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Abstract: This paper proposes an automatic P-wave picking algorithm based on discrete wavelet transform (DWT). This 

algorithm is applied to multi-station seismic data from the Egyptian National Seismic Network (ENSN) to enhance the 

accuracy and reliability of P-wave detection. The real-time detection of P-waves suggests a focus on practical applications 

for implementing earthquake early warning (EEW) systems. The integration of this algorithm into the system generates 

an event report and sends it via email, containing all the stations that recorded this event within the sub-network. The 

proposed algorithm has the major advantage of providing accurate P-wave arrival times with minimal processing time. 

In addition, this algorithm can detect even the smallest events, such as micro-earthquakes, due to different frequency sub-

band analyses of discrete wavelet transform (DWT) with varying thresholds for every station. These features might be 

suitable for developing an Earthquake Early Warning (EEW) system. In a challenging test environment, the system 

achieved a remarkable 95.97% detection rate with minimal false alarms in the Cairo subnetwork, 80.88% in the Red Sea 

subnetwork, and 94.2% in the North Coast subnetwork. 

 

Keywords   : Automatic Detection P-wave, Real-time monitoring, Earthquake Early Warning System, Egyptian National 

Seismic Network, DWT  

 

1. INTRODUCTION 

Seismic networks have the primary purpose of locating 

earthquakes and determining their magnitude. The process of 

deciding earthquake location usually requires a minimum of 

three stations. These networks range from small mining 

networks that detect micro-earthquakes to global networks 

that record worldwide seismic data. One special application 

of a seismic network is to create an Earthquake Early 

Warning (EEW) System. After a strong earthquake has 

occurred, the system can send an alarm a few seconds before 

the damaging wave [1]. The P-wave of an earthquake is the 

first wave to arrive at a seismometer and is responsible for 

the initial shaking felt during an earthquake, but this P-wave 

is not a destructive wave. The destructive waves are S-waves 

and surface waves (phases). These phases come after the P-

wave onset in about two to a few tens of seconds, depending 

on the location of the epicenter of the earthquakes. In the face 

of powerful earthquakes, extracting critical information from 

seismic waves relies on the quick decision-making of 

analysts or the capabilities of automated software, as every 

second counts. 

Automatic detection of P-wave arrival time is essential for 

calculating earthquake parameters and developing 

Earthquake Early Warning systems (EEW). Real-time 

monitoring requires automated algorithms, although manual 

inspection is the most precise method. There are many ways 

to detect P waves in seismic signals automatically. One of the 

most common methods is called Short-Term Average/Long-

Term Average (STA/LTA) detection. This method compares 

the short-term average (STA) of the seismic signal with the 

long-term average (LTA) of the seismic signal. When STA 

exceeds LTA by a certain threshold, a P wave is 

detected[2][3][4]. The International Association for 
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Seismology and Physics of the Earth's Interior (IASPEI) has 

developed the STA/LTA algorithm for real-time earthquake 

detection and acquisition. It has become a popular algorithm, 

although it can give false alarms from other transient signals 

caused by human activity or natural phenomena when tested 

on real-time data. Other algorithms, such as short quadratic 

Fourier transform (STFT), DWT, and maximum overlap 

DWT (MODWT) have been developed and tested to detect 

P-wave arrivals with high accuracy and few parameter 

settings[5][6][7][8][9][10][11][12]. However, these 

algorithms have only been tested with offline data. In recent 

years, significant technological advances and increased 

computing power have enabled the use of deep-learning 

models to analyze local earthquakes. These models have now 

reached a level of performance that is at least comparable to 

that of human analysts. Some noteworthy examples of such 

achievements include the work of [13][14][15][16][17] [18] 

[19] [20] [21] [22]. This information can then be used to issue 

early warnings to the public and authorities. Some research 

has used only the first 2-3 seconds of the P wave (Saad et al., 

2021)[23][24].  

The objective of the article is twofold. Firstly, it aims to 

develop an automated P-wave algorithm that will use 

Discrete Wavelet Transform (DWT) to process seismic 

waves. The algorithm will decompose the signals, denoise, 

and reconstruct them to obtain the wavelet coefficient. It will 

then establish thresholds within specific bands to improve the 

sensitivity of P-wave features and determine the arrival time 

in almost real time. This process will take place in three 

different sub-networks of the Egyptian National Seismic 

Network (ENSN). Secondly, the algorithm will notify 

analysts in ENSN via email. The email will contain the time 

of the event and the names of the stations that recorded it. The 

algorithm is structured to operate concurrently on multiple 

channels through multi-threading, thereby optimizing overall 

processing efficiency. To ensure accuracy, the results 

obtained from the algorithm will be cross-checked with the 

manual solution. 

 

2 Wavelet Transform Analysis 

Seismic P-wave signals are complex, non-stationary signals 

and contain a lot of noise. These signals have different 

frequencies that change over time, making it difficult to 

analyze and identify them accurately. To overcome this 

challenge, it is crucial to transform the signals, remove any 

noise interference, and separate the information from 

different frequencies. Wavelet transform analysis is a signal 

processing technique that decomposes a signal into a set of 

wavelet coefficients. Wavelets are small, oscillating 

functions that are localized in both time and frequency. This 

makes wavelet analysis well-suited for analyzing signals that 

contain transient features, such as P waves in seismic 

data[25]. In 1988, Daubechies developed a smoother 

orthonormal, compactly supported wavelet basis The wavelet 

theory has been applied to seismic signals through wavelet 

transform [26][27]. The Wavelet Transform decomposes a 

signal into basic functions at different timescales  m,k(t).  

   Ψ𝑚,𝑘(𝑡) =
1

√𝑚
Ψ(

𝑡−𝑘

𝑚
)                    (1) 

Where m and k are the scale and translation of the daughter 

wavelet, the term m−1/2 normalizes the energy for different 

scales, whereas the other terms define the width and 

translation of the wavelet. Each of these functions is tailored 

to capture specific frequencies and time intervals, much like 

how Fourier analysis uses sine waves of varying frequencies, 

amplitudes, and phases to represent signals[28][25].  

 

 2-1 Discrete-Time Wavelet Transform (DWT) 

The Discrete Wavelet Transform (DWT) is a type of wavelet 

transform. The components represented here are sub-band 

compositions of the original signal that are localized around 

frequency bands instead of specific frequencies. This makes 

them a better representation of the signal compared to the 

Short-Time Fourier Transform (STFT) as they offer a more 

accurate representation of the signal along the time domain. 

This information was mentioned in a study by[9]. The 

coefficients at each scale are calculated using the hierarchal 

algorithm Obtain Scaling and Wavelet coefficient for stages 

1 and 2, as shown in Figure 1. The coefficients can be used 

to derive multi-resolution components. as explained by [25]. 

The input vector, denoted by X, is transformed using scaling 

and wavelet filters, G(k/N) and H(k/N) respectively. The first 

stage of the transform yields two sets of coefficients: V1 

representing the low-frequency content (approximation) and 

W1 representing the high-frequency content (detail). These 

coefficients are then used to calculate the multi-resolution 

components of the signal at different frequency bands. The 

equations for these calculations can be found in[25]. 

 
FIG 1 Utilizing the hierarchal Algorithm 

ObtainScalingandWaveletCoefficientsforStages. 

3. Methodology 

The software Python is used to connect to the main server to 

acquire seismic data. This section outlines the methodology 

for establishing a real-time connection between the ObsPy 

Python library and Ring Server to acquire seismic data from 

a network of seismic stations as shown in Figure 2. This 

method combines ObsPy for data retrieval and processing 

with real-time data access from the Ring Server by specifying 
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the network code, station code, and channel code associated 

with the desired stations and setting the desired time window 

for data retrieval[29]. Next step After data retrieval by obspy, 

applied DWT, which essentially acts like a series of stacked 

high-pass and low-pass filters shown in Figure 3. This 

efficient technique allows us to split the signal into multiple 

frequency sub-bands, each capturing specific frequency 

ranges.  

 
FIG 2 Connection between the Obspy python library and Ringsrever 

 
.pass filters-pass and low-FIG 3  DWT acts as a series of high 

 

  3.1 Wavelet-based P-Phase Detection Algorithm 

 The proposed algorithm uses the DWT decomposition of a 

seismic signal into five frequency ranges for vertical 

components for each station. DWT uses specialized 

mathematical functions called “wavelets” to analyze these 

high-frequency layers. These wavelets act like tiny detectors, 

searching for features in the signal that match their shape and 

scale (Daubechies5). The next step reconstruction signal 

from the third coefficient of high-frequency bands for each 

station (vertical components). After the step of reconstruction 

of the signal, this process involves several key steps: 

Statistical Feature Extraction: For each station, squared 

values of the third coefficient as shown in Figure 4, are 

utilized to capture noise levels, and highlight P-wave arrivals.  

 
FIG 4 (a) squared value of the third coefficient and.  (b) squared value of the 

third coefficient and zoomed window 

The squaring step is crucial to ensure: (1) The noise level is 

significantly lower than the event level. (2) All the elements 

in this system have positive values. (3) Changes in amplitude 

are closely synchronized with the arrival of the p-wave. (4) 

The increase in amplitude at arrival is very distinct, making 

it easy to determine the onset. After this step, the adjusted 

threshold for each station is calculated by summing the 

squared values of each window of 8 samples, representing the 

signal energy within those periods, as seismic data are 

continuously recorded in ENSN at 100 samples per second. 

The threshold was adapted for the stations to distinguish 

between background noise (low-amplitude vibrations) and 

actual seismic signals (larger amplitude ground shaking), 

defining the first change between high-amplitude and actual 

low-amplitude by red line value (Threshold), as shown in 

Figure 5. According to an earthquake data study from the 

ENSN, which includes weak and strong earthquakes recorded 

over the past 10 years, the average threshold for each 

monitoring station was established. It was found that if the 

powers within a continuous 0.32-second window exceed the 

set threshold, an event is declared for that particular station. 

Thresholding in real-time seismic data processing presents a 

trade-off. Lowering the threshold enhances the algorithm's 

ability to detect weak seismic signals but increases the risk of 

false alarms. Conversely, a higher threshold prioritizes 

warnings for strong events, making it suitable for the 

earthquake early warning (EEW) system. 

Finally, the system triggers a network alarm when at least 4 

stations located close together register an event within a 

predetermined time window. and sends e-mail notifications 

to the relevant personnel by Python ( pywhatkit Library), 

including the event time and station detectability information. 

The algorithm analyzes seismic data within a specific time 

window (T) to detect P-wave onsets within a chosen sub-

network of the ENSN.  

This window is calculated as the difference between the first 

and last station detection event times within the sub-network. 

Due to differences in expected arrival times, the P-wave 

detection time window (T) is set to 10 seconds in the Cairo 

subnetwork and 30 seconds in the other two.  

 
FIG 5 (a) Threshold of 8 samples. (b) Threshold zoomed window. 

Key considerations for setting T: 

Sub-network size: As the sub-network's geographic area 

expands, T needs to also increase to account for greater travel 
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times of seismic waves. However, this enlargement of T also 

raises the likelihood of false alarms due to the increased 

potential for noise interference. Event magnitude: The 

velocity of P-waves remains constant regardless of event 

magnitude, so both weak and strong events are analyzed 

using the same T. Sensitivity trade-off: Detecting events 

requires careful consideration of the threshold used to declare 

an event. This threshold must balance sensitivity and 

accuracy, as lowering it can increase the detection of micro-

tremors while also increasing the risk of false alarms. 

Therefore, selecting appropriate T and event detection 

thresholds is crucial to optimize the algorithm's sensitivity 

and avoid false alarms. 

 

4. Real-time test results 

The algorithms in the Figure 6 block diagram show the 

procedure of detecting the data and P-wave arrival picking. 

Were tested in real-time from 01-01-2023 to 31-10-2023 

using seismic data from three subnetworks in ENSN (Cairo 

subnetwork, North Red Sea subnetwork, and North Coast 

subnetwork). The ENSN network consists of six subnetworks 

as illustrated in the provided Figure7 according to the seismic 

sources and the distribution of ENSN stations. Additionally, 

analyst-reviewed data was provided for comparison with the 

discrete wavelet detector. 

 
FIG 6 Block diagram showing the procedure of detecting P-wave arrival picking 

 
FIG 7 The Egyptian National Seismic Network is divided into six 

regional subnetworks. 

 

4.1 Cairo subnetwork: 

An algorithm was developed to detect P-waves in real-time 

monitored data from eight stations in the Cairo 

subnetwork(HLW, KOT, SQR, MYD, NAT, RYAN, RAM, 

NBNS). The algorithm successfully detected 143 out of 149 

events, including local, and regional earthquakes and quarry 

blasts, resulting in a success rate of 95.97%. The system 

generated only six false positives in ten months. The P-wave 

arrival times deviated from manual picks by an average of 

0.2-0.4 seconds. The algorithm detected an event with an Ml 

of 3.08 recorded by ENSN as shown in Figure 8, both the 

manual and automatic picking are demonstrated, with the 

bold line being the manual picks and the dashed line being 

the automatic picks illustrated in Figure 9. The example 

clearly shows that the error (difference between automatic 

and manual) can be neglected. 

 
FIG 8 The event was recorded by ENSN And detected by Algorithm 

4.2 North-Red Sea subnetwork: 

An algorithm designed to detect P-waves in real-time 

monitored data from thirteen stations in the North Red Sea 

subnetwork(TR1, TR2, KAT, BST, SUZ, RDS, ZAF, 

ZNM, GRB, HRG, NUB, DHB, ). The algorithm detected 

749 out of 926 events (80.88% success rate) recorded by 

ENSN for local, and regional earthquakes. Only 177 false 

positives were detected in ten months. 

 

4.3 North-Coast subnetwork: 

An algorithm designed to detect P-waves in real-time monitored 

data from nine stations in the North-Coast subnetwork(SLM, 

FOKA, MATC, SWA, SBRA, NDB3, SMAT, BDR, HAMAM). 

The algorithm detected 130 out of 138 events (94.2% success rate) 

recorded by ENSN for local, and regional earthquakes. Only eight 

false positives were detected in ten months. 

 
FIG 9. Differences between automated and manual solutions for a 

magnitude 3.08 local earthquake recorded within the Cairo subnetwork. 
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5. Conclusions 

The algorithm was tested on real-time data from local 

and regional events on vertical component stations, 

and it accurately identified P-phase detections. The 

algorithm employs a three-step process: multi-

resolution analysis, wavelet selection, and station-

specific thresholding. The varying percentages in the 

three subnetworks can be attributed to differences in 

time windows and distances between stations in each 

subnetwork. Finally, the accuracy of the software's 

results was measured by comparing them with the 

picks of a human analyst, it can be used for routine 

analysis in the ENSN laboratory, and we can alert by 

e-mail and other different ways of communication. 
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