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ABSTRACT 
 

This paper presents a study on the nonlinear frequency response of a tapered 
cantilever beam. The mathematical model is developed based on the large deformation 
theory, nonlinear curvature and with the constraint of inextensible beam. The 
Lagrangian dynamics with the assumed mode method is utilized in deriving the non-
linear, uni-modal temporal equation of motion. The non-linear equation of motion is 
solved analytically using the harmonic balance method (HB). Results were obtained for 
tapered beams with different values of taper ratio. The effect of taper ratio and 
excitation level on the qualitative behaviour of the forced response of the beam were 
studied and presented the first three modes of vibration. 
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INTRODUCTION 
 
It is known that a lot of engineering structures can be modelled as tapered beams, such 
as piles, fixed-type platforms, tower structures, high buildings and robot arms. 
 
In general, due to various excitation loads “wind and waves”, high aspect ratio and 
flexibility such structures might have large deformations and deflections. The prediction 
of the dynamic behaviour is extremely important during the design process and 
operations. 
 
The linear vibration theory predicts the natural frequencies to be independent of the 
amplitude. But in many cases, the deflection in structures may reach large values and 
consequently, using the linear vibration assumption is not valid. In order to take into 
consideration the nonlinearities arised due to large deformations, the nonlinear vibration 
theory must be used to predict with high accuracy the dynamic behaviour like; natural 
frequencies and dynamic responses. 

 
In literature much research was devoted to calculate the linear natural frequencies and 
mode shapes [1-6] with different end conditions and with attached inertia elements at 
the free end of the beam. In [7], a simple formulation for the large amplitude free 
vibrations of tapered beams was presented. The method is based on an iterative 
numerical scheme to obtain results for tapered beams with rectangular and circular 
cross sections. 
 
The objective of the present work is to study the nonlinear planar large amplitude forced 
vibration of a cantilever tapered beam. The mathematical model is derived using the 
Lagrange method and the resulting continuous equation is discretized using the 
assumed mode method. The inextensibility condition is used to relate the axial 
shortening due to transverse deflection in the formulation of the kinetic energy of the 
beam and the nonlinear curvature is used in the potential energy expression [10]. The 
steady state frequency response is obtained using the harmonic balance method [9]. 
 
 
MATHEMATICAL MODEL 
 
A schematic of the tapered beam under study is shown in Figure 1. The physical 
properties, modulus of elasticity E  and density ρ , of the beam are constants. While the 
beam thickness and width are varied linearly along the beam axis. The beam is 
clamped at one end and free at the other, the cross sectional area and moment of 
inertia at the large (Clamped end) are 1bA  and 1bI , respectively. 
  
The thickness of the beam is assumed to be small compared to the length of the beam, 
so that the effects of rotary inertia and shear deformation can be ignored. The beam 
transverse vibration can be considered to be purely planar and the amplitude of 
vibration may reach large values. 
 
Using the deformed beam, see Figure 2, the potential energy of the beam can be 
written as 
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where ls /=ζ , ( )ζI  is the variable second moment of area and R is the curvature of 
the beam neutral axis and can expressed as [8, 10] 
 

 R λφ′=  (2) 

 
where 1/ lλ = , the prime is the derivative with respect to the dimensionless length, ζ , 
and φ is the slope of the deformed beam (see Figure 2). The exact curvature can be 
expressed in terms of the transverse deflection, v , by using 2cos 1 sinφ φ= − , where 
sin d / dv s vφ λ ′= =  (as in Figure 2). Differentiating with respect toζ , using the above 
trigonometric identities and expanding the resulted term and retaining the terms up to 
the fourth order, the nonlinear curvature R  can be written as 
 

 ( )2 4 2 2 2 2" " 'R v v vλ λ= +
 (3) 

The kinetic energy T  of the deformed beam during motion can be written as 
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where u  is the axial shortening due to bending deformation as can be seen in Figure 2. 
The inextensibility condition dictates that a total axial shortening u  is given by [10] 
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Expanding the radical term in a power series, assuming that ( ) 12 <<′vλ , the axial 
shortening can be represented as 
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Differentiating Eq.(6) with respect to time yields 
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Since the Lagrangian ( L T V= − ) of the beam is continuous and does not admit a 
closed form solution, the interest here is in the case where the beam motion is 
governed by single active mode. The Lagrangian of the system L  can be discretized by 
using the assumed mode method and substituting 
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 ( ) ( ) ( ), iv t q tζ φ ζ=  (8) 

 

where ( )ζφ i  is i-th normalized mode shape of the beam and ( )tq  is an unknown time 
modulation of the assumed mode. The i-th mode shape ( )ζφ i  for a double tapered 
beam is given by [6]: 
 
 [ ])()()()()( 24232221
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where 2

1bA)(A ζζ =  and 4
1bI)(I ζζ = , and  for wedge-type beams (single taper) 
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For both cases 212βζ=Z , 
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LA ωρβ = , lω  is the linear frequency of vibration, J  and 

Y  are Bessel functions of the first and second kind, respectively, and I  and K  are 
modified Bessel functions of the first and second kind, respectively. 1C , 2C , 3C  and 4C , 
are arbitrary constants to be determined form the four boundary conditions imposed to 
both ends of the beam; zero bending moment and zero shear force at the free end and 
zero deflection and zero slope at the clamped end. 
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Using Eqs. (7-10), the Lagrangian expression L  of the tapered beam, for the i-th mode 

of vibration, can be written as;  
 

 
3 2 2 2 2 2 2 4

1 2 3 4 ( )L l q q q q qρ β β β β β β= + − −& &  (12) 

where 

 
1

* 2
1 1

0

dAβ φ ζ= ∫  (13) 

 
21

* 2
2 1

0 0

d dA
ζ

β φ χ ζ
  ′=  
  

∫ ∫  (14) 



5 DVProceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

 ∫ ′′=
1

0

2
13 ζφβ dI *  (15) 

 
1

* 2 2
4 1

0

dIβ φ φ ζ′ ′′= ∫  (16) 

For the double tapered beam; 2
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the wedge beam ζ1b
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Applying the Euler-Lagrangian equation to the system Lagrangian 
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the following non-linear, non-dimensional uni-modal equation of motion is obtained: 
 

 ( ) ( )2 2 2 3
1 2 3 42 0q q q qq q qβ β β β β+ + + + =&& && &  (18) 

 

Due to the fact that, some of the coefficients iβ , defined by Eqs. 13-16, may have large 
values, Eq. (18) for convenience is scaled to the form; 
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A dot is used to denote a derivative with respect to the non-dimensional time. 
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Eq.(19) describes the non-linear non-dimensional planar flexural free vibration of the 
inextensible tapered beam. In this equation, the terms 2

1 qq&&ε  and 2
1 qq &ε  are inertia non-

linearities arised from using the inextensibility condition in the kinetic energy and they 
are of softening type. The non-linear term 3

2qε  is due to the potential energy stored in 
bending and arises as a result of using non-linear curvature and it is of hardening static. 
 
 
METHOD OF SOLUTION 
 
To study the nonlinear forced vibration of the tapered beam system under 
consideration, an excitation term can be added to the right hand side of equation (19), 
such that 
 ) (   )( 2

*322
1 tcosPqqqqqqq Ω=++++ εε &&&&&  (20) 

 
where P  and Ω , are the excitation level and frequency respectively. 
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Approximate analytical solutions for the periodic steady state response, having the 
same period as the excitation, of the nonlinear oscillator described by equation (20) can 
be obtained using a single mode harmonic balance method (SHB). For the sake of 
simplicity, a new time *tT  Ω=  is first introduced so that equation (20) becomes; 
 

( ) )T(cosPqqqqqqq 3222
1

2          2 φεε +=++Ω++Ω &&&&&  (21) 

 

where dots are T derivative and the unknown phase φ  has been added to the 
excitation so that one may obtain a fundamental harmonic response containing a single 
trigonometric term. 
 
According to the SHB method, an approximate solution of equation (21), takes the form; 
 
 TcosA)T(q       =  (22) 

 
where A is the steady state response amplitude. Substituting equation (22) into 
equation (21), neglecting third harmonics, which arise, and equating coefficients of first 
harmonics, one obtains the following equations: 
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24
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 φδ sin  PA =Ω−  (24) 

 
The steady state frequency response is obtained by squaring and adding equations 
(23) and (24) and solving for 2Ω  as a function of A; this yields 
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Equation (25), yields two real solutions for Ω provided that the radical term is real and 
less than R1; a single real solution is obtained when the radical term is zero or greater 
the R1, and no real solution exists when 0  RR 2

2
1 <− . 
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RESULTS AND DISCUSSION 
 
The coefficients of the terms iβ  given in Eq. (18) are calculated by integrating 
numerically the coefficients given in Eqns. (13-16). 
 
The frequency response of the non-linear oscillators governed by equation (21) was 
calculated, for given values of taper ratios α  and excitation levels P  using the single 
term harmonic balance method (SHB). Examples of the results of these calculations are 
presented Figures (3-6). 
 
In Figure 3, the steady state frequency responses were obtained for different values of 
taper ratio 10 bb=α  and for excitation 5P = . It is clear that, increasing the taper ratio 
α  will change the qualitative behaviour of the response from hardening to a softening 
type, and this due to the fact that steady state frequency response exhibits a softening 
behaviour when, roughly, 21 / εε  > 1.6, hardening behaviour when 21 / εε < 1.6, and 
resembles linear behaviour when 21 6.1 εε ≅  [9]. 
 
In Figures (4-6), the frequency responses were obtained for the first three modes of 
vibration and for different values of taper ratio α . Results have shown that, for the first 
and second modes, the behaviour is changed from hardening to softening, depending 
on the value of the taper ratio. While the third and higher modes are of softening type 
regardless the value of the taper ratio. 
 
 
CONLUSIONS 
 
A mathematical model of a tapered beam cantilever beam is derived. The axial 
shortening due to transverse deflection and the nonlinear curvature are used in the 
formulation of the kinetic and potential energy, respectively. The assumed mode 
method is used to discretize the continuous Lagrangian of the system and the resulted 
uni-modal nonlinear differential equation of motion is solved using the Harmonic 
Balance method (HB). 
 
Results have shown that, for the first and second modes the behavior is changed from 
hardening to softening type when the taper ratio α  is increased, while the third mode is 
of a softening type regardless the value of the taper ratio α . 
 
 
ACKNOWLEDGMENT 
 
The authors acknowledge the support of the University of Jordan. 
 
 
REFERENCES 

  
Auciello, N. M. and Nole, G. “Vibrations of a Cantilever Tapered Beam with 
varying section properties and Carrying a Mass at the Free End”, Journal of 
Sound and Vibration, 1998, 214, pp. 105-119. 

[1]  

Nagaya, K. and Hai, Y. “Seismic Response of Underwater members of [2]  



8 DVProceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

Variable Cross Section”, Journal of Sound and Vibration, 1985, 119, pp. 119-
138. 
Laura, P. A.and Gutierrez, R. H., “Vibrations of an Elastically restrained 
Cantilever Beam of Varying Cross Sections with Tip Mass of Finite Length”, 
Journal of Sound and Vibration, 1986, 108, , pp. 123-131. 

[3]  

Shong, J. W. and Chen, C.T., “An Exact Solution for the Natural Frequency 
and Modes Shapes of an Immersed Elastically Wedge Beam Carrying an 
Eccentric Tip Mass with Mass Moment of Inertia”, Journal of Sound and 
Vibration, 2005, 286, pp. 549-568. 

[4]  

Chen, D. W. and Wu, J. S., “The Exact Solutions for the Natural Frequency and 
Modes Shapes of Non-Uniform Beams with Multiple Spring-Mass Systems”, 
Journal of Sound and Vibration, 2002, 255, pp. 299-322. 

[5] 

Goorman, D. J., “Free Vibrations of Beams and Shafts”, John-Wiley & Sons, 
1975, pp. 365. 

[6] 

Rao, B. N. and Rao, G. V., “Large Amplitude Vibrations of a Tapered 
Cantilever Beam”, Journal of Sound and Vibration, 1988, 127, pp. 173-178. 

[7] 

Al-Qaisa, A. A. , Shatnawi, A., Abdel-Jaber, M. S., Abdel-Jaber M. and Sadder, 
S., “Non-Linear Natural Frequencies of a Tapered Cantilever Beam”,. 
Proceedings of the Sixth International Conference on Steel and Aluminum 
Structures (ICSAS'07), Oxford, UK, July 24-27, 2007, pp. 266-273. 

[8]  

Al-Qalisia, A. A. and Hamdan, M. N., “On the Steady State Response of 
Oscirlators with Static and Inertia Non-Linearities”, Journal of Sound and 
Vibation, 1999, 223, pp. 49-71. 

[9] 

Al-Qaisia, A. A. and Hamdan, M. N., “Bifurcation and Chaos of an 
Immersed Cantilever Beam in a Fluid and Carrying an Intermediate Mass”, 
Journal of Sound and Vibration, 2002, 253, pp. 859-888. 
 
 
 
 
 

[10]

 

 

 

 

 

 

 

 

 

 

 

 



9 DVProceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

 

 

 

A
I

A
I

b 0

b 1

1

ζ 0

b1

b1

b0

b0

 
 

Figure (1), A schematic drawing of the tapered cantilever beam 
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Figure 2. The deformed inextensible beam  
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Figure (3), Frequency response of the first mode for different values of taper ratioα  and 

for 5P = . 
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Figure (4), Frequency response of the first mode for 1.0=α  and for 5P = .  
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Figure (5), Frequency response of the second mode for 3.0=α  and for 5P = . 
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Figure (6), Frequency response of the third mode for 7.0=α  and for 5P = . 




