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ABSTRACT 

Periodic Structures have been in the focus of research for their useful characteristics 
and ability to attenuate vibration in frequency bands called “stop-bands”. In the previous 
studies, periodic changes in the geometry of beams were introduced to create the 
periodicity; then the vibration characteristics were studied accordingly. In this study, for 
the first time, we are analyzing the vibration characteristics of a sandwich beam with the 
periodic change in the sandwich material. The new technique preserves the external 
geometry of the beam structure and depends on changing the material of the sandwich 
material. The periodic analysis and the vibration response characteristics of the model 
are investigated using finite element model for a sandwich beam. The response to 
bending excitation has shown promising results for periodic sandwich beams, that may 
encourage further study of the problem with more practical configurations. 
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1. INTRODUCTION 

Sandwich structures have a lot of different applications in the industry, which attracts 
researchers to study them in different forms, such as beams and plates.  The three-
layer sandwich beam has been considered by a number of investigators. Raville et. 
al. [1] analyzed the problem of determination of the natural frequency of vibration of a 
fixed sandwich beam with an elastic core. DiTaranto  [2] and with Blasingame  [3] 
investigated the vibration characteristics, natural frequency and the associated 
composite loss factor of a sandwich beam with a viscoelastic core having a complex 
shear modulus. Mead and Markus  [4] analyzed the forced vibration of a three-layer 
sandwich beam with a linearly viscoelastic core having a complex shear modulus and 
arbitrary boundary conditions. Ahmed  [5],  [6] analyzed the flexural vibration 
characteristics of a curved sandwich beam with an elastic core. Mead and Yaman  [7] 
presented an exact analytical method for the vibration response of a finite, three-
layered, rectangular sandwich plate with a viscoelastic core. Sakiyama et. al. [8] 
presented an analytical method for the free vibration of a three-layer sandwich beam 
with an elastic or linearly viscoelastic core and arbitrary boundary conditions. Khatua 
and Cheung  [9] presented a finite element formulation for the bending and vibration of 
multilayer beams and plates with constrained cores. Rao and Nakra  [9] carried out an 
analysis of vibration of unsymmetric sandwich beams and plates with viscoelastic 
cores. Rao  [9] derived the complete set of equations of motion and boundary conditions 
governing the vibration of sandwich beams using energy approach. Sismore and 
Darvennes  [11] considered the effect of compression energy of the core on damping, in 
addition to the conventional approach which uses shear deformation of the core for the 
estimation of damping. 

Recently, Banerjee  [12] used the dynamic stiffness method for the free vibration 
analysis of three-layer sandwich beams. Ganapathi et. al.  [13] developed a finite 
element approach based on high-order shear deformation theories for laminated 
beams, which analyze sandwich beams experiencing both elastic bending, torsion and 
traction in small displacements. The element is fully free of shear locking, and is based 
on a refined shear deformation theory. Ha  [14] developed a procedure for the exact 
buckling analysis of sandwich beams and frame structures subjected to arbitrary 
mechanical loading. Lan et. al. [15] discussed the thermal buckling of bi-modular 
sandwich beams having thick facings and moderately stiff cores. Ganesan and Pradeep 
 [16] found that the effect of core thickness on the buckling temperature is greater when 
the value of the shear modulus of the core is high. Kerwin  [17] presented an analysis 
for a simply supported sandwich beam using a complex modulus to account for 
damping and stiffness of the viscoelastic core. DiTaranto  [18]  extended his work and 
derived a sixth-order partial differential equation of motion for sandwich beams in terms 
of the longitudinal displacement (u ). Mead and Marcus  [19] analyzed three-layered 
sandwich beams with a viscoelastic core using sixth order differential equations of 
motion in terms of the transverse displacement (w ). Also, they examined the form of 
boundary conditions for many end constraints encountered in practice. Rao and Nakra 
 [20] used energy methods to develop equations of motion including the inertia effects of 
transverse, longitudinal and rotary motion. Lu et al.  [21] developed a finite element 
model and presented experimental data for sandwich plates under free boundary 
conditions. Cupial and Niziol  [22] used variational methods to model sandwich plates 
with anisotropic face-plates, and presented simplified forms of the equations for 
symmetric plates and plates with orthotropic face layers. Mead and Markus  [19] 
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presented the basic theory of vibration of a three-layer beam system. The theory 
assumes that: (1) the constraining layer bends in the transverse direction exactly as the 
base layer, (2) The viscoelastic layer undergoes pure shear, and (3) the viscoelastic 
layer does not change its thickness during deformation. These assumptions are valid if 
the viscoelastic material (VEM) is relatively thin, and the stiffness of the two surface 
layers is on the same order of the core stiffness. Dwivedy et. al.  [23] studied parametric 
instability of a three-layered, soft-cored, symmetric sandwich beam subjected to a 
periodic axial load. The displacements of the top and bottom skins are allowed to be 
different, and instead of using the classical theory of displacement, a higher-order 
theory is used. Applying extended Hamilton’s principle and using beam theory for the 
skins and a two-dimensional theory for the core, the governing equations of motion and 
boundary conditions are derived. Lin and Chen  [24] studied the dynamic stability of a 
rotating sandwich beam with a constrained damping layer using the finite element 
method. They found that the system becomes more stable as the rotating speed, hub 
radius and thickness of the (VEM) layer increases. Larger setting angles reduce the 
stiffness of the rotating sandwich beam causing the rotating sandwich beam to be more 
unstable. 

In his paper, Mead  [25] defined a periodic structure as a structure that consists 
fundamentally of a number of identical structural components (cells) that are joined 
together to form a continuous structure. This introduces sudden changes in the 
properties of the structure between cells. There are two main types of discontinuities: 
(1) Geometric discontinuity and (2) Material discontinuity. Fig.1 shows the two different 
types of discontinuities. 

 

 

A- Material discontinuity                       B- Geometric discontinuity 

 

Fig. 1  Types of discontinuities 

 

Ungar  [26] presented a derivation of an expression that could describe the steady state 
vibration of an infinite beam uniformly supported on impedances. Later, Gupta  [27]  
presented an analysis for periodically-supported beams that introduced the concepts of 
the cell and the associated transfer matrix. He presented the propagation and 
attenuation parameter plots which form the foundation for further studies of one-
dimensional periodic structures. Faulkner and Hong  [28] presented a study of general 
mono-coupled periodic systems. Their study analyzed the free vibration of spring-mass 
systems as well as point-supported beams using analytical and finite element methods. 
Mead and Yaman  [29] presented a study for the response of one-dimensional periodic 
structures subject to periodic loading. Their study involved the generalization of the 
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support condition to involve rotational and displacement springs as well as impedances. 
The effects of the excitation point as well as the elastic support characteristics on the 
pass and stop characteristics of the beam are presented. Tawfik et. al. [30] studied  the 
wave attenuation in a periodic helicopter blade, and concluded that the periodic beam 
characteristics have promising features regarding the attenuation of vibration 
transmission in rotating as well as non-rotating beam applications. Alaa El-Din and 
Tawfik  [31] studied the vibration attenuation in rotating beams with periodically 
distributed piezoelectric controllers, and proved the ability of piezoelectric pairs to damp 
vibrations of certain frequency band. Moreover, the periodic nature of the structure was 
found to introduce vibration attenuation in other frequency ranges. 

In this study we will analyze the vibration characteristics of a sandwich beam with the 
periodic change in the sandwich material using finite element model. 
 
 
2. FINITE ELEMENT MODEL  
 
2.1 Displacement Trial Functions (three node elements) 
 
The axial displacement function for 3-nodes, a beam could be presented as follows 
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where  k denotes (t) for top layer and (b) for bottom layer. 

On the other hand, the transverse displacement may be written as           
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2.2 Kinematics of the Core 

The type of sandwich structures considered in this study consists of two thin but 
relatively stiff sheets bonded to each side of a thick periodic core Fig.2. A typical setup 
could be two aluminum sheets glued to foam, viscoelastic, piezoelectric core or any 
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combination. The purpose of the core is to maintain the distance between the face-
sheets and to resist shear deformation, thus ideally maintaining pure bending of the 
beam around the neutral axis.  

 

Fig. 2 Periodic sandwich beam 

In this model, the axial displacement and shear are taken into consideration while 
developing the structural model. The deviation from normality of the cross-section is 
produced by transverse shear which is assumed to be constant over the cross section. 
The total slope of the beam in that model consists of two parts, one due to bending and 
the other due to shear Figure 3. 

All mechanical quantities (displacements, strains, energies ...) can be written in terms of 
the transverse deflection (w ) and the axial displacements of the top ( tu ) and bottom 
( bu ) layers. A fundamental assumption, which is used for modeling the core, is that line 
B-C in the core remains straight after deformation, as shown by line CB ′−′   in Fig.3. 
This defines the axial deformation of any material position x  inside the core as a linear 
interpolation of the displacements bu′ and tu′on the surfaces of the face-sheets (the top 
and bottom layers) given by: 
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The resulting displacement field within the core is thus given by 
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The corresponding linear strains are 
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The corresponding shear strain is 
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where (d) is the distance between the reference lines of the un-deformed face-sheets 
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d , where bh  is the bottom layer thickness, th  is the top layer 

thickness, and ph  is the core layer thickness. 
 
The zero transverse normal strain in equation (9) results from the assumption that all 
layers have a common transverse displacement. 
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Fig. 3 Core displacement fields 

 

2.3 Development of the equations of motion 

The equations of motion in this investigation are developed using Hamilton’s principle: 
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where T is the kinetic energy, U is the strain energy, and V is the work done by the 
external forces. 

By taking the first variation of the strain energy, kinetic energy and potential energy of 
external forces, then integrating by parts with respect to time ( 21 tandt are arbitrary) we 
get the weak form of the equation of motion, which is used for deriving the finite 
element model of the system. 
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2.3.1 The face-sheets energy 

Total strain energy for top and bottom layers 
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Total kinetic energy for top and bottom layers 
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where ku , is the axial displacement of the face-sheets (top and bottom layers) and            
w ,  is the transverse displacement of the core centre line. 

 

2.3.2 The core energy  

Total potential energy of the core layer due to shear strain and bending 
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Total kinetic energy of the core layer due to axial and transverse displacements  
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where m is related to the material of core    

    

2.4 Element matrices in terms of nodal displacements 

The element model presented has three nodes, and is obtained by substituting the 
energies in terms of nodal displacements.  Substituting equations (1) and (2) into 
equations (15) we get the strain energy stored in the element’s face sheets. 

 

2.4.1 Face sheets strain energy 

For the bottom layer 
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Similarly for the top layer  
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2.4.2 Face-sheets kinetic energy 

Substituting equations (1) and (2) into equations (16) we get the kinetic energy stored in 
the element’s face-sheets. 
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Similarly for the top layer  
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2.4.3 Core layer strain energy 

First we have to express zxγ  and mu  in terms of nodal displacements and element 
shape functions. From equations (6) and (13): 
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Substituting equations (1) and (2) we get 
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By substituting (25) into (17) we get: 
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2.4.4 Core layer kinetic energy 

By substituting (26) into (18) we get: 
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2.4.5 Element total stiffness matrix   [ ]eK  
 
Using equations (19), (20) and (27) we can calculate the overall element stiffness 
matrix as follows: 
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2.4.6 Element total mass matrix  [ ]eM   
 
Using equation (21), (22) and (28) we can calculate the overall element mass matrix as 
follows: 
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where:  
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In the present work, the transfer matrix is calculated using the procedure mentioned in 
reference  [31]. 
 
 
3. NUMERICAL RESULTS 
 
A code was developed using MATLAB for a periodic sandwich beam which has its core 
as Ceramic and Foam in order to study the effect of material discontinuity for 
attenuating the vibration of the beam. The following figures show the results obtained 
by the developed code for six cells. These results are introduced for the first time since 
no similar model could be found in the literature.  

Top and bottom layers are aluminum with E (modulus of elasticity) =73 GPa and 
ρ (density) = 2790 3m/Kg . The core layer is composed of a hard core (Ceramic) with 
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pE (modulus of elasticity) =86.8 GPa, pG (shear modulus) =21.1 GPa, pρ  (density) = 

7700 3m/Kg , and a soft core (Foam) with fE  (modulus of elasticity) =35.3 GPa, 

fG (shear modulus) =12 MPa, fρ (density) = 32 3m/Kg . The main dimensions of the 
beam are: thickness of top layer th = 0.5 mm, thickness of bottom layer bh = 0.5 mm, 
thickness of core layer ch = 2mm, length of soft core per cell fL = 15 cm, length of 
hard core per cell pL =15 cm, and beam width b =5 cm.  

From Fig. 4, it appears that there are three stop bands extending in the ranges 450-500 
Hz, 1500-2200 Hz and 7000-8000 Hz. These stop bands in parallel with Fig. 5 
correspond to the drops in the frequency response.  
 
 
4. DISCUSSION AND CONCLUSIONS 
 
In this study, the analysis of a sandwich beam with periodic core is presented. The 
analysis involved a finite element model based on a first order shear deformation theory 
for the core material and thin beam theory for the face-sheets. The finite element model 
is then reduced using dynamic condensation to obtain the transfer matrix of the cell 
including the core shear deformation. The results obtained indicate the existence of the 
stop bands similar to the cases of beams in pure bending conditions. The result of this 
study are encouraging towards further study of the effect of periodic, active or passive, 
controllers in the shear mode. 
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Fig. 4 Stop bands obtained from the transfer matrix eigenvalues 
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Fig. 5 Frequency response of t he beam with different core configurations 
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