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                                     Abstract 

     The emergence of multidrug-resistant pathogens, such as methicillin-resistant 

Staphylococcus aureus (MRSA), poses a significant threat to the global public health. 

Streptomyces species have been recognized as a prolific source of bioactive secondary 

metabolites, including antimicrobial compounds. In this study, we aimed to optimize the 

production of anti-MRSA compounds by Streptomyces sp. AR05; a strain isolated from 

hydrocarbon-contaminated soil, using an integrated approach combining response surface 

methodology (RSM), artificial neural networks (ANN), and genetic algorithms (GA). The 

strain was identified through 16S rRNA gene sequencing and exhibited significant genetic 

similarity to Streptomyces kurssanovii and Streptomyces ostreogriseus. Using the Plackett-

Burman design, the most important variables affecting the anti-MRSA activity were found to 

be peptone, CaCO3, and pH. These factors were optimized using Box-Behnken design, while 

RSM and ANN were utilized for modeling the experimental data. The predicted accuracy of 

ANN model was higher than that of the RSM model, with lower values of mean absolute 

percentage error (MAPE) and root mean square error (RMSE). Sensitivity analysis of the 

ANN model identified peptone as the most influential factor, followed by pH and CaCO3. The 

ANN model was further optimized using GA, and the optimized conditions (5.34 g/ l peptone, 

1.54 g/ l CaCO3, pH 6.07) were experimentally validated, resulting in a 48.87 % increase in 

anti-MRSA activity compared to the initial conditions. The developed RSM-ANN-GA 
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approach demonstrated the potential for enhancing the production of valuable antibacterial 

compounds from Streptomyces species and contributed to the global efforts to combat 

antimicrobial resistance.  

Keywords: Streptomyces sp. AR05, Anti-MRSA compounds, Response surface methodology, 

Artificial neural network, Genetic algorithm, Optimization 

 

1. Introduction         

       Antibacterial resistance has emerged as a global 

public health challenge, with the development of new 

antibiotics lagging behind the increasing prevalence of 

multidrug-resistant pathogens (Lertcanawanichakul 

and Chawawisit, 2019). Methicillin-resistant 

Staphylococcus aureus (MRSA) is one such 'superbug' 

that poses a significant threat to healthcare systems 

worldwide, causing a wide range of nosocomial 

infections associated with increased morbidity, 

mortality, and healthcare costs (Kemung et al., 2018; 

Sharma and Manhas, 2019). The intrinsic tendency of 

traditional antibiotics to exert selective pressure on 

bacterial populations, coupled with their inappropriate 

and excessive utilization, has played a significant role 

in the emergence of multidrug-resistant pathogens, 

underscoring the pressing need for the identification 

and development of innovative antimicrobial agents 

(de Lima Procópio et al., 2012).  

     The Streptomyces genus has emerged as a 

prominent reservoir of bioactive secondary 

metabolites, demonstrating the capacity to generate an 

extensive range of compounds possessing 

antibacterial, antifungal, antiviral, and antitumor 

activities, which has become a focal point of scientific 

investigations (Kemung et al., 2018; Sharma and 

Manhas, 2019). Extensive researches have been 

conducted on these filamentous prokaryotes for a 

period exceeding eight decades for their incredible 

array of specialized metabolites (Martinet et al., 2023). 

The remarkable metabolic diversity of Streptomyces 

spp. has made them a primary target to find new 

antibacterial substances that can combat the rising 

threat of antibiotic resistance (Bhakyashree and 

Kannabiran, 2020). While Streptomyces spp. are 

ubiquitous in soil environments, those inhabiting 

extreme or under explored habitats have emerged as 

promising sources of novel antimicrobial agents, 

including several compounds active against MRSA. 

       Exploring the underexploited and extreme 

environments such as polluted habitats, has gained 

increasing interest as a strategy for uncovering new 

Streptomyces strains capable of producing novel anti-

MRSA compounds (Shivlata and Satyanarayana, 

2015). Contaminated environments, including soils 

and sediments polluted with heavy metals, 

hydrocarbons, or pesticides, pose a selective stress on 

the microbial communities, driving them toward the 

evolution of unique metabolic pathways and cryptic 

biosynthesis gene clusters' activation (Tormo et al., 

2003). Moreover, the intense competition for limited 

nutritional resources in these ecological niches may 

prompt the actinobacteria to produce antimicrobial 

secondary metabolites to gain a selective advantage 

(Antoraz et al., 2015). Notable examples were those 

Streptomyces spp. isolated from various soil 

contaminated with petroleum in Kurdistan, which 

displayed antibacterial activity against human 

pathogens such as Escherichia coli and 

Staphylococcus aureus (Jalal and Hasan, 2021). 

Similarly, Streptomyces strains from petroleum-

contaminated soils demonstrated the ability to degrade 

hydrocarbons and produce antibiotics, attributable to 

the development of mutations within the gene for 

RNA polymerase β-subunit (rpoB) (Rachid, 2012). 

Another strain isolated from contaminated soil; S. 

coeruleorubidus MO11, has shown strong inhibitory 

activity against Pantoea calida, an opportunistic 

pathogen (Aburas, 2022). These findings underscore 
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the potentials of Streptomyces spp. from contaminated 

and underexplored niches as sources of novel anti-

MRSA compounds. 

      Optimization of fermentation conditions and media 

composition plays a crucial role in maximizing the 

production of bioactive metabolites by Streptomyces 

spp. (Kumar et al., 2017). Response surface 

methodology (RSM) and artificial neural networks 

(ANN) have proven to be powerful tools for modeling 

and optimizing complex bioprocesses, enabling 

researchers to identify optimal conditions for enhanced 

antibiotic production (Lau et al., 2023). The 

integration of these statistical and machine learning 

approaches with genetic algorithms (GA) has further 

improved the efficiency and effectiveness of 

bioprocess optimization strategies (Alloun et al., 

2023).  

      The objective of the present study was to optimize 

the production of anti-MRSA compounds by 

Streptomyces sp. AR05 strain using an integrated 

RSM-ANN-GA approach. By leveraging the strengths 

of statistical modeling, machine learning, and global 

optimization techniques, we seek to develop a 

comprehensive and effective strategy to enhance the 

antimicrobial potential of this promising strain. 

Successful optimization of anti-MRSA compounds 

production by Streptomyces sp. AR05 could contribute 

to the global efforts to combat antimicrobial resistance 

and enhance the pace of uncovering and formulating 

new antibacterial compounds that can tackle the 

mounting issue of microorganisms exhibiting 

resistance to various medications. 

2. Material and methods 

2.1. Isolation and maintenance of 

Actinobacteria strain AR05 

     The actinobacteria strain AR05 was isolated from a 

hydrocarbon-contaminated soil at the SPA NAFTAL 

site in Bounouara, Constantine, Algeria (Mechouche 

et al., 2022). Following an evaluation of multiple 

actinomycete isolates, this strain was selected owing 

to its capacity to generate antibiotics displaying 

inhibitory effects on the development of Gram-

positive and Gram-negative bacterial pathogens. 

AR05 was cultured and maintained on the 

International Streptomyces Project medium N
°
2 (ISP 

2): glucose (4 g/ l), malt extract (10 g/ l), yeast extract 

(4 g/ l) and agar (20 g/ l) in dist. water, with pH 

adjusted to 7.2 (Atlas, 2010). 

2.2. Molecular identification 

     The 16S rRNA gene sequencing technique was 

employed to establish the molecular identity of isolate 

AR05. The extraction of genomic DNA was carried 

out according to the protocol outlined by Hopwood, 

(1985). Universal primers 16S-27F and 16S-1492R 

were used to amplify the entire 16S rRNA gene 

through polymerase chain reaction (PCR), with 

suitable controls incorporated. The PCR was 

performed in a 30 μl reaction volume containing 2 µl 

genomic DNA, 1 µl of each primer, 6 µl 5X PCR 

Mix, and 20 µl H2O to reach a final volume of 30 µl. 

The reaction was initiated by activating the Hot-Start 

Mix at 96 
°
C for 12 min, followed by 35 cycles of 

denaturation at 96 
°
C for 20 sec, annealing at 56 

°
C for 

20 sec, and extension at 72 
°
C for 30 sec. A final 

extension step was carried out at 72 
°
C for 5 min. The 

PCR product was validated using high-resolution 

capillary electrophoresis, purified, and sequenced 

using internal primers. The resulting sequence data 

were analyzed to construct a complete 16S gene 

contig, which was subsequently subjected to BLAST 

analysis for strain identification.  

2.3. Selection of the best medium for anti-MRSA 

activity 

     To determine the optimal culture medium for anti-

MRSA activity, strain AR05 was cultured on five 

different production media using the streak plate 

method (Dar and Ahmad, 2024). The media tested 

were: Bennett's medium: glucose (10 g/ l), casamino 

acids (2 g/ l), yeast extract (1 g/ l), beef extract (1 g/ 

l), agar (15 g/ l), pH 7.0 (Goodfellow et al., 1989); 

Czapek medium: sucrose (30 g/ l), peptone (5 g/ l), 

NaNO3 (3 g/ l), yeast extract (2 g/ l), K2HPO4 (1 g/ l), 



Merouane et al., 2024 

2558 
Novel Research in Microbiology Journal, 2024 

KCl (0.5 g/ l), MgSO4•7H2O (0.5 g/ l), FeSO4•7H2O 

(0.01 g/ l), agar (15 g/ l), pH 7.3  (Thom and Raper, 

1945); Yeast Malt Agar (YMA) medium: malt extract 

(10 g/ l), glucose (4 g/ l), yeast extract (4 g/ l), CaCO3 

(2 g/ l), agar (20 g/ l), pH 7.2 (Wickerhams, 1951); 

Glycerol Bouillon Agar (GBA) medium: glycerol (20 

g/ l), peptone (10 g/ l), meat extract (5 g/ l), CaCO3 (3 

g/ l), soluble starch (20 g/ l), agar (15 g/ l), pH 7.0 

(Shomura, 1979); Starch Casein Agar (SCA) medium: 

Soluble starch (1 g/ l), K2HPO4 (2 g/ l), KNO3 (2 g/ l), 

NaCl (2 g/ l), casein (0.3 g/ l), MgSO4•7H2O (0.05 g/ 

l), CaCO3 (0.02 g/ l), FeSO4•7H2O (0.05 g/ l), agar (15 

g/ l), pH 7.5 (Wellington and Cross, 1983). 

      All culture media were poured into petri plates to 

achieve a 5 mm thickness of agar. Following 

inoculation of the AR05 strain using a dense streaking 

pattern, the plates were incubated for 10 d at 30 
°
C. 

Subsequent to incubation, growth was halted by 

exposing the plates to chloroform vapors in a sealed 

environment for 30 min. The agar cylinder method 

was used to assess the anti-MRSA potential of the 

cultures (Evangelista-Martínez et al., 2022). The 

medium exhibiting the most potent antibacterial 

activity was selected for further optimization of its 

culture conditions using several statistical methods. 

2.4. Evaluation of anti-MRSA activity 

      MRSA strain (GenBank accession no: 

PKSS01000000) acquired from the bacteriology lab 

(CHU Constantine) was used as a reference strain to 

test the antibacterial activity. This pathogen was 

particularly resistant to β-lactam antibiotics and had 

acquired resistance to several other antibiotics, 

including fluoroquinolones, macrolides, lincosamides, 

and aminoglycosides. 

     A suspension of MRSA cells was made using 

physiological water (0.9 % NaCl) from an 18 h culture 

grown on nutrient agar (NA). The suspension's cell 

density was adjusted through dilution to attain an 

optical density at 620 nm between 0.08 and 0.1, 

equating to a final concentration of 10
6
 cfu/ ml. 

Subsequently, a uniform volume of 0.1 ml bacterial 

inoculum was applied and ensemenced by swabbing 

to the Mueller Hinton (MH) agar plate surface. The 

plates were then left undisturbed until the medium had 

completely absorbed the bacterial suspension 

according to the Clinical and Laboratory Standards 

Institute's guidelines (CLSI. 2023). Inhibitory efficacy 

was evaluated using the agar-disk diffusion method as 

described by (Evangelista-Martínez et al., 2022). 

Using a punch, 9 mm diameter agar cylinders were 

obtained from the AR05 strain plate, which were then 

placed on MH agar plate that had been previously 

inoculated with MRSA, followed by incubation at 37 
°
C for 24 h. Following incubation, a caliper was used 

to quantify the dimensions of the zones of inhibition. 

2.5. Statistical modeling 

2.5.1. Determination of key elements via Plackett-

Burman screening methodology 

     Following selection of the optimal culture medium, 

a Plackett-Burman design (PBD) was used to analyze 

the factors most significantly influencing anti-MRSA 

activity (Plackett and Burman, 1946). The GBA 

culture medium components; mainly glycerol, starch, 

peptone, meat extract, CaCO3 and pH were selected as 

factors for this study. To assess these six factors, 

twelve tests were carried out in triplicates (Table S1). 

Three further tests were conducted at the center 

points, and each variable was represented at two 

levels: high (+1) and low (-1) (Table 1). The Design-

Expert software version 13 (Stat-Ease, Inc., MN, 

USA) was utilized to estimate the influence of each 

element and establishes its significance by the 

application of Student's t-test. Factors with confidence 

levels higher than 95 % were considered to play a 

crucial role in the production of inhibitory substances 

effective against MRSA and were therefore included 

in the optimization process. 

2.5.2. Box-Behnken design optimization 

      To gain a comprehensive understanding of the 

interactions among the different factors influencing 

the anti-MRSA activity of AR05 strain and to identify 

their optimal levels, a Box-Behnken experimental 
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Table 1. Actual values of the Plackett-Burman design screened independent variables 

Factor Name Unit Level 

   -1 +1 

Xa Glycerol g/ l 10 30 

Xb Starch g/ l 10 30 

Xc Peptone g/ l 5 15 

Xd Meat extract g/ l 2.5 7.5 

Xe CaCO3 g/ l 1.5 4.5 

Xf pH  6 8 

 

 

design (BBD) was used (Box and Behnken, 1960). 

Based on the results of a prior Plackett-Burman 

screening, three independent variables were selected: 

Peptone concentration (X1), CaCO3 concentration 

(X2), and pH (X3). Each factor was investigated at 

three coded levels (Table 2). A total of 15 

experiments, including 3 central points were 

conducted in triplicates; with each replicate 

considered as a separate block.  

     The Box-Behnken experimental design matrix and 

the corresponding anti-MRSA responses are presented 

in Table (3). Statistical examination of the 

experimental results was accomplished with the aid of 

a Design-Expert software version 13. (Stat-Ease, Inc., 

MN, USA). A second-order polynomial model was 

developed to describe the relationship between the 

studied variables and the responses. The model's 

adequacy was assessed by analysis of variance 

(ANOVA).  

     Regression coefficients were used to identify the 

significant terms and factor interactions. Response 

surface plots curves were generated to visualize 

effects of the different factors and graphically 

determine the optimal region. Finally, a software 

numerical optimization tool was employed to identify 

the optimal combination of factor levels that 

maximized the predicted anti-MRSA activity. 

 

2.5.3. Artificial Neural Network (ANN) modeling 

      The MATLAB R2014b Neural Network Fitting 

Toolbox (Mathworks, Inc., Massachusetts, USA) was 

used to develop feed forward neural network models. 

The primary objective of this training was to elucidate 

the relationship between the input data (independent 

variables X) and the output data (response Y). This 

involved fine-tuning of the network parameters to 

minimize the discrepancy between the model's 

predicted outputs and the actual target values within 

the training dataset, thereby ensuring that the 

prediction model was refined and precise.  

     Box-Behnken experimental designs (Table 3) from 

Response surface methodology were utilized to 

construct the input and output vectors for the neural 

network model. To ensure consistency and facilitate 

model training, each variable in the input and output 

layers was normalized to a range between -1 and 1 by 

applying the normalization formula given in Eq. (1) 

(Salim et al., 2019): Where Xmin, Xmax  and Xi  are 

minimum, maximum, and actual data, respectively. 

        

                  [
 ×(         )

(          )
]     (1)      (1) 
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Table 2. The coded factors in different levels in Box-Behnken design 

Factor  Name Unit Level 

   -1 0 +1 

X1 Peptone g/l 5 10 15 

X2 CaCO3 g/l 1.5 3 4.5 

X3 pH  6 7 8 

     

Table 3. Anti-MRSA response Box-Behnken design and artificial neural network (ANN) models of variables (in 

coded levels) 

Block Runs 

Coded values Experimental 

anti-MRSA 

activity 

(mm) 

Predicted 

anti-MRSA 

activity 

RSM (mm) 

Predicted 

anti-MRSA 

activity 

ANN (mm) 

X1: 

Peptone 

X2: 

CaCO3 

X3: 

pH 

1 1 -1 0 -1 18 16.59 18.00 

1 2 1 0 1 12 12.34 11.50 

1 3 1 1 0 13 13.34 13.33 

1 4 0 -1 -1 16 16.88 16.00 

1 5 0 0 0 14 14.91 15.00 

1 6 -1 -1 0 18 17.93 18.50 

1 7 0 1 1 15 13.72 15.00 

1 8 -1 0 1 10 11.84 12.00 

1 9 0 -1 1 12 11.97 12.00 

1 10 0 0 0 16 14.91 15.00 

1 11 -1 1 0 16 16.84 16.00 

1 12 1 0 -1 10 10.43 10.00 

1 13 0 0 0 15 14.91 15.00 

1 14 0 1 -1 12 11.63 12.00 

1 15 1 -1 0 17 15.76 17.00 

2 16 0 0 0 16 15.51 15.00 

2 17 -1 0 -1 18 17.19 18.00 

2 18 0 1 -1 12 12.23 12.00 

2 19 0 0 0 16 15.51 15.00 

2 20 1 0 1 12 12.94 11.50 

2 21 1 -1 0 17 16.36 17.00 

2 22 -1 -1 0 19 18.53 18.50 

2 23 1 1 0 14 13.94 13.33 

2 24 0 -1 -1 16 17.48 16.00 

2 25 -1 0 1 14 12.44 12.00 

2 26 0 1 1 15 14.32 15.00 

2 27 1 0 -1 11 11.03 10.00 

2 28 0 0 0 15 15.51 15.00 
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2 29 -1 1 0 16 17.44 16.00 

2 30 0 -1 1 12 12.57 12.00 

3 31 -1 0 1 12 11.84 12.00 

3 32 0 0 0 14 14.91 15.00 

3 33 -1 0 -1 17 16.59 18.00 

3 34 -1 1 0 16 16.84 16.00 

3 35 0 -1 1 12 11.97 12.00 

3 36 0 1 -1 12 11.63 12.00 

3 37 0 0 0 14 14.91 15.00 

3 38 0 0 0 16 14.91 15.00 

3 39 1 1 0 13 13.34 13.33 

3 40 0 -1 -1 16 16.88 16.00 

3 41 1 0 1 11 12.34 11.50 

3 42 1 -1 0 17 15.76 17.00 

3 43 -1 -1 0 18 17.93 18.50 

3 44 1 0 -1 11 10.43 10.00 

3 45 0 1 1 15 13.72 15.00 

 

The final optimized network configuration, achieved 

through extensive training, conformed to the 

 

 

mathematical representation outlined in Eq. (2) 

(Pathak et al., 2015): 

 

                    (  )   ∑  

 

   

,      *     × (∑∑       (  ×         )

 

   

 

   

)+   - 

 

(2) 

 

   

The connection weights between the hidden and 

output layers are denoted by iw, while those from the 

input to hidden layers are represented by iw. The bias 

weights associated with the hidden and output layers 

are symbolized by bj and a, respectively.  

The hidden layer employs the hyperbolic tangent 

sigmoid transfer function, "tansig", for activation, 

whereas the output layer utilizes the linear transfer 

function, "purelin". 

2.6. Network architecture and selection of the best 

topology 

     To determine the optimal network architecture, a k-

fold cross-validation (k=10) was performed by 

modifying the hidden layer's neuron count from 1 to 

15 (Mechouche et al., 2024). Metrics such as mean 

squared error (MSE) Eq. (3), coefficient of 

determination (R
2
) Eq. (4), mean absolute deviation 

(MAD) Eq. (5), and root mean square error (RMSE) 

Eq. (6), were used to assess the performance of each 

network architecture (Patel et al., 2024). The topology 

exhibiting the best performance according to these 

criteria was selected as the final architecture for the 

ANN model. 
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2.7. Network generation and sensitivity analysis 

      Once the optimal architecture was determined, the 

neural network was generated and trained using the 

entire experimental dataset. The Levenberg-Marquardt 

training algorithm was used for network learning. 

Three sets of the experimental data were randomly 

selected: training (60 %), testing (20 %), and 

validation (20 %). The network weights and biases 

were randomly initialized and iteratively adjusted 

during the learning phase to minimize the prediction 

error. To better understand the influence of each input 

factor (X1: Peptone, X2: CaCO3, X3: pH) on the 

response (MRSA inhibition zone diameter), a 

sensitivity analysis was conducted on the generated 

ANN model. Two complementary approaches were 

employed: Garson's algorithm and connection weight 

approach (Lau et al., 2023). 

     Garson's algorithm is a commonly used method for 

determining the relative importance of input factors in 

a neural network. It is based on the absolute values of 

the connection weights among the input neurons, 

hidden neurons, and output neuron (Garson, 1991). 

The connection weight approach is an alternative 

method for evaluating the importance of input factors. 

Unlike Garson's algorithm, which considers the 

absolute values of weights, this approach takes into 

account the sign (positive or negative) of each effect 

(Olden et al., 2004). 

2.8. Comparison between RSM and ANN models 

     Several statistical indicators, including mean 

absolute percentage error (MAPE), coefficient of 

determination (R
2
), adjusted R

2
, root mean squared 

error (RMSE), average absolute deviation percentage 

(AAD %), and standard error of prediction percentage 

(SEP %), were employed to evaluate the predictive 

abilities of RSM and ANN models Eq. (4-10) (Vimali 

et al., 2022; Lau et al., 2023; Patel et al., 2024). 

     Yexp represents the values obtained through 

experimentation, while Ypred denotes the 

corresponding values generated by the predictive 

model. The total count of data points used as input is 

symbolized by n, while k signifies the count of input 

variables taken into account. Finally,    stands for the 

mean value of the experimental values dataset. 

2.9. Hybrid ANN-GA optimization 

      In the present study, a hybrid approach combining 

an artificial neural network model and a genetic 

algorithm (GA) was employed to address the 

modeling and optimization challenges. GA is a well-

established optimization tool known for its ability to 

obtain global solutions rather than local ones (Kumar 

et al., 2017). 
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              [(    )  
   

     
] (7) 

      |
          

    
|  ×  

 

 
 ×     (8) 

   ( )  
( |          |)        

 
 ×      (9) 

    ( )  
    

    
 ×      (10) 

 

The MATLAB R2014b software (Math Works Inc., 

USA) with its GA optimization toolbox was used to 

integrate the ANN-GA approach, aiming to determine 

the optimal concentrations of culture medium 

components that maximize the inhibition diameter 

against MRSA. The well-developed ANN model had 

served as the fitness function for the GA optimization 

process. The settings considered for GA tool in this 

work include the following: size of population: 200; 

generations: 100; elite number: 2; crossing fraction: 1; 

direction of migration: forward; stall generation limit: 

20; stall time limit: 20, while the other hyper 

parameters were considered as default (Alloun et al., 

2023).  

2.10. Validation of the RSM-ANN-GA model                                   

     To verify the RSM-ANN-GA model, further 

experiments were conducted using the optimized 

factor levels. The model's accuracy was evaluated by 

determining the absolute percentage error (%) 

between the predicted results and the experimental 

data. This process was crucial for confirming the 

model's precision and its predictive capabilities Eq. 

(11) (Mechouche et al., 2024). 

 

               ( )   
|𝑌𝑒𝑥𝑝   𝑌𝑝𝑟𝑒𝑑|

𝑌𝑒𝑥𝑝
×                     (11) 

 

3. Results and Discussion 

3.1. Phylogenetic analysis 

    The 16S rRNA gene sequence of strain AR05 was 

deposited at GenBank under the accession number: 

MW075678. The phylogenetic analysis of strain 

AR05 revealed a significant genetic similarity with 

several species within the Streptomyces genus, 

specifically S. kurssanovii NRBC 13192 (Pridham et 

al., 1958) and S. ostreogriseus NBRC 13423 (Shirling 

and Gottlieb, 1972), both sharing a sequence 

similarity of 99.86 %, S. peucetius NRBC 100596 

(99.58 %) (Grein et al., 1963), and S. xantholiticus 

NRBC (99.57 %) (Pridham, 1970) (Fig.1). The 

potential of Streptomyces spp. to producing a diverse 

range of bioactive secondary metabolites, including 

antibiotics, antifungals, anticancer, and antivirals 

drugs was widely recognized (de Lima Procópio et al., 

2012). Actinobacteria are the main source of around 

2\3 of all antibiotics used in clinical practice, with 

Streptomyces being the most prolific genus (Kemung 

et al., 2018). Many Streptomyces spp. have been 

shown to produce compounds with potent anti-MRSA 

characteristics. For example, Streptomyces sp. MUSC 

125 was found to produce a bioactive compound with 

significant anti-MRSA and anti-biofilm properties 

(Kemung et al., 2020). 
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Fig. 1. Phylogenetic tree constructed from the 16S rDNA sequence of the Streptomyces sp. AR05 strain 

 

Similarly, Streptomyces sp. CS392 was shown to 

produce an antibiotic with strong activity against 

MRSA (Mander et al., 2013). Other notable examples 

include Streptomyces sp. SD1 (Kalaiyarasi et al., 

2020), Streptomyces sp. DARP-7 (David et al., 2022), 

and Streptomyces sp. CMSTAAHAL-3 (Selvaraj et 

al., 2023), all of which have demonstrated promising 

anti-MRSA potential. 

     Furthermore, S. kurssanovii is known for 

producing fumaramidmycin; an antibiotic that is 

effective against both Gram-positive and Gram-

negative bacteria, but only when grown on solid 

media, indicating a strict regulation of secondary 

metabolite production (Maruyama et al., 1975). This 

characteristic has inspired us to optimize the 

production of antimicrobial compounds by AR05 by 

exploring similar culture conditions.  

      Regarding S. ostreogriseus, this species produces 

cytotoxic macrolides such as homooligomycin E, 

which has exhibited anticancer activity against several 

human tumor cell lines (Kim et al., 1997). The ability 

of S. ostreogriseus to generate bioactive compounds 

underscores the potential of strain AR05 to produce 

metabolites with therapeutic properties, which could 

be exploited to enhance its anti-MRSA activity. 

      The phylogenetic proximity of strain AR05 to 

these Streptomyces spp. highlights its potential for 

producing bioactive secondary metabolites. 

Optimizing the culture medium composition could 

leverage the conditions that favor metabolite 

production in related strains, including the use of solid 

media to stimulate antimicrobial compounds 

production. 

3.2. Selection of the best culture medium 

 Strain AR05

 Streptomyces kurssanovii NBRC13192T

 Streptomyces ostreogriseus NBRC13423T

 Streptomyces peucetius NBRC100596T

 Streptomyces xantholiticus NBRC13354T

 Streptomyces pristinaespiralis NBRC13074T

 Streptomyces halstedii NBRC12783T

 Streptomyces parvus NBRC14599T

 Streptomyces badius NBRC12745T

 Streptomyces setonii NBRC13085T

 Streptomyces filamentosus NBRC 12767

 Streptomyces formicae DSM 100524

 Streptomyces melanogenes NBRC12890T

 Streptomyces albidoflavus NBRC13010T

39

59

100

46

37

62

98

99

50

87

93

0.01
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     The selection of the optimal culture medium for 

enhancing the anti-MRSA activity of strain AR05 was 

a critical step in this study. Among the tested media, 

Glycerol bouillon agar (GBA) demonstrated the 

highest anti-MRSA activity with an inhibition zone 

diameter of 15 mm, significantly outperforming the 

other media such as Yeast malt agar (YMA), which 

 

 

showed an inhibition diameter of 13.66 mm (Fig. S1). 

Other media, including Bennett’s, czapek and Starch 

casein agar expressed no activity (Table 4). These 

results suggest that the nutrient composition of GBA, 

which includes glycerol and peptone, provides a 

favorable environment for the production of 

antimicrobial compounds by AR05 strain. 

 

 

Table 4. Anti-MRSA activity of the AR05 strain as a function of the different culture media 

Culture medium Anti-MRSA activity 

(Inhibition diameter in mm) 

Benett’s medium NA 

Czapek medium NA 

Yeast Malt agar 13.66± 0.57 

Glycerol Bouillon agar 15.00± 00 

Strach Casein agar NA 

Where; NA: no activity, (±) represents standard error 

 

      The GBA medium is crucial for initial screening 

and studying of antibiotic-producing actinobacteria. 

According to several previous studies, this medium 

provides a suitable environment for growth and 

morphological development of these microorganisms, 

which is essential for their antibiotic production 

capabilities (El Othmany et al., 2021; Boukelloul et 

al., 2023). Understanding the conditions under which 

these microorganisms produce antibiotics can help in 

discovering new antibiotics and exploring the 

mechanisms behind their production. 

3.3. Statistical modeling 

3.3.1. Plackett-Burman design 

     Plackett-Burman (PBD) is a powerful statistical 

tool for identifying the most significant factors 

influencing a given response variable such as anti-

MRSA activity in a minimal number of experiments. 

Analysis of variance (ANOVA) of the Plackett-

Burman design results for screening the medium 

components revealed that peptone: Xc, CaCO3: Xe, 

and pH: Xf had significant effects (p< 0.05) on the 

anti-MRSA activity of strain AR05 (Table 5). These 

three factors were thus selected for further 

optimization via response surface methodology. The 

presence of a significant curvature (p< 0.0001) 

indicated that there is a non-linear relationship 

between the variables and the response, justifying the 

use of a second-order experimental design such as the 

Box-Behnken design to model these interactions 

(Latha et al., 2017). 

      The Plackett-Burman design is a valuable tool in 

the optimization of antibiotic production by 

Streptomyces spp. (Smaoui et al., 2018). The PBD 

efficiency in experimental design lies in its ability to 

screen multiple variables simultaneously, thus 

reducing the number of required experiments 

compared to full factorial designs (Patel et al., 2024). 

For instance, a study reported by Djinni et al., (2018)  
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Table 5. Analysis of variance results obtained from the Plackett-Burman design 

Source DF Adj SS Adj MS Coef SE Coef F-value p-value 

Block 2 1.11 0.5556     

Model 6 73.67 12.28   7.35 < 0.0001 

Xa: Glycerol 1 7.11 7.11 0.4444 0.2154 4.26 0.0511 

Xb: Starch 1 5.44 5.44 0.3889 0.2154 3.26 0.0796 

Xc: Peptone 1 18.78 18.78 -0.7222 0.2154 11.25 0.0019 

Xd: Meat extract 1 7.11 7.11 0.4444 0.2154 4.26 0.0465 

Xe: CaCO3 1 13.44 13.44 -0.6111 0.2154 8.05 0.0075 

Xf: pH 1 21.78 21.78 -0.7778 0.2154 13.04 0.0009 

Curvature 1 77.36 77.36   46.33 < 0.0001 

Residual 35 58.44 1.67     

Total 44 210.58      

Where; DF: Degrees of freedom; Adj SS: Adjusted sum of squares; Adj MS: Adjusted mean square; Coef: Coefficient; SE 

Coef: Standard error of coefficient 

 

used PBD to optimize the production of the antibiotic 

Streptazolin by S. thermoviolaceus SRC3, and 

identifying significant factors in just 12 experiments. 

In another study, Norouzi et al., (2019) employed 

PBD to identify the significant factors influencing the 

production of a bioactive compound with anti-MRSA 

activity from a marine Streptomyces strain. The 

previous analyses have shown that peptone, CaCO3, 

and pH are significant factors, similar to the findings 

obtained in the present study. Many studies used PBD 

to screen various medium components for their effect 

on the production of bioactive metabolites, and 

highlighted the importance of peptone, starch, and pH 

in enhancing antibiotic production by Streptomyces 

spp. (Yi et al., 2015). These examples show that this 

approach is particularly valuable when resources are 

limited, as it allows the researchers to quickly identify 

key variables and focus their subsequent optimization 

efforts on these factors. 

3.3.2. Box-Behnken design 

      To further optimize the significant variables (i.e., 

peptone: X1, CaCO3: X2, and pH: X3) influencing the 

anti-MRSA activity of Streptomyces sp. AR05, Box-

Behnken design was utilized. The experimental design 

consisted of 15 distinct runs, with each run performed 

in triplicates (Fig. S2). Results in Table (3) present the 

coded levels corresponding to the independent 

variables investigated in this study, as well as the 

experimental and predicted model responses. The 

ANOVA analysis results from the Box-Behnken 

design revealed several key insights into the model's 

performance and significance (Table 6). With an F-

value of 24.34 and a p-value of less than 0.0001, the 

model itself was highly significant and showed a 

strong fit to the experimental data. The coefficient R² 

is 0.8691, meaning that 86.91 % of the response 

variability is explained by the model. The adjusted R² 

of 0.8334 supported the model's adequacy and the 

predicted R² of 0.7504 suggested a good predictive 

power.  

     In terms of individual factors, X1, X2, and X3 were 

all significant, with p-values of less than 0.0001, 

0.0002, and 0.0015; respectively, indicating their 

substantial impact on the response. Significant 

interaction terms X1X3 and X2X3, both with p-values 

of less than 0.0001, highlighted the importance of 

these interactions. The quadratic term for X3² was  
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Table 6. Analysis of variance for experimental results using the Box-Behnken design 

Source DF Adj SS Adj MS Coef SE Coef F-value p-value VIF 

Block 2 3.60 1.80      

Model 9 220.39 24.49   24.34 < 0.0001  

X1 1 48.17 48.17 -1.42 0.2048 47.87 < 0.0001 1.0000 

X2 1 18.38 18.38 -0.8750 0.2048 18.26 0.0002 1.0000 

X3 1 12.04 12.04 -0.7083 0.2048 11.97 0.0015 1.0000 

X1X2 1 1.33 1.33 -0.3333 0.2896 1.33 0.2580 1.0000 

X1X3 1 33.33 33.33 1.67 0.2896 33.13 < 0.0001 1.0000 

X2X3 1 36.75 36.75 1.75 0.2896 36.52 < 0.0001 1.0000 

X1² 1 0.2585 0.2585 0.1528 0.3014 0.2569 0.6156 1.01 

X2² 1 9.03 9.03 0.9028 0.3014 8.97 0.0052 1.01 

X3² 1 56.77 56.77 -2.26 0.3014 56.42 < 0.0001 1.01 

Residual 33 33.21 1.01      

Lack of Fit 27 27.87 1.03   1.16 0.4644  

Pure Error 6 5.33 0.8889      

Total 44 257.20    

Std. Dev. 1.00      

Mean 14.47      

C.V. % 6.93      

Where; X1: Peptone.  X2:CaCO3.  X3: pH;  R²: 0.8691; Adj R²: 0.8334; Pred R²: 0.7504; Adeq Precision: 15.6370. DF: Degrees 

of freedom; Adj SS: Adjusted sum of squares; Adj MS: Adjusted mean square; Coef: Coefficient; SE Coef: Standard error of 

coefficient; VIF: Variance inflation Factor; C.V. %: Coefficient of variation (%) 

 

notably significant (p-value < 0.0001), suggesting a 

strong curvature effect, whereas X1² was not 

significant (p-value = 0.6156), indicating negligible 

curvature for X1. 

     The lack of fit analysis, with an F-value of 1.16 

and a p-value of 0.4644, indicated that the lack of fit 

was not significant. This suggested that the model 

adequately captured the data variability and that the 

residual error was primarily attributed to pure error 

rather than model inadequacy. The model's adequacy 

was further confirmed by an Adeq Precision value of 

15.6370, which was well above the desirable threshold 

of 4, indicating a strong signal-to-noise ratio. The 

coefficient of variation (C.V.) was 6.93 %, reflecting 

precise model predictions. 3D response surface plots 

elucidated the complex interactions among the three 

factors on the inhibition diameter. The X1-X2 plot 

revealed a clear trend towards increased inhibition at 

lower concentrations of peptone and CaCO3, 

indicating a synergistic effect in their reduction Fig. 

2(a).  

     The X1-X3 interaction demonstrated a pronounced 

curvature; with optimal activity occurring at low 

peptone levels and moderate pH values Fig. 2(b). The 

X2-X3 interaction exhibited a saddle-like surface, with 

maximal inhibition observed at lower levels of both 

variables, suggesting that reduced CaCO3 

concentrations and slightly acidic conditions enhanced 

the antimicrobial efficacy Fig. 2(c). These response 

surfaces revealed the intricate interplay between 

medium components and environmental conditions, 

highlighting the need for using a multifactorial 

strategy to optimize parameters for increased 

production of antimicrobials. 
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Fig. 2. Three-dimensional response surface curve that illustrates how several variables interact to affect anti-SARM activity 

 

 

The model equation in coded factors (Eq. 12) allowed 

prediction of the anti-MRSA activity as a function of 

the levels of the 3 factors. It highlighted the 

preponderant negative impact of peptone (coefficient -

1.42) compared to CaCO3 (-0.875) and pH (-0.7083).  

Y = +15.11 - 1.42 X1 - 0.8750 X2 - 0.7083 X3 - 0.3333 

X1X2 + 1.67 X1X3 + 1.75 X2X3 + 0.1528 X1
2
 + 0.9028 

X2
2
 - 2.26 X3

2
                              (12) 

The coded factor equation allowed for response 

predictions at specified factor levels. Typically, factor 

high levels were assigned a +1 code, while low levels 

were designated as -1. Comparing the coefficients in 

the coded equation provided an insight into the 

relative influence of each factor on the response 

variable. 

     Box-Behnken design is a response surface 

methodology that allowed evaluation of interaction 

effects between variables and generation of a 

mathematical model describing the relationship 

between the factors and the response (Box and 

Behnken, 1960). The BBD results highlighted the 

significant effects of peptone, CaCO3, and pH on the 

anti-MRSA activity of strain AR05.  Peptone was  

 

found to have a preponderant negative impact on anti-

MRSA activity; with lower concentrations favoring 

higher inhibition diameters. This observation is 

consistent with several previous reports that have 

shown that excessive nitrogen sources can suppress 

antibiotic production in Streptomyces (Asnani et al., 

2022). CaCO3 and pH also exhibited significant 

negative effects on anti-MRSA activity; with lower 

levels and slightly acidic conditions enhancing 

antimicrobial efficacy. These findings are supported 

by previous studies that have demonstrated the 

importance of CaCO3 as a buffering agent and pH 

regulator in Streptomyces fermentations (Martinet et 

al., 2023). 

3.4. Artificial neural network (ANN) modeling 

3.4.1. Architecture and performance 

    Analysis of ANN performance across various 

neuron configurations revealed crucial insights for 

predicting anti-MRSA activity. The optimal 

architecture was identified with 6 neurons, 

demonstrating superior performance across all the 

evaluated metrics.  

(a) (b) (c) 
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     This configuration minimized MSE to 0.0634 and 

maximized the coefficient R² to 0.7674, thus 

explaining 76.74 % of the variance in anti-MRSA 

activity data. Furthermore, it exhibited the lowest 

MAPE at 65.7076 %, and minimal values for MAD 

and RMSE. These results indicated that the 6 neuron 

architecture offered the optimal balance between 

model complexity and predictive accuracy, thereby 

providing a reliable foundation for further analysis 

and optimization of anti-MRSA compound production 

parameters. 

 

 

 

     The optimized ANN architecture for predicting 

anti-MRSA activity consisted of 3 input neurons, 2 

hidden layers with 6 neurons each, and 1 output 

neuron. This structure, coupled with the Levenberg-

Marquardt algorithm and sigmoid activation functions, 

demonstrated robust predictive capabilities (Fig. 3). 

The model's performance was evidenced by the high 

correlation coefficients (R) for training (0.95707), 

validation (0.96528), and testing (0.98851) datasets, 

indicating excellent agreement between predicted and 

experimental values across all phases of model 

development. 

 

 

 

Fig. 3. The ANN model's validation, testing, and training 
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The 3D response surface plots generated by ANN 

model revealed complex interactions between the 

input variables. The X1-X2 interaction (Peptone vs. 

CaCO3) exhibited a saddle-like surface, with 

maximum inhibition observed at low peptone and 

moderate CaCO3 levels Fig. 4(a). The X1-X3 

interaction (Peptone vs. pH) revealed a highly non-

linear relationship. The maximum inhibition diameter 

occurred at low peptone concentrations across a range 

of pH values, with a notable peak in the response 

surface Fig. 4(b). The X2-X3 interaction (CaCO3 vs. 

pH) showed a pronounced peak at moderate CaCO3 

levels and slightly acidic pH Fig. 4(c). 

 

 

This highlighted the importance of precise pH control 

in conjunction with appropriate CaCO3 concentration 

for maximizing antimicrobial efficacy. The complex 

surface topology indicated that small variations in 

these parameters can significantly impact the 

inhibition diameter. In terms of comparison, the 

response surfaces generated by ANN exhibited 

significantly more complex and nonlinear topologies 

than those typically obtained by RSM. This suggested 

that ANN captures more subtle and complex 

interactions between the variables that the RSM might 

not detect. 

 

 

 

(a) (b) (c) 

   

Fig. 4: Three-dimensional ANN model surface curve that illustrates how several variables interact to affect anti-SARM 

activity 

 

 

 

     The artificial neural networks are a potent 

substitute for response surface methodology in the 

modeling and optimization of intricate bioprocesses 

such as Streptomyces' synthesis of antibiotics. ANNs 

may learn from examples to approximate complex 

non-linear relationships between input variables and 

output responses. They are inspired by the structure 

and operation of biological neural networks 

(Ekpenyong et al., 2021). In contrast to RSM, which 

relies on predefined polynomial models, ANNs can 

adapt to the inherent complexity of biological systems 

without prior assumptions about the underlying 

relationships (Lee et al., 2022). This flexibility 

allowed ANNs to capture subtle interactions and non-

linearity that may be overlooked by RSM, leading to 

more accurate predictions and optimization results 

(Rayavarapu et al., 2019). 
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3.4.2. Artificial neural network sensitivity analysis 

      Important information about the relative 

significance of input variables in modifying anti-

MRSA activity was obtained from the sensitivity 

analysis, which was carried out using both Garson's 

Algorithm and the Connection Weight approach. 

(Table 7). Garson's Algorithm revealed that peptone 

concentration had the most substantial impact (36.51 

%) on anti-MRSA activity, closely followed by 

CaCO3 (35.94 %); with pH having a comparatively 

lower (27.53 %) but still significant, influence. The 

 

 

Connection Weight approach considered the direction 

and strength of effects. While peptone concentration 

remained the most influential factor (-3.91), its large 

negative value suggested that increasing peptone 

concentration generally led to a decrease in anti-

SARM activity. The pH emerged as the second most 

important factor in this analysis (-1.5933), also with a 

negative effect, indicating that lower pH values tend 

to enhance anti-SARM activity. CaCO3, while still 

important, showed a less pronounced negative effect (-

0.99). 

 

 

 

Table 7. Sensitivity analysis 

 Garson's method Connection Weight method 

Relative 

importance 

(%) 

Inputs ranked 

according to relative 

relevance 

Connection weight 

approach 

(Si values) 

Inputs ranked 

according to relative 

relevance 

X1: Peptone 36.5189 1 -3.9145 1 

X2: CaCO3 35.9465 2 -0.9893 3 

X3: pH 27.5346 3 -1.5933 2 

 

 

       The discrepancy in the ranking of pH and CaCO3 

between the connection weight method and Garson's 

algorithm can be attributed to the inherent differences 

in how these methods assessed variable importance. 

Garson's approach considers the absolute values of the 

connection weights as a measure of the overall 

influence of each input variable on the output, 

regardless of direction of the effect (Lau et al., 2023). 

       As opposed to this, the connection weight 

technique considers the weights' sign (positive or 

negative), providing information on the direction and 

strength of each variable's influence on the response 

(Lau et al., 2023). Furthermore, the complex, non-

linear relationships between the input variables and 

the anti-MRSA activity, as evidenced from the 

response surface plots, may contribute to the observed 

differences in ranking. The CaCO3 vs. pH plot, for 

instance, revealed a pronounced peak at moderate 

CaCO3 levels and slightly acidic pH, indicating a 

strong interaction effect. This suggested that while 

CaCO3 may have a broader overall impact on the 

response (as captured by Garson's algorithm); the 

directionality of its effect was highly dependent on the 

pH level, which was better reflected by the connection 

weight approach. Reconciling of these differences 

requires a holistic interpretation of the sensitivity 

analysis results in conjunction with the insights gained 

from the response surface analysis. 
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3.5. RSM-ANN comparison 

      The performance metrics calculated for RSM and 

ANN models demonstrated that in forecasting the 

inhibition activity, the ANN model performed better 

than the RSM model. The ANN model exhibited a 

RMSE of 0.6694; substantially lower than that of the 

RSM model (0.8581). This difference indicated that 

the predictions of ANN model were in line with the 

experimental values more than those of the RSM 

model. Furthermore, the ANN model demonstrated a 

MAPE of 3.0157%, in contrast to 4.9649 % for the 

RSM model. This metric quantified the average error 

in terms of percentage, providing an indication of the 

prediction accuracy. The lower MAPE of ANN model 

suggested that its predictions were more accurate than 

those of the RSM model. 

     To further assess the goodness of fit of the models, 

the coefficient R
2
 was calculated. The ANN model 

had an R
2
 of 0.9216, implying that it explained 92.16 

% of the variability in the response variable. In 

comparison, the RSM model had an R
2
 of 0.8712. The 

adjusted R
2
, which considered the number of predictor 

variables in the model, was also higher for the ANN 

model (0.9159) than for the RSM model (0.8617). 

These findings implied that the ANN model fitted the 

data more accurately and at a greater ability to explain 

the variability in the response, corroborating the 

findings from the RMSE and MAPE metrics. 

      To assess the accuracy and dependability of the 

model's predictions, the SEP % and the AAD % were 

calculated. The SEP expressed the prediction error as 

a percentage of the mean response variable. The ANN 

model had an SEP of 4.6275 %, while the RSM model 

had an SEP of 5.9319 %. Lower SEP of the ANN 

model indicated that its predictions were more 

accurate and reliable compared to those of the RSM 

model. Similarly, the AAD measured the mean 

absolute difference between the experimental and 

predicted values, expressed as a percentage of the 

mean experimental values. The ANN model had an 

AAD of 2.8157 %, compared to 4.9155 % for the 

RSM model.  

      The obtained metrics confirmed that the ANN 

model provided more accurate predictions than the 

RSM model; this finding is in line with numerous 

previous studies that have reported the advantages of 

ANNs over RSM for bioprocess modeling and 

optimization (Vimali et al., 2022; Patel et al., 2024). 

The ability of ANNs to approximate complex non-

linear relationships without prior assumptions about 

the model form enabled them to capture the inherent 

complexity of biological systems more effectively 

than RSM. Moreover, the hybridization of ANNs with 

GA for global optimization allowed for identification 

of optimal conditions that may be overlooked by the 

classical gradient-based methods used in RSM 

(Kumar et al., 2017). 

3.6. ANN-GA analysis 

       The hybridization of artificial neural networks 

with genetic algorithms has emerged as a powerful 

approach for optimizing complex bioprocesses, 

including antibiotic production by Streptomyces spp. 

(Kumar et al., 2017). In this study, the ANN-GA 

hybrid approach allowed for determination of optimal 

concentrations of peptone (5.34 g/ l), CaCO3 (1.54 g/ 

l), and pH (6.07), which maximized the predicted anti-

MRSA activity (21.65 mm) of strain AR05 (Table 8). 

      The significant improvement in anti-MRSA 

activity achieved through the ANN-GA optimization 

process can be attributed to several factors. First, the 

ability of ANN to capture the intricate and non-linear 

connections among the input variables (peptone, 

CaCO3, and pH), and the output response (anti-MRSA 

activity) that allowed for a more accurate 

representation of the underlying biological processes 

(Rayavarapu et al., 2019). It is possible to identify the 

ideal conditions with this improved understanding of 

the system dynamics, which may not be evident using 

conventional statistical techniques. Second, the GA's 

global optimization capabilities ensures that the search 

for optimal conditions is not limited to local optima, 

which is a common limitation of the gradient-based 

optimization methods used in RSM (Kumar et al., 

2017). 
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Table 8. Optimal culture conditions for maximizing anti-MRSA activity 

Input variables 
Before 

optimization 
RSM model ANN-GA model 

Peptone (g/ l) 10 5.04 (-0.991) 5.34 (-0.931) 

CaCO3 (g/ l) 3 1.53 (-0.975) 1.54 (-0.969) 

pH 7 6.13 (-0.870) 6.07 (-0.928) 

Predicted anti-SARM activity (mm)  19.87 21.65 

Experimental anti-SARM activity 

(mm)
*
 

15.00±  0 18.33±  0.57 22.33±  0.57 

Where; 
*
 The anti-SARM potency was evaluated at the 5-d point during the fermentation process. The reported values 

represent the average of three independent measurements, with the corresponding standard deviation (±SD) provided 

 

By exploring a wider range of possible solutions, the 

ANN-GA approach increases the likelihood of 

identifying the most favorable combination of factor 

levels for maximizing antimicrobial production. 

Finally, the ANN-GA optimization process 

progressively refines the model in a step-by-step 

manner, allowing for identification of increasingly 

optimal conditions. As GA generates new candidate 

solutions based on ANN's predictions, the model is 

continuously updated with new experimental data, 

leading to a more accurate representation of the 

system, and consequently more effective optimization 

(Alloun et al., 2023). 

3.7. RSM-ANN-GA model validation 

       The ANN-GA optimized conditions for 

maximizing anti-MRSA activity in strain AR05 

demonstrated significant improvements over both the 

initial and RSM-optimized conditions. The initial 

culture conditions (10 g/ l peptone, 3 g/ l CaCO3, pH 

7) resulted in an experimental anti-MRSA activity of 

15.00 mm. In comparison, the RSM-optimized 

conditions (5.04 g/ l peptone, 1.53 g/ l CaCO3, pH 

6.13) predicted an anti-MRSA activity of 19.87 mm, 

which was experimentally validated to be 18.33 mm. 

The ANN-GA approach further refined these 

conditions, suggesting optimal concentrations of 5.34 

g/ l peptone, 1.54 g/ l CaCO3, and a pH of 6.07. These 

optimized conditions predicted an anti-MRSA activity 

of 21.65 mm, which was experimentally confirmed to 

be 22.33 mm, representing a 48.87 % increase from 

the initial conditions and a 21.82 % improvement over 

the RSM-optimized conditions. 

      Moreover, experimental validation of ANN-GA 

hybrid model under the optimized conditions yielded 

an anti-MRSA activity very close to the predicted 

value (22.33 mm vs. 21.65 mm), representing an 

absolute error of only 3.14 %. This excellent 

agreement between predicted and experimental results 

confirmed the validity and robustness of the 

developed model. Prediction errors below 5 % are 

considered highly satisfactory for bioprocesses, given 

their inherent variability (Nalini et al., 2021; Lau et 

al., 2023). The low absolute error observed in this 

study further validated the ANN-GA approach as a 

reliable tool for optimizing culture conditions to 

enhance antimicrobial production by Streptomyces 

spp. The successful validation of ANN-GA hybrid 

model in this study is consistent with the findings of 

similar studies in the literatures that have employed 

this approach for optimizing bioprocesses and 

enhancing secondary metabolite production. For 

example, Salim et al., (2019) used an ANN-GA 

approach to optimize the production of L-

methioninase; an enzyme with potential applications 

in cancer treatment, from Trichoderma harzianum. 

The optimized conditions predicted by the model 

resulted in a 2.6-fold increase in L-methioninase 
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activity compared to the initial conditions, with a low 

absolute error of 3.8 % between the predicted and 

experimental values (Salim et al., 2019). Similarly, 

Joshi and Singhal, (2016) applied an ANN-GA hybrid 

approach to optimize the production of zeaxanthin; a 

valuable carotenoid pigment, by Paracoccus 

zeaxanthinifaciens. The optimized conditions led to a 

1.5-fold increase in zeaxanthin production, with a high 

correlation coefficient (R² = 0.9989) between the 

predicted and experimental values. In the context of 

antimicrobial production by Streptomyces spp., 

Norouzi et al., (2019) study employed response 

surface methodology to optimize the production of a 

bioactive compound with anti-MRSA activity from a 

marine Streptomyces strain. The optimized conditions 

resulted in a 2.4-fold increase in antimicrobial activity 

compared to the initial conditions, with a low absolute 

error of 4.2 % between the predicted and experimental 

values. The validation outcomes of this study, with a 

48.87 % increase in anti-MRSA activity and a low 

absolute error of 3.14 %, are comparable to or better 

than those reported in similar studies.  

      However, it is essential to acknowledge the 

potential limitations of the model. First, the quantity 

and quality of the experimental data used for training 

and validation may have an impact on the model's 

performance. Ensuring that the data covers a wide 

range of conditions and is representative of the 

system's behavior is crucial for developing a reliable 

and generalizable model (Vimali et al., 2022). Second, 

the model's predictive capabilities may be limited to 

the specific strain and range of culture conditions 

investigated in this study. Extrapolating the model's 

predictions beyond the studied design space or 

applying them to other Streptomyces strains may 

require further validation and model refinement (Beg, 

2021). Finally, the ANN-GA approach, like any 

modeling technique, is a simplification of the complex 

biological processes underlying antimicrobial 

production. While the model has demonstrated 

excellent predictive performance, it may not capture 

all the intricate interactions and regulatory 

mechanisms involved in secondary metabolites 

biosynthesis (Djinni et al., 2018). 

      Despite these potential limitations, the ANN-GA 

hybrid model developed in this study has proven to be 

a reliable and effective tool for optimizing culture 

conditions to enhance anti-MRSA activity in strain 

AR05. The model's robustness and predictive 

accuracy highlighted the potential of this approach for 

accelerating the discovery and development of novel 

antimicrobial compounds from Streptomyces spp. 

Conclusion 

     In this study, we successfully optimized the 

production of anti-MRSA compounds by 

Streptomyces sp. AR05 using an integrated RSM-

ANN-GA approach. The strain isolated from 

hydrocarbon-contaminated soil has shown promise as 

a source for novel antibacterial compounds. 

Application of statistical modeling, machine learning, 

and global optimization techniques allowed for a 

comprehensive understanding of the complex 

relationships between culture conditions and 

antimicrobial activity. ANN model proved superior to 

RSM in capturing the non-linear interactions between 

the key factors influencing anti-MRSA activity; 

namely peptone, CaCO3, and pH. Sensitivity analysis 

revealed the relative importance of these factors, with 

peptone having the most substantial impact on 

antimicrobial production. Hybridization of ANN 

model with GA enabled the identification of optimal 

culture conditions, leading to a significant 

improvement in anti-MRSA activity compared to the 

initial and RSM-optimized conditions. Successful 

validation of the optimized conditions; with a low 

absolute error between the predicted and experimental 

values, confirmed the robustness and reliability of the 

developed RSM-ANN-GA model. This integrated 

approach offers a powerful tool for optimizing 

bioprocesses and improving Streptomyces strains 

capacity to produce useful secondary metabolites. The 

optimized production of antimicrobial compounds by 

Streptomyces sp. AR05 highlights the untapped 

potential of actinobacteria obtained from 
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underexplored and extreme environments as a rich 

source of bioactive metabolites. 
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