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Introduction                                    ___________

Phosphorus is one of the highly important 
macro nutrient required by plants. It is a key 
nutrient for morphological, physiological and 
biochemical development. Also, it contributes to 
photosynthesis, energy and sugar production and 
nucleic acid synthesis (Saber et al., 2005). 

Phosphorous is added to cultivated soil in 
different forms as mineral phosphate fertilizers 
or organic manure, it is rapidly converted into 
insoluble complexes such as iron and aluminium 
phosphate in the acidic soil and calcium phosphate 
in alkaline or normal soil (Gyaneshwar et al., 
2002). This problem is well known in Egyptian 
soils specially those rich in calcium carbonate (El-
Gamal, 1996).

To overcome phosphorus deficient problems 
in soils by safe ways, less expensive costs and 
friendly environment strategies, Phosphorus 
Solubilizing Microorganisms (PSMs) have been 
used to solubilize the precipitated phosphates 
through converting them into soluble forms,  
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H2PO4 - and HPO4
2- that are available to plant 

(Coutinho et al., 2012). This occurs through 
principal mechanisms such as acidification of the 
medium, chelation, ion-exchange reactions and 
production of various acids (Chung et al., 2005 
and Gulati et al., 2010). 

The most powerful PSMs that belong to 
bacteria as Pseudomonas, Enterobacter and 
Bacillus in addition to fungus such as Penicillium 
and Aspergillus (Whitelaw, 2000,  Wakelin et al., 
2004,  Yadav et al., 2010 and Xiao et al., 2011). 
Rhizobium leguminosarumbv. Viciaehave been 
demonstrated to solubilize inorganic phosphorus 
by Belal et al. (2013).

Efficiency of PSMs differs significantly with 
cultural conditions such as pH, temperature and 
incubation period. Inoculation with PSMs have 
an important contribution to overall plant P 
nutrition and growth, and have increased yields 
of many crops (Whitelaw, 2000 and Leggett et al., 
2001), In particular, under glasshouse conditions 
(Zaidi et al., 2009 and Khan et al., 2010). More 
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importantly, investigations conducted under field 
level using wheat and maize plants have revealed 
that PSMs could drastically reduce the usage of 
chemical or organic fertilizers (Singh and Reddy, 
2011).

The present study was designed to isolate, 
characterize the efficient phosphate solubilizing 
bacteria and application on wheat plant to improve 
its growth and yield.

Materials and Methods                                         

Collection of soil samples
Soil samples were collected from rhizosphere 

of healthy plants (rice, maize, cotton, pepper and 
cucumber) in Kafr Elsheikh Governorate, Egypt 
stored in polyethylene bags and brought to the 
laboratory for further studies. 

Isolation and screening of Phosphorus Solubilizing 
Microorganisms

Ten grams from each soil sample was 
suspended in a 90-ml sterilized saline solution 
and serially diluted. The dilutions were plated on 
Pikovskaya’s Agar medium and the plates were 
incubated at 28 ºC for 3-6 days. The bacterial 
colonies surrounded with a halo zone were 
purified then maintained on PVK slants at 4 ºC. 
All bacterial isolates were screened according to 
the formed halo zone around the colonies. The 
highest phosphorus solubilizing activity isolate 
(wider halo zone) were selected for morphological, 
biochemical and molecular characterization 
(included DNA extraction and polymerase chain 
reaction (PCR) at Sigma Scientific Services Co., 
Giza, Egypt and 16S rDNA gene sequencing 
technique was conducted using ABI 3730xl DNA 
sequencer at GATC Company, Germany).

Effect of pH and temperature on phosphate 
solubilization efficiency

Pikovskaya’s agar medium (PVK) was 
adjusted at different pH values 4.5, 5, 5.5, 6, 6.5, 
7, 7.5, 8, 8.5 and 9 to determine the optimum pH. 
The selected bacterial strain was spot inoculated 
at the center Pikovskaya’s plate and incubated 
at 30 ºC for 7 days. Diameter of phosphate 
solubilization zone was recorded. To determine 
the optimum temperature, Pikovskaya’s agar 
medium’s plates were inoculated with the bacteria 
then the plates were incubated for 7 days at 
temperatures 20 ºC, 30 ºC and 40 ºC. Diameter of 
phosphate solubilisation zone was recorded.

Effect of incubation period on growth and 
phosphate solubilization efficiency

Pikovskaya’s broth medium was used to detect 
the effect of incubation period on quantative of 
phosphate solubilization in addition to the growth 
of the bacterial isolate. 100 ml of the medium was 
inoculated by 1 ml (109cfu/ml) of culture of the 
bacterial strain. a sterilized uninoculated medium 
was served as a control. The cultures were 
incubated on a rotatory shaker at 30 ºC and 150 
rpm/min. Every 24 hr,solubilized P was measured 
spectrophotometrically at 430 nm according to 
Subba (1993) and Belalet al. (2013) and also cells 
number of the bacteria was determined by plating 
appropriate dilutions of the liquid medium onto 
nutrient agar medium

Inoculation effect of Enterobacter cloacae (B1) 
on wheat growth and yield

Field experiment was carried out to evaluate 
the impact of the selected isolate on growth and 
yield of wheat (Triticumaestivum L.) cultivar Masr 
1. The experiment was carried out in experimental 
fields of Faculty of Agriculture, Kafrelsheikh 
University, Egypt during two growing winter 
successive seasons of 2014/2015 and 2015/2016.

Plots of 1m long and 1m wide were prepared 
in the field and hand-sown with 17g wheat grains. 
The wheat grains were inoculated at the time 
of planting as follows, grains were witted with 
10 % sugar syrup, air-dried under shadow and 
thoroughly mixed with a volume of bacterial 
suspension previously prepared enough to obtain 
108 CFU per gram of grains for half an hour. As 
per control treatments, plots were sown with 
uninoculated grains.

The experiment included 9 treatments,  T1 
(C) control, T2 (P) Phosphorus fertilizer, T3 
(N+P+K), T4 (A) phosphoric acid, T5 (A+P), T6 
(A+NPK), T7 (B1), T8 (B1+P), T9 (B1+NPK). 

Chemical fertilizers (NPK) were applied with 
the respective treatments at the recommended 
rates as follows: Phosphorus fertilizer dose was 
applied before sowingas calcium super phosphate 
(15.5 % P2O5), Nitrogen fertilizer was added in 
three doses in the form of urea (46 % N): the first 
dose (20%) at the time of sowing, the 2nd dose 
(40%) before the 1st irrigation and the 3rd dose 
(40%) before the 2nd irrigation and potassium 
fertilizer dose was applied before the 2nd irrigation 
in the form of potassium sulphate (48 % K2O). 
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As per phosphoric acid 85%,it was applied after 
1st irrigation (35 days from sowing) at the rate of 
3cm3/liter.The cultural practices, irrigation and 
pest control were carried out as commonly used. 

The following data were recorded:
•	 Growth characteristics,  plant height (cm), 

fresh weight / plant (g), dry weight / plant 
(g): Plants were dried at 70 ºC till constant 
weight in electric oven and Flag leaf area / 
plant (cm2); measured according to Muller 
(1991).

•	 Physiological characteristics, chlorophyll 
pigments such chlorophyll a, b and total 
chlorophyll content (µg / cm2) were de-
termined in the flag leaf lamina using the 
spectrophotometer method described by 
Moran and Porath (1980).

•	 Yield characteristics, spike length (cm) was 
measured by the length of the main spike, 
spikeletsnumber / spike was determined 
by counting number of fertile spikelets per 
spike, grains number / spike was computed 
by counting number of grains of the main 
spike, 1000-kernel weight (g) was deter-
mined as the mean weight of 1000 kernel 
random sample, spike weight (g) was de-
termined as the weight of the main spike, 
Biological weight (g / m2) was determined 
as the weight of harvested plants of 1 sqr 
meter and grains weight (g / m2) was deter-
mined as the weight of harvested grains of 
1 sqr meter.

Statistical analysis
The treatments were distributed in a 

Randomized Complete Block Design (RCBD). 
Each treatment was represented by 3 plots as 
replicates.The collected data were statistically 
analyzed by CoStatsoftware. Duncan’s multiple 
range tests (DMRT) were used for comparisons 
among treatments means at 0.05 probability 
level (Duncan, 1955).

Results and Discussion                                          

Isolation and screening of phosphorus 
solubilizing bacteria

Forty - four bacterial isolates were obtained 
from different plants. The strain B1 showed 
the highest phosphate solubilization activity 

(wider halo zone) among all other strains. 

Identification of Enterobacter cloacae (B1) 
using 16S rDNA

The selected bacterial strain (B1) was 
morphologically and biochemically characterized 
according to Bergey’s manual of Systematic 
Bacteriology (Krieg and Holt, 1984) as well as 
using analysis of 16S rDNA.

The gene coding of 16S rDNA of the strain 
was amplified by PCR using universal primer. 
Results in Fig. 1 showed that, 1500 bp DNA 
fragment was obtained by PCR amplification of 
16S rDNA gene of the bacterial strain. Then the 
amplified PCR product has been sequenced, and 
data of sequence obtained was compared with 
data base in the Nucleotide Database of National 
Center for Biotechnology Information (NCBI).

Fig. 1. Agarose gel electrophoresis of purified PCR 
product B1: Enterobacter cloacae and M: 
DNA marker

Phylogenetic analysis of the bacterial strain and 
related bacterial species according to 16S rDNA 
gene sequence was provided in Fig. 2.This revealed 
that bacterial strain was most closely related to 
Enterobacter cloacaestrain ECNH4 (99%). This 
result is the same as the finding of Kampfer et al. 
(2005) who indicated that plant growth promoting 
bacterial strain D5/23T most closely related to 
Enterobacter cloacae with 99.0% and Enterobacter 
dissolvens with 98.5% sequence similarity.
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Effect of pH and temperatureon phosphate 
solubilization efficiency of Enterobacter cloacae (B1)

Data presented in Fig. 3 and 4 show the influence 
of pH and temperature on phosphate solubilization 
efficiency of E. cloacae (B1) in Pikovskaya’s agar 
medium. 

Results showed that E. cloacae (B1) is able to 
solubilize P at a wide range of pH from 4.5 to 9. and 
at different temperatures 20,30 and 40 °C. Whereas 
the optimum pH and temperature were 8 and 30°C, 
respectively.These obtained results are in agreement 
with Nopparat et al. (2008) who found that the 
bacterial strain SD02P3218 recorded the highest 
tricalcium phosphate solubilization at pH8.84. and 
temperature 34.7 °C.Previous workers have found 
that bacteria showed higher phosphate solubilization 
at pH 7-8 (Seshadri et al., 2002). Also, Mardad 
et al. (2014) found that, the highest production of 
orthophosphateby Enterobacter hormaechei was at 
pH 7 and temperature 30°C.

Effect of incubation Period on growth and 
phosphate solubilization efficiency of Enterobacter 
cloacae (B1)

Data presented in Fig. 5 revealed that, 
phosphate solubilization has been started when 

Fig. 2. Phylogenetic tree of 16S rRNA gene sequences of Enterobacter cloacae (B1)

the strain grew on the medium. The maximum 
phosphate solubilization occurred at the 
end of logarithmic phase (on the third day).
These results were in line with Walpola and 
Arunakumara (2015) who found that the highest 
phosphate solubilization of Enterobacter 
ludwigii and Enterobacter hormaechei was 
recorded at day 2 and 3 of the incubation, 
respectively. Also, Jena and Rath (2013) 
reported that the optimum incubation period of 
phosphate solubilizing activities was found to 
be 3 days for five bacterial isolates. phosphate 
solubilization by Rhizobium leguminosarumbv. 
Viciae gradually increased up to 7 days on 
Pikovskaya’s Agar medium (Belal et al., 2013).

Inoculation effect of Enterobacter cloacae (B1)on 
growth characteristicsand yield of wheat plants

Growth characteristics
Data concerning growth characteristics (plant 

height, fresh and dry weight and flag leaf area) are 
presented in Table 1. Also, chlorophyll pigments 
content (chl. a, b and total) is presented in Table 2.

Plant height (cm)
Presented results show that the highest 

values of plant height were obtained by 
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Fig. 3. Effect of pH on phosphate solubilization of Enterobacter cloacae (B1)

Fig. 4. Effect of temperature on phosphate solubilization Enterobacter cloacae (B1)
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Fig. 5. Effect of incubation period on growth and phosphate solubilization of Enterobacter cloacae (B1).

application of bacterial strain and phosphoric 
acid in combination with NPK (B1+NPK and 
A+NPK treatments) while the lowest value 
of plant height was recorded in the control 
treatment (uninoculated and unfertilized) 
during the both successive seasons. The 
treatments (B1+NPK) and (A+NPK) increased 
plant height insignificantly during the first 
season and significantly during the second 
season in comparison with the treatment (NPK) 
except the second record in the first season 
of the treatment (A+NPK) which showed a 
significant increase. It could be observed that, 
inoculation of phosphate solubilizing bacteria 
(B1) increased plant height by about 9.96% 
over un-inoculated plants. Also, application 
of phosphoric acid led to increase in wheat 
plant height up to 11.53% over control. The 
treatment (B1+NPK) increased plant height 
by 12.97 % over (NPK) treatment and the 
treatment (A+NPK) increased plant height by 
14.92% over (NPK) treatment.These obtained 
results are in harmony with those finding by 
Ramesh et al. (2014) who reported that, plant 
height increasing in wheat and soybean plants 

due to inoculation with Enterobacter cloacae 
subsp. dissolvens MDSR9. Similar increase 
in growth parameters with the inoculation has 
been previously reported with inoculation of 
Enterobacter (Mehnaz et al., 2010,  Montanez 
et al., 2012 and Shoebitz et al., 2009). Kumar 
et al. (2001) found the combined effect of 
bacterial inoculants and fertilizer showed 
maximum increase in plant height.

The increasing in plant growth due to the 
inoculation with microorganisms having 
phosphate solubilizing ability may be 
attributed to auxin production (Gyaneshwar 
et al., 2002 and Fankem et al., 2008), ACC-
deaminase activity (Zafarul- Hye et al., 2007 
and Naik et al., 2008), production of organic 
acids (Fankem et al., 2008) or phosphatases 
(Abd- Alla, 1994 and Chabot et al., 1996) to 
solubilize/mineralize P , thereby increasing 
phosphate nutrition of inoculated plants.

Fresh weight and dry weight (g / plant)
The treatment (B1+NPK) recorded the highest 

mean values of fresh and dry weight during 
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the both seasons. While the lowest values were 
recorded by the control treatment (uninoculated 
and unfertilized) during the both seasons.The 
treatment (B1+NPK) increased insignificantly 
fresh weight during both seasons and increased 
dry weight insignificantly during the first season 
and significantly during the second season in 
comparison with (NPK) treatment. The treatment 
(B1) significantly increased fresh weight and 
dry weight (first record) during the first season 
whereas during the second season increased 
insignificantly fresh weight and significantly dry 
weight in comparison with its respective control 
(uninoculated and unfertilized). 

Generally, the treatment (B1) increased fresh 
weight and dry weight by 86.78 % and 58.36 
%, respectively over control and the treatment 
(B1+NPK) increased fresh weight and dry 
weight by 34.17 % and 71.83 %, respectively 
over (NPK) treatment.These findings are almost 
similar to those of Schoebitz et al. (2007) who 
found a statistically significant increase in shoot 
fresh weight evident in plants inoculated with 
Enterobacter ludwigii. Ramesh et al. (2014) also 
reported that inoculation with Enterobacter 
cloacae subsp. dissolvens MDSR9 led to an 
increase in dry weight in both soybean and wheat 
crops over un-inoculated control.All quantitative 
plant traits showed significant increase in 
response to chemical fertilizer treatments, this 
response was further substantiated with bacterial 
inoculation (Kumar et al., 2001).

Flag leaf area (cm2)
Based on data in Table 1, the highest values of 

flag leaf area (cm2) were obtained by the treatments 
(A+NPK) and (B1+NPK) while the lowest value 
was obtained in control treatment (uninoculated 
and unfertilized) during the both seasons. The 
treatment (B1+NPK) insignificantly increased 
flag leaf area (cm2) in comparison with (NPK) 
treatment during the both seasons. The treatment 
(B1) increased flag leaf area (cm2) insignificantly 
during the first season and significantly during the 
second season in comparison with its respective 
control. The treatment (B1) increased flag leaf area 
(cm2) by 53.68% over control and the treatment 
(B1+NPK) increased flag leaf area (cm2) by 11.81 
% over (NPK) treatment.

These obtained results are similar to other 
investigators (Panhwar et al., 2011 and Al-
Shamma and Al-Shahwany, 2014).
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Physiological characteristics (chlorophyll 
pigments (µg / cm2)

Data presented in Table 2 cleared that, the 
treatment (B1+NPK) recorded the highest values 
of chlorophyll pigments (chl. a, b and total) 
content (μg / cm2) during the both seasons except 
chl. b of the second season. (B1+NPK) treatment 
significantly increased chlorophyll pigments (chl. 
a, b and total) content (μg / cm2) in comparison 
with (NPK and A+NPK) treatmentsduring the both 
seasons. On the other hand, the treatment (B1) 
significantly increased chlorophyll pigments (chl. 
a, b and total) content (μg / cm2) in comparison with 
untreated control which recorded the lowest value. 
The treatment (B1) increased chl. a, b and total by 
31.91 %, 35.81 % and 33.33 %, respectively over 
control and the treatment (B1+NPK) increased 
chl. a, b and total by 29.67 %, 11.94 % and 23.55, 
respectively % over (NPK) treatment.These 
findings are similar to those of Panhwar et al. 
(2011) who found that PSB inoculated treatments 
on aerobic rice demonstrated a significant increase 
in chlorophyll content and leaf photosynthesis 
compared to non-inoculated treatments. Mehrvarz 
et al. (2008) also reported similar results with 
mycorrhiza along with PSB (Pseudomonas putida) 
which showed an increase in leaf chlorophyll 
content in barley. Al-Shamma and Al-Shahwany 
(2014) reported that the combination of biofertilizer 
(A. chroococcum, A. brasilense and P. fluorescens) 
and 100% NP significantly affected flag leaf 
chlorophyll content (55.05 SPAD). Application of 
Azotobacter chrocooccum (E1) and Pseudomonas 
sp. (E2) strains individually increased chlorophyll 
pigment contents(μg / cm2) for two wheat cultivars 
compared with untreated plant (El-Afry et al., 
2012).

Yield and its components
Data concerning yield characteristics (spike 

length, spikelets number, grains number, 1000 
kernels weight and spike weight) are presented in 
Table 3. As well , biological and grains yield are 
presented in Table 4.

Spike length (cm) and spikelets number
Data in Table 3 revealed that, the treatment 

(A+NPK) gavet he highest value of spike length 
(cm) and spikelets number during the first season 
and increased insignificantly spike length and 
spikelets number compared to (B1+NPK) and 
(NPK) treatments during the first season. On the 
contrary,during the second season the treatment 

(B1+NPK) was the highest and increased 
significantly spike length and spikelets number 
compared to (A+NPK) and (NPK) treatments. The 
treatment (B1) increased significantly spike length 
and spikelets number during the both seasons in 
comparison with uninoculated and unfertilized 
treatment which recorded the lowest value. 

The treatment (B1) increased spike length 
and spikelets number by 13.14 % and 13.58 
%, respectively over control and the treatment 
(B1+NPK) increased spike length and spikelets 
number by 6.31 % and 5.69 %, respectively over 
(NPK) treatment.

These obtained results are in line with similar 
previous findings (Khalid et al., 1997, Hilaliet al., 
2000 and Afzal & Bano, 2008), who reported an 
increase in spikelets per spike and spike length of 
various crop plants by microbial inoculation. Also, 
Kumar et al. (2001) reported the combined effect of 
bacterial inoculants and fertilizer showed maximum 
increase in spike length (11.3%) and spikelet spike–1 
(11.1%) in wheat crop. The agronomic traits and 
yield have been increased when plants inoculated 
with bio-fertilizers combined with mineral 
fertilizers, and that is because of the application of 
bio-fertilizers which may be attributed to their role 
by enhancing plant growth due to the availability of 
different nutrients including N, P and K in addition 
to several micronutrients (Al-Shamma and Al-
Shahwany, 2014).

Grains number / spike
Concerning grains number, the obtained 

results exhibited that, the highest value during 
the first season was recorded by the treatment 
(A+NPK) and increased insignificantly grains 
number per spike in comparison with (B1+NPK) 
and (NPK) treatments. Whereas, during the 
second season the treatment (B1+NPK) was the 
highest value and increased significantly grains 
number in comparison with (A+NPK and NPK)
treatments.The treatment (B1) increased grains 
number insignificantly during the first season 
and significantly during the second season in 
comparison with control which recorded the 
lowest value in the both seasons. The treatment 
(B1) increased grains number by 23.16 % over 
control and the treatment (B1+NPK) increased 
grains number by 7.92 % over (NPK) treatment.

These obtained results are in agreement 
with many other investigators (Kumar et al., 
2001, Minaxi et al., 2013 and Al-Shamma & 
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Al-Shahwany, 2014). In contrast, Bulut (2013) 
reported that the highest number of kernels per 
spike was obtained from N and N+P treatments 
while the lowest values were obtained in 
treatments of bacteria and control. Fertilization 
improves nutrition and increases the number of 
fertile spikelets and flowers, and consequently 
increases the number of kernels per spike (Singh 
and Prasad, 2011).

1000 kernels weight (g)
Based on data exhibited during the first 

season, none of the treatments had any influence 
on 1000 kernels weight of wheat as compared to 
control. These findings are almost similar to those 
of Afzal et al. (2005) who found that, there is no 
influence of treatments on spike length, total and 
fertile spikelets per spike and grains per spike of 
wheat as compared to control.

Whereas during the second season (A+NPK) 
treatment gave the highest one followed by 
the treatment (B1+NPK) which increased 
insignificantly 1000 kernels weight in comparison 
with (NPK) treatment. The treatment (B1) 
increased significantly 1000 kernels weight in 
comparison with control which recorded the lowest 
value. The treatment (B1) increased 1000 kernels 
weight by 6.49 % over control. The obtained 
results are similar to the findings of Kumar et 
al. (2001) and Minaxi (2013) who reported 1000 
grain weight increasing over control due to the 
inoculation of phosphate solubilizing bacteria. 
Also, Al-Shamma and Al-Shahwany (2014) 
showed that, the combination of biofertilizer and 
100% NP significantly affected average weight 
of 1000 grains. similarly, the highest values of 
1000-kernel weight were observed in single N and 
bacteria treatments (Bulut, 2013).

Spike weight (g)
Data regarding spike weight presented in Table 

3 showed that, the treatment (B1+NPK) recorded 
the highest value and increased significantly spike 
weight in comparison with (NPK) treatment. Also, 
the treatment (B1) increased significantly spike 
weight (g) in comparison with control treatment 
which recorded the lowest value.The treatment 
(B1) increased spike weight by 29.37 % over 
control and the treatment (B1+NPK) increased 
spike weight by 12.22 % over (NPK) treatment. 
These obtained results are similar to the findings 
of Minaxi et al. (2013) who reported maximum 
increase in spike weight evident in the treatment 

having combination of 2 rhizobacterial strains 
along with arbuscular mycorrhizal and tricalcium 
phosphate at the time of harvesting.

Biological and grains weight (g/m2)
Biological and grains weight (g) of wheat 

cultivar Masr 1 were presented in Table 4. The 
obtained results showed that, the treatment 
(A+NPK) gave the highest values of biological 
and grains weight (g) and the lowest value was 
recorded by control treatment during the both 
seasons. the treatment (B1+NPK) increased 
insignificantly biological and grains weight in 
comparison with (NPK) treatment during the 
both seasons. Also, the treatments (B1+P) and 
(B1) increased biological and grains weight 
(g) insignificantly during the first season and 
significantly during the second season in 
comparison with their respective controls (P and 
control).The treatment (B1) increased biological 
and grains weight by 55.92 % and 41.18 %, 
respectively over control and the treatment 
(B1+NPK) increased biological and grains 
weight by 7.57 % and 4.46 %, respectively over 
(NPK) treatment.These results confirmed with 
the findings of Afzal and Bano (2008) whose 
reported that inoculation of phosphorus (P) 
solubilizing bacteria with fertilizer (P2O5) was 
better than only P fertilizer for improving grain 
yield of wheat. Similarity, Vahed et al. (2012) 
indicated that PSB and Phosphate chemical 
fertilizer had a significant influence on grain 
yield, biological yield and grain phosphorus 
uptake. The yield components (biological 
and grains yield) have been increased when 
plants inoculated with bio-fertilizers combined 
with mineral fertilizers, and that because the 
application of bio-fertilizers which may be 
attributed to their role by enhancing plant growth 
due to the availability of different nutrients 
including N, P and K in addition to several 
micronutrients (Al-Shamma and Al-Shahwany, 
2014).

Concerning phosphoric acid, application of 
P as phosphoric acid (fluid P source) produced 
significantly higher wheat grain yield and grain 
weight over commercial phosphate fertilisers, 
i.e.  diammonium phosphate (DAP) and triple 
superphosphate (TSP) (Akhtar et al., 2016).

Some Australian scientists confirmed the 
superiority of fluid P fertilizers over the granular 
P-fertilizer and produced 31% more wheat yield 
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using fluid P-fertilizers as compared to granular 
ones (Holloway et al., 2001).

Holloway et al. (2001) also found superiority of 
phosphoric acid over commercial P fertilizers while 
evaluating different solid versus liquid P fertilizers. 
The superiority of PA over DAP and TSP for 
producing grain yield may be attributed to its ability 
to maintain higher solution P in soil as found by 
Naeem and Akhter (2013). Moreover, PA induced 
reduction in nitrogen loss as ammonia volatilization 
(Akhtar and Naeem, 2012) could be another factor 
making it more efficient than the solid fertilizers.
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