𝑥112 + 𝑥122 + 𝑥212 + 𝑥222 + 𝑥312 + 𝑥322 = 70 

 

LINGO Code. 

min=21*x111+22*x112+24*x121+19*x122+14*x211+21*x212+17*x221+15*x222+17*x311+

19*x312+20*x321+13*x322; 

x111+x112+x121+x122=40; 

x211+x212+x221+x222=50; 

x311+x312+x321+x322=30; 

x111+x112+x211+x212+x311+x312=47; 

x121+x122+x221+x222+x321+x322=73; 

x111+x121+x211+x221+x311+x321=50; 
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x112+x122+x212+x222+x312+x322=70; 

LINGO Output. 

Global optimal solution found. 

  Objective value:                              1859.000 

  Infeasibilities:                                  0.000000 

  Total solver iterations:                           4 

  Elapsed runtime seconds:                    3.63 

 

  Model Class:                                        LP 

  Total variables:                      12 

  Nonlinear variables:               0 

  Integer variables:                    0 

  Total constraints:                    8 

  Nonlinear constraints:             0 

  Total nonzeros:                      48 

  Nonlinear nonzeros:                0 

                      Variable       Value           Reduced Cost 

                        X111        0.000000            1.000000 

                             X112        0.000000            6.000000 

                        X121        0.000000            1.000000 

                             X122        40.00000            0.000000 

                        X211        47.00000            0.000000 

                        X212        0.000000            11.00000 

                        X221        3.000000            0.000000 

                        X222        0.000000            2.000000 

                        X311        0.000000            3.000000 

                        X312        0.000000            9.000000 

                        X321        0.000000            3.000000 

                        X322        30.00000            0.000000 

                       Row    Slack or Surplus    Dual Price 

                           1        1859.000           -1.000000 

                           2        0.000000           -6.000000 

                           3        0.000000            0.000000 

                           4        0.000000            0.000000 

                           5        0.000000           -10.00000 

                           6        0.000000           -13.00000 

                           7        0.000000           -4.000000 

                           8        0.000000            0.000000 

4 Results and Discussion. 

After applying the dynamic programming technique on the problem, we found the shortest routes 

between the sources of the first stage and the destinations of the last stage which represents the 



Mohamed T. El Rakhawy et al./ Engineering Research Journal (2024) 183(3) 

AT15 

 

minimum transportation costs between these sources and destinations by the two transports 

𝐾1 𝑎𝑛𝑑 𝐾2 and as a result the problem transformed from multistage to single stage transportation 

problem. LINGO software applied to find the optimal distribution of the network after that then 

we found the optimum solution as the value of the objective function which represents the mini-

mum total transportation cost of the transportation network (Z) equal 1859 Dollars/Km. The op-

timum network distribution summarized in table 7: 

Table 7. Illustrative example optimum network distribution. 

       Destinations 

 

Sources 

       

         𝐻8 

   

𝐻9 

 

Sources 

availabilities 

 

Shortest routes 

(Path) 

Transport (K) 𝐾1 𝐾2 𝐾1 𝐾2 (50 T, 70 T) Transport load 

𝐻1    40 T 40 T 𝐻1 − 𝐻4 − 𝐻6 − 𝐻9 

𝐻2 47 T   

3 T 

 50 T 𝐻2 − 𝐻4 − 𝐻7 − 𝐻8 

𝐻2 − 𝐻4 − 𝐻7 − 𝐻9 

𝐻3    30 T 30 T 𝐻3 − 𝐻5 − 𝐻6 − 𝐻9 

Destinations  

requirements 

47 T   73 T Total = 120 

T 

𝑧𝑚𝑖𝑛, = 1859 

 

5 Conclusions. 

This paper introduced the mathematical formulations and solution methods for various types of 

multi-index multistage transportation problems, namely MMTP1, MMTP2, MMTP3, and 

MMTP4. To solve MMTP1, a two-phase solution algorithm is proposed. In the first phase, dy-

namic programming technique is used to convert the multistage problem into a single stage prob-

lem, as it has shown its effectiveness for such problems where intermediate stage restrictions are 

absent. In the second phase, LINGO software is employed to solve the resulting multi-index sin-

gle stage transportation problem efficiently and quickly, as it has demonstrated its competence in 

solving transportation problems. In conclusion, this study introduced an algorithm for solving a 

special case of multi-index multistage transportation problem which is a multi-index multistage 

problem without any transportation restrictions on the intermediate stages. The proposed algo-

rithm applied on an illustrative example to prove its efficiency which show that the algorithm 

helps in solving and finding the optimal solution for such type of problems. Also using LINGO 

software aims to find the optimal solution in a fast and easy manner. 

6 List of Abbreviations. 

MMTP1 Multi-index multistage transportation problem of the first kind 
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MMTP2 Multi-index multistage transportation problem of the second kind 

MMTP3 Multi-index multistage transportation problem of the third kind 

MMTP4 Multi-index multistage transportation problem of the fourth kind 

BMTP1 Bi-criteria multistage transportation problem of the first kind 

BMTP2 Bi-criteria multistage transportation problem of the second kind  

BMTP3 Bi-criteria multistage transportation problem of the third kind 

BMTP4 Bi-criteria multistage transportation problem of the fourth kind 

D.P. Dynamic programming 
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