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ABSTRACT 
 
In this paper, signal processing is integrated with inverse techniques to solve inverse 
problem for internal parts of machinery in which, sources are unknown and 
inaccessible. Explosions of an internal combustion engine produce powerful pulses of 
energy which cause the engine vibration as a response. Attenuation of engine vibration 
is one of the important problems for NVH engineers. Engine vibration can affect the 
whole chassis vibration and interior noise level. Engine vibration is the dominant source 
of noise emissions (less than 200Hz) inside the vehicle compartment. In this research, 
inverse techniques are implemented to estimate unknown amount of vibration sources. 
Tikhonov regularization carried out to stabilize solution of ill-posed problem. L-curve 
method is also utilised to find the regularization parameter. 
 
In comparison with transfer path analysis, this method doesn’t need to separate the 
observation part from the system. Despite the coherence based methods, it is practical 
in low frequency analysis of engine with missing inputs and outputs.  
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INTRODUCTION 
 
Inverse Problems and ill Conditioning 
 
In some engineering problems, the governing equation, the initial and boundary 
condition and all material properties related to the equation are known. This is a direct 
problem which the engineer computes values of the field variable. In an indirect or 
inverse problem, one part of the usual direct problem is missing, so an experiment is 
needed to solve the problem and obtain information regarding the missing part in the 
inverse problem [1]. For an inverse input problem, the output and parameters of the 
system are known and the goal is to find the input of the problem. Consider Eq. (1), an 
inverse input problem is to find the input spectrum Xj from the output spectrum Yi and 
matrices of transfer functions Hij: 
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At the first glance, it seems to be an easy task which can be carried out through 
multiplying the inverse of transfer functions by the output spectrum. This is the case in 
single input problems but some precautions should be considered before inverting the 
transfer functions in multiple input problems. For a square and symmetric transfer 
matrix of n × n size, the condition number is defined as Eq. (2) [2]: 
 

),...,,min(
),...,,max(

n

n

λλλ
λλλk

21

21=                                                                                                      (2) 

 
where nλλ ,..,1 are eigenvalues of the transfer matrix and can be derived implementing the 
singular value decomposition (SVD) technique as below: 
  

TVUH Σ=                                                                                                                      (3) 
 
In Eq. (3), U and V are left and right matrices of eigenvectors respectively and Σ  is the 
diagonal matrix of eigenvalues which nλλλ ,...,, 21  are the elements on the main 
diagonal. A very large condition number in a system indicates that the outputs of the 
system are not sensitive to at least one of the inputs. Or some linear dependencies are 
introduced between columns of the transfer matrix. This system is called ill-conditioned 
and solutions are unstable in which a slight change in the input data brings a large 
change to the system response [1]. Regularization method is needed to avoid unstable 
solutions and will be discussed next. 
 
Tikhonov Regularization 
 
The basis of regularization methods is to add a choice criterion based on the norm of 
the solution. Tikhonov regularization is the most commonly used method of 
regularization for ill-posed problems. Consider Eq. (4) as an ill-conditioned linear 
system: 

bAx =                                                                                                                           (4) 
 
This system can be replaced by a problem of looking for an x to minimize Eq. (5): 
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This is the standard form of Tikhonov regularization where 

2
 .  is the Euclidean norm 

and λ >0 is the regularization parameter. The solution to this problem regx  is called the 
regularized solution [3]. It is based on the tuning of the regularizing parameter λ which 
adjusts the importance given to the minimization of the residue norm

2
bAx − , in one 

hand, and the solution norm 
2

x  on the other hand. The most suitable graphical tool for 
such analysis is L-curve that displays the compromise between minimization of these 
two quantities. It is plotted in log-log scale which the vertical axis is the norm of the 
regularized solution and the horizontal axis is the residual norm. Then it is possible to 
find an estimation to the optimum regularization parameter by locating the corner of the 
L-curve (point with maximum curvature) [4].  
 
 
METHODOLOGY 
 
Experiment Setup 
    
Vehicle crankshaft was considered as a system. Piston movements are sources of 
vibration impacting the crankpins through the connecting rods. Bearings of crankshaft 
are nearest accessible points to sources which can be utilised to measure the 
response. Transfer matrices are showing characteristics of the system. They were 
calculated using experimental modal analysis of the crankshaft. 
 
Measurements of response signals were carried out over a Proton Gen2 at neutral 
gear.  Bruel & Kjaer portable and multi-channel PULSE analyser type 3560D with 
triaxial accelerometer type 4506B and ENDEVCO isotron accelerometers (uni-axial) 
type 751-100 were utilised in the measurement devices. The Bruel & Kjaer Pulse 
LabShop was the measurement software and the B & K calibration exciter type 4294 
was implemented to calibrate the accelerometers. Accelerometers were connected to 
crankshaft bearings as presented in Fig. 1. The triaxial accelerometer was connected to 
bearing no.1 (farthest to gearbox) to measure responses in three directions. For the 
rest of bearings, uni-axial accelerometers were utilised to measure the vibration signals 
in vertical direction. All accelerometers were mounted at the same position as they 
were used for the transfer matrix measurements in modal analysis. Hence it was 
applicable to implement these matrices for the current research. FFT analyser sampled 
the frequency domain data with a sampling frequency of 8.2 kHz through the frequency 
span of 3.2 kHz. The frequency range of interest was 0-3 kHz equal to the minimum 
dynamic range of accelerometers implemented in the experiment (corresponds to the 
dynamic frequency range of y and z directions of the triaxial accelerometer). 
 
Inverse Problem Formulation    
 
Bearing responses together with transfer matrices were utilised to formulate the inverse 
problem. Thikhonov regularization conducted to stabilize the ill-conditioned problem 
and L-curve used to find the optimum regularization parameter. Initially, regularized 
solutions together with transfer functions were utilised in a forward problem formulation 
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to estimate the amount of responses. Thereafter, a comparison was carried out 
between the measured and estimated responses. Next, pressure sensors were used to 
measure pressure inside the cylinders. Then crankpin forces were calculated using the 
measured pressure values. These forces were then compared to those acquired 
through the inverse formulation. 
 
 
RESULTS AND OBSERVATIONS 
    
Condition number is a measure of solution’s sensitivity to perturbations in the transfer 
matrix. As presented in Fig. 2, condition numbers of transfer matrices are very high at 
some frequencies and they are ill-conditioned.  
 
Singular Vector Oscillations 
 
Hansen [5] mentioned that the left and right singular vectors tend to have more 
oscillations as the index of transfer matrix increases. The high spatial frequency 
information is related to left and right singular vectors having high index. The vectors 
with small index correspond to slowly varying functions having few sign changes. If only 
a few of the first singular vectors are taken into account, a very smooth approximation 
to solution would be calculated. Because the first singular vectors are related to slowly 
varying functions. Also if too many singular vectors are taken into account, errors will 
dominate the solution. How many of these singular vectors to take into account are 
basically related to the level of errors contaminating the data and should be determined 
by regularization parameter. In other word, components corresponding to high indices 
(very small singular values), compared to 1σ  (first singular value), will hardly contribute 
to the transfer matrix and should be filtered out by regularization. Sign changes of the 
imaginary parts of the first and last index of left singular vectors for 48×  transfer 
function which indicates the index values and sign changes are shown in Fig. 3. 
 
Picard Condition 
 
In order to have a physical solution to the inverse problem, the Fourier coefficients of 
the exact right hand side buT

i  should decay faster than the singular values ( iσ ) [5]. 
These coefficients are plotted using the function “picard” from the Regularization Tools 
Matlab® package [4] and is shown in Fig. 4. It is a tool for visual inspection of the 
problem; determines that which components will be included in the regularized solution. 
For this plot, all the Fourier coefficients satisfy the Picard condition and no 
regularization of the problem is needed. The L-curve plot for the Picard condition of Fig. 
4 is calculated using the function “l_curve” of the Regularization Tools and shown in 
Fig. 5. The corner of the L-curve is computed at the point where the maximum 
curvature exists. The vertical part of the L-curve is contributed to the solution norm. 
From the Picard plot, an L-curve without any vertical part is expected since the solution 
coefficients i

T
i σbu /  do not increase significantly.  

 
Another example of Picard condition is plotted in Fig. 6 where solution coefficients have 
significant increase and the Fourier coefficients level off at i =3. It means that for i>3 the 
Fourier coefficient is dominated by noise and cannot be recovered. Then problem 
needs regularization and only 3 singular values are expected to include in the 
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regularized solution. The steady increase in the solution norm is now seen as a vertical 
part in the L-curve as shown in Fig. 7. A visible corner is separating a horizontal part 
from the vertical part. 

 
Regularization 
 
The transfer matrices together with measured responses were imported into the 
Matlab® package [4]. For each excitation, optimum regularization parameter at each 
frequency was found using the L-curve criterion. In the L-curve, the flat horizontal part 
is characterized by solutions which are too smooth (over regularized). But the vertical 
part is characterized by solutions dominated by the effects of errors (under regularized). 
The optimum value of the regularization is at the corner of the curve. At the corner, 
solutions with smallest residual and limited size will be found. The average calculated 
L-curve corner was implemented into the Tikhonov formulation to find the 
corresponding regularized solution.  
 
As a preliminary validation of results, the regularized solutions together with transfer 
matrices imported into a forward formulation (Eq. (1)) to estimate the responses as 
presented in Fig. 8. It shows that estimated and measured responses are in agreement 
however, they are different at some frequencies. They are not expected to be wholly 
the same because the Tikhonov regularization is a compromise between the solution 
norm and residue norm. Differences are due to residue norm which was adjusted in 
order to find the regularized solution.  Difference between two plots may be calculated 
by: 
 

fFormulae InversefFormulae InversealExperiment AX-Responses) MeasuredAXAX ])([(])()[( =−                 (6) 

Pressure sensors implemented to measure pressure inside the cylinders during the 
engine operation. Fig. 9 shows the corresponding time domain excitation on a crankpin. 
These values converted to frequency domain and together with regularized solutions 
are shown in Fig. 10. It presents the regularized solutions which L-curve criterion 
implemented to find the regularization parameter. It shows good agreement between 
the solutions and the measured values.  
 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
Engine internal vibration sources were estimated very well using an inverse formulation. 
Tikhonov technique conducted to find the regularized solutions in such an ill-
conditioned system. L-curve criterion utilised to find the optimum regularization 
parameter. This inverse formulation can be considered as the basis of a whole 
approach to find the internal forces of machinery. The entire mathematical model of the 
system can be achieved by modeling all the engine parts through their transfer 
functions. An accessible point should be used for response measurement. Then these 
responses may be related to any internal excitation (near or far) by a series of transfer 
functions. Non-linearities corresponding to non-coherent output power of systems may 
be cited as the shortcoming of this method.  
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Fig. 1. Photo showing two of the accelerometers mounting on the crankshaft bearings.  
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Fig. 2. Condition numbers of transfer functions. 
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Fig. 3. Sign changes of imaginary parts of the first (U1) and last (U4) index of left 

singular vectors, based on the 48×  transfer matrices, f=100 Hz. 
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Fig. 4. Picard plot for cylinder#4, 930(Hz). 
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Fig. 5. L-curve plot for cylinder#4, 930 Hz. 
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Fig. 6. Picard plot for cylinder#2, 130(Hz). 
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Fig. 7. L-curve plot for cylinder#2, 130(Hz). 
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Fig. 8. Comparison between the measured responses and responses 
 estimated by direct formulation. 
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Fig. 9. Piston force applied to a crankpin through the connecting rod. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 10. Inverse estimation of an excitation. 




