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ABSTRACT 
 
The Thermoelastic problem for homogenous layer bonded to two similar coated layers 
with two surface cracks located symmetrically in the outer layers under transient 
thermal stresses is considered. The transient thermal stresses are generated due to 
quenching the surfaces containing the edge crack by convective cooling. Consequently, 
very high tensile stresses developed near the cooled surfaces resulting in severe 
damage. The analysis of the problem is worked out using the superposition technique 
and the principle of quasi-static thermoelasticity behavior. The Fourier integral 
transform technique is used to solve the crack problem resulting in a singular integral 
equation of Cauchy type with the derivative of the crack surface displacement as 
unknown function which is solved numerically. Some numerical values of the transient 
stress intensity factors for two material combinations are obtained for both edge crack 
and crack terminating at the interface and demonstrated in terms of  time, crack length, 
coefficient of heat transfer and thickness ratio. 
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INTRODUCTION 
 
The studying of thermoelastic crack problems for multi-layered structure components 
with different thermomechanical properties is quite important, since these components 
are used extensively in many engineering applications. Due to sudden cooling, very 
high tensile stresses will be generated near the cooled surface leading to severe 
damage. The degree of the severity can be measured in terms of the stress intensity 
factor, which is an important parameter to predict mechanical failure for subcritical crack 
growth, as a function of time and the crack length as well as the materials properties of 
the composite medium. The crack problems in an elastic plate under thermal loading 
have been investigated by many researchers [1-7]. The investigation of multi-layered 
cracked problems under thermal loading has also been considered in the literature [8-
15]. The crack problem for a coated layer bonded to substrate under thermal stresses 
was discussed in [8]. The problem of coated plates on an elastic foundation and shells 
under thermal shock was investigated in [9]. The problem of two parallel cracks in two 
bonded dissimilar elastic half-planes was considered in [10].The transient thermal 
stress problem for a cladded medium containing an underclad crack bonded to a 
substrate via transitional layer was analyzed in [11]. The problem of collinear embedded 
cracks in a layered medium consisting of a surface layer and a semi-infinite substrate 
bonded through an interfacial zone with graded properties was examined [12]. The 
thermoelastic problem of steady-state heat flow disturbed by a crack perpendicular to 
the graded interfacial zone bonded by two homogenous half planes was studied in [13]. 
The crack problem in the nonhomogeneous interfacial zone between two dissimilar 
elastic half-planes was considered in [14].  
 
In the present paper, the study of the three layered materials with edge cracks and 
cracks terminating at the interface located symmetrically in the outer similar coated 
layers bonded to a homogenous layer along an ideal plane interface subjected to 
thermal stresses is considered. The thermal stresses are caused by convective cooling 
on the surfaces containing the cracks.  The main assumption of this study is: the 
thermoelastic coupling effects and the possible dependence of the thermoelastic 
coefficients on the temperature are negligible. Also the problem is treated as quasi-
static, i.e. the inertia effects are negligible. The superposition principle is used to 
formulate the problem that is the solution of the problem is considered as the sum of 
two solutions. The first solution is obtained for the thermoelastic problem without 
cracks. The second solution is obtained for the isothermal crack problem (mixed 
boundary value problem) in which the equal and opposite sign of the thermal stresses 
given by the first problem are the only external loads acting on the crack surfaces. 
Since we are concerned with the stress intensity factor, it is sufficient to consider the 
cracked medium only. The perturbation problem is formulated by expressing the 
displacement components in terms of Fourier integral transform. Then by defining a 
new function as the derivative of the crack surface displacement, the problem will be 
reduced to a singular integral equation of Cauchy type which is solved numerically 
utilizing the expansion method technique [15, 16 ].  Numerical results of the stress 
intensity factors are calculated for edge crack and crack terminated at the interface for 
two different material combinations namely composite A and composite B and 
demonstrated as a function of normalized time (Fourier number), normalized crack 
length, normalized coefficient of heat transfer (Biot number), and the thickness ratio. 
The composite A represents a stainless steel (outer layers) welded on a ferritic steel 
(inner layer) with the same mechanical properties but different thermal properties and 
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the composite B stands  for a ceramic (outer layers) coating on ferritic steel (inner layer) 
in which the mechanical and the thermal properties are different.  
 
 
FORMULATION OF THE PROBLEM 
 
The three-layered composite medium considered is depicted in Fig.1. The inner layer of 
thickness 22h  is bonded to two similar coated layers of thickness 1h . Each layer 
contains a crack normal to the surfaces of length abl −=  located symmetrically. It was 
assumed that the medium was at uniform temperature oT . At 0=t , the surfaces 0=x  
and 21 22 hhx +=  of the composite are quenched by a convective cooling with ambient 
temperature aT . The case of an edge crack will be considered by letting 0→a . Since 
the plane 21 hhx +=  is the plane of symmetry for loading and geometry, the problem 
may be considered for 210 hhx +<< . Notice that the symmetric plane 21 hhx +=  will be 
treated as an insulated plane. The transient thermal stresses for uncracked medium 
can be obtained by solving first the diffusion equations with proper initial and boundary 
conditions which are given by 
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where oii TtxTtx −= ),(),(θ , )2,1( =i , oao TT −=θ , h  is the coefficient of heat transfer, 

and '
ik , iD  )2,1( =i  are the coefficients of thermal conductivity and the thermal 

diffusivity, respectively. By using Laplace transform technique in straight forward 
manner [17] the transient temperature distribution may be given as 
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11 / htD=τ  (Fourier number), 21
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(thickness ratio), 21 /DD=δ , '
11 / khhBi =  (Biot number), and nλ   are the roots of the 

transcendental equation 
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Because of symmetry, the medium would be remaining flat under self-equilibrating 
transient thermal stresses, i.e. it undergoes uniform strain  )(toε  in −y  and 
−z directions and the following conditions for the thermal stresses and strains would be 

satisfied [18 ] 
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Also, in the absence of external loads, the thermal stresses would satisfy no resultant 
force in −y  and −z  directions, i.e. 
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By using the strain-stress relations and the conditions (7-9) it follows that  
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The partial differential equations for solving the plane crack problem are given by  
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where )43( ii υκ −= , )2,1( =i , for plane strain, and ii vu , , )2,1( =i ,  are the x  and y  
components of the displacement vectors respectively. Because of symmetry, the 
problem is considered for ∞<< y0  which is subjected to the following conditions 
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By expressing the displacement components ii vu , , )2,1( =i ,  in terms of Fourier 
integral transform as follows 
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 and defining the new unknown function xxvx ∂∂= /)0,()( 1ϕ , the mixed boundary value 
problem described by Eqs. (15) - (23) will be reduced to the following singular integral 
equation: 
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where the kernel ),(1 sxk  is of the form:  
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where ),,( αsxG is given in Appendix A. By examining the kernel ),(1 sxk  as ∞→α  , 
some terms are unbounded as 0→x  and  1hx→  (generalized Cauchy kernels). So 

),(1 sxk  can be written in the form: 
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where ),(1 sxk b  is bounded in the closed interval ],[ ba  , and ),(1 sxk sa  and ),(1 sxk sb  are 
the singular terms  as 0=a  and 1hb =  respectively and they are found to be [8]: 
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where  
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The singularities of the function )(xϕ  in Eq. (24) at the irregular points a  and b  can be 
obtained using the function theoretic method developed by Muskhelishvili technique 
[19] by letting 
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where )(sg  is bounded in the closed interval ],[ ba  and nonzero at the end points, and 

1γ , 2γ  are the strength of the singularity at the end points which should satisfy 
1),Re(0 21 << γγ . Following [19], it can be shown that, as long as we have internal crack 

in homogenous material (layer 1) ),0( 1hba <> , the singularities at the crack tips are 
2/11 =γ  and 2/12 =γ . In the case of edge crack ),0( 1hba <= , 2/12 =γ   and the 

characteristic equations for 1γ  at 0=a  may be expressed as 
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in which the only acceptable root is 01 =γ . In the case of an edge crack terminating at 
the interface, the singularity 2γ  would depend on the materials properties through the 
characteristic equation: 
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where 11c , 12c , 13c  are given by Eq. (29). The mode I stress intensity factor for the 
edge crack  at the end point b  is defined by [20]: 
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where )0,(1 xyyσ  is the stress outside the crack and can be obtained from Eq. (24). By 
using Eq. (24) with Eq. (30) into Eq. (33) and discussing the asymptotic analysis given 
by Muskhelishvili [19 ], the stress intensity factor for an edge crack at edge b  is given 
by: 
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In the case of crack terminating at the interface ( 1hb = ), the stress intensity factor is 
define by [20] 
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where 2γ  is the singularity given by Eq. (32), and  )0,(2 xyyσ  is the stress in layer 2 
( 1hx > ) and is given by  
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where 5C , 6C ,  7C ,  and 8C  are found in Appendix A. As ∞→α  and 1hx→  some 

terms in the kernel of Eq. (36) are unbounded ),(2 sxk sb  and found to be 
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Similarly, by using Eq. (36) with Eq. (30) into Eq. (35) and following Muskhelishvili [19], 
the stress intensity factor at the crack tip 1hb =  is given by  
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The singular integral Eq.(24) is solved numerically using the expansion method 
developed in [15, 16]. Firstly, Eq.(24) is normalized by introducing the following 
quantities: 
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Then it is assumed that the unknown function )(ρψ  may be approximated by the 
polynomial of finite degree as 
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where na  are )1( +N  unknown coefficients to be determined. By substituting Eq. (43) 
into Eq. (41), we end up with a system of linear equations that are solved at particular 
collocation points which are selected to be the zeros of Chebychev polynomial of 
degree )1( +N  in the form  
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Following the procedure developed by [21], the unknown coefficients of the polynomial 
can be determined and consequently the stress intensity factors can be evaluated from 
Eq. (34) and Eq.(39).  
 
 
RESULTS  
 
In this analysis, the numerical results are obtained for two composite media. The 
composite A is chosen to be a stainless steel (outer layers 1) welded on ferritic steel 
(inner layer 2) and the composite B is fabricated from a ceramic (outer layer 1) bonded 
to a ferritic steel (inner layer 2). Since the analysis has been obtained in normalized 
quantities, the ratios of the thermoelastic properties for the two composite mediums are 
given in Table 1.  
 
Figures 2-5 show sample results for the normalized transient thermal stresses defined 
by T

o
T
yy x στσ /),( * , where )1/( 1

'
11 υθασ −−= o

T
o E , versus the normalized distance 1

* / hx . 
The results are demonstrated for the composite media A and B, different normalized 
time (Fourier number, 2

11 / htD=τ ), two values of thickness ratio ( 0.9,0.3/ 12 =hh ), and 

two different Biot number ( 20,∞=Bi , where '
11 / khhBi = ) where . It can be seen that, 

for small values of time, the normalized thermal stresses started to be tensile in the 
region near the cooled surface 0=x , and compressive in the region near the 
plane 21 hhx += . By increasing the time τ , the behavior of the thermal stresses will be 
maintained for the medium A while the opposite sign for the thermal stresses will be 
taking place for medium B ( compressive near the cooled surface 0=x  and tensile near 
the plane 21 hhx += ). Note that, at any instant of time, the condition of zero resultant 
force in −y direction is satisfied. It is clear that, for small time, the gradient of the 
thermal stresses is very high and it becomes less as the time increases. For the steady 
state condition ( ∞→τ ), the thermal stresses for both medium A and B become 
constant as given by Eq. (11) with discontinuity at the interface due to the dissimilarity 
of the thermoelastic properties of the composite materials.  The effect of the Biot 
number on the normalized thermal stresses is quite obvious in these figures by 
reducing the normalized thermal stresses as the Biot number decreases and the 
highest thermal stresses will arise for the unit step function temperature change 
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( ∞=Bi ). Also, the figures demonstrate the influence of the thickness ratio 12 / hh  on the 
normalized thermal stresses via increasing the normalized thermal stresses as  12 / hh  
increases. 
 
Figures 6-7 show the variation of the normalized stress intensity factors for an edge 
crack defined by bbK T

oσ/)(   calculated from Eq. (34) versus normalized time 
2
11 / htD=τ  for the two composite media A and B, different normalized crack length 

9.0,5.0,2.0,1.0,01.0/ 1 =hb , two values of Biot number 20,∞=Bi , and two values of 
thickness ratio 0.9,0.3/ 12 =hh . Apparently, the normalized stress intensity factor starts 
to increase as the normalized time τ  increases until it reaches a maximum value and 
then decreases as τ  increases for all normalized crack lengths. This performance 
mainly depends on the distribution of the  thermal stresses on the crack surfaces as 
shown in Figs. 2-5. The highest values of the normalized stress intensity factors will 
occur for small crack length and decrease as the crack length increases due to the 
reduction in the thermal stresses as shown in Figs. 2-5.  Also as a result of the variation 
of the normalized thermal stresses, the normalized stress intensity factors are always 
positive at any time τ  for composite medium A while for composite medium B, the 
normalized stress intensity factor starts to be positive and then negative as τ  
increases. The effect of the Biot number and the thickness ratio on the normalized 
stress intensity factor is also shown in the same figures by reducing the normalized 
stress intensity factor as the Biot number decreases and thickness ratio decreases. 
 
To see quantitatively the effect of the Biot number on the stress intensity factor, Fig. 8 
shows the normalized stress intensity factor versus normalized time for different values 
of Biot number )1,5,10,20,( ∞=Bi , one normalized crack length 5.0/ 1 =hb , and two 
values of thickness ratio ( 0.9,0.3/ 12 =hh ). The results are depicted for both composite 
A and B. As shown in the figure, the normalized stress intensity factor would be 
reduced by reducing the Biot number and the maximum value is delayed as well. 
 
In the case of the edge crack terminating at the interface 0.1/ 1 =hb , the variation of the 

normalized stress intensity factor defined by  2/)( γσ bbK T
o   as a function of normalized 

time τ  is presented in Fig. 9 for different Biot numbers )1,5,10,20,( ∞=Bi , two different 
thickness ratio ( 0.9,0.3/ 12 =hh ), and two different composite media A and B. As shown 
from Eq. (32), the singularity ( 2γ ) at the crack tip 1hb =  depends on the elastic 
properties of the materials combination. Since the elastic properties of the materials for 
composite A are the same ( 21 EE =  and 21 υυ = ), then the singularity at the crack tip 

1hb =  has a square root singularity ( 5.02 =γ ) while the elastic properties of the 
materials for composite B are different and therefore the singularity at the crack tip will 
be given by 552538.02 =γ . The influence of the Biot number and the thickness ratio on 
the normalized stress intensity factor is also shown in the same figure.  
 
 
CONCLUSION 
 
In conclusion, the material properties of the composite medium have a great effect on 
the thermal stresses and consequently on the corresponding stress intensity factor. 
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Also the Biot Number has a great influence on the normalized stress intensity factor by 
reducing it as the Biot number decreases. As expected, The highest values of the 
stress intensity factor are obtained for the unit step function temperature change 

)( ∞=Bi . The normalized stress intensity factor decreases as the normalized crack 
length increases. Finally, as the thickness ratio 12 / hh  increases the normalized stress 
intensity factor increases as well.   
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Table 1 Thermoelastic properties of the composite materials* 
 

Composite 
mediums 

'
1

'
2 / kk  12 /DD  '

1
'
2 /αα  12 / EE  12 /υυ  

A 3 3 o.75 1 1 
B 3.385 4.07 2.2939 0.6111 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.1 Composite arrangement and crack geometry  
 
 
 
 

                                                           
 * Subscript 1 refers to layer (1) and subscript 2 refers to layer (2)   
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Fig. 2 Transient thermal stresses for 0.3/ 12 =hh , Composite A (a) ∞=Bi , (b) 20=Bi  
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
Fig. 3 Transient thermal stresses for 0.9/ 12 =hh , Composite A (a) ∞=Bi , (b) 20=Bi  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.4 Transient thermal stresses for 0.9/ 12 =hh , Composite B (a) ∞=Bi , (b) 20=Bi  
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Fig.5 Transient thermal stresses for 0.9/ 12 =hh , Composite B (a) ∞=Bi , (b) 20=Bi  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 6 Stress intensity factors for 20,∞=Bi ,Composite A (a)  0.3/ 12 =hh ,(b) 0.9/ 12 =hh  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Stress intensity factors for 20,∞=Bi ,Composite B (a)  0.3/ 12 =hh ,(b) 0.9/ 12 =hh  
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Fig. 8 Stress intensity factors for 0.9,0.3/ 12 =hh , 5.0/ 1 =hb , (a) Comp. A , (b) Comp. B 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 
 
 
 

 
 
 
 

 
 
 

Fig. 9 Stress intensity factors for crack terminating at the interface ( 0.1/ 1 =hb ), 
0.9,0.3/ 12 =hh  , (a)  Composite A  ,     (b) Composite B 
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