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Abstract: In this article, we generalize the generalized Pareto Distribution using the 

quadratic transmuted map studied by Shaw et al. (2009). The properties of this 

distribution are derived and the estimation of the model parameters is discussed, 

estimating parameters by the method of maximum likelihood and provide the observed 

information matrix. The flexibility of the new model is illustrated with Monte Carlo 

simulation. 

 

1- Introduction 
 

       The quality of the procedures used in a statistical analysis depends heavily 

on the assumed probability model or distributions. Because of this, considerable 

effort has been expended in the development of large classes of standard 

probability distributions along with relevant statistical methodologies. However, 

there still remain many important problems where the real data does not follow 

any of the classical or standard probability models. 

 

The four parameters Pareto (generalized Pareto) distribution was introduced by 

(Abdul Fattah et el [2007]). The cumulative distribution function cdf of the four 

parameters Pareto distribution (generalized Pareto distribution) is 
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     A random variable x  is said to follow the Pareto distribution with four 

parameters (generalized Pareto distribution) if the probability density function 

pdf of x  is as follows: 

 

 

 For x  ,   0,,  , 0  where   is the location parameter,   is scale 

parameter and  and  are the shape parameter 

    

     In this article we use transmutation map approach suggested by Shaw et al. 

(2009) to define a new model which generalizes the exponentiated exponential 

model. We will call Generalized Pareto distribution as the Transmuted 

Generalized Pareto distribution and (TGP) distribution for simplicity. According 

to the quadratic rank transmutation map (QRTM), Approach the cumulative 

distribution function (cdf) satisfy the relationship  

 

   2( ) 1 ( ) ( ), 1TF x G x G x     
                                       (3)

 

 

 which on differentiation yields, 

 ( ) ( ) 1 2 ( ) , 1Tf x g x G x     
                                      (4) 

 

    

     where ( )G x is the cdf of the base distribution, Observe that at 0  ; we have 

the distribution of the base random variable. Aryal et al. (2009) studied the 

transmuted Gumbel distribution and it has been observed that transmuted 

Gumbel distribution can be used to model climate data. In the present study we 

will provide mathematical formulations of the (TGP) distribution and also some 

of its properties. 
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2. Transmuted Generalized Pareto Distribution 

    A random variable 𝑋 is said to have the (TGP) distribution with parameter 𝜏 = (𝛼, 𝛽, 𝜆, 𝛿)𝑇 

and 𝜂 = 0,  if its probability density is defined as: 

𝑓𝑇𝐺𝑃(𝑥) =
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and its cdf is 

𝐹𝑇𝐺𝑃(𝑥) = (1 + 𝜆)(
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For 0x  ,   0,,  , 1  where   is the trunsmuted parameter,   is scale 

parameter and  and  are the shape parameter 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1: Plots of the TGP density function for some parameter values of transmuted and 

shape parameters.  
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Figure 2: Plots of the TGP cumulative function for some parameter values of transmuted and 

shape parameters.  

3- RELIABILITY ANALYSIS 

The transmuted Generalized Pareto Distribution "TGPD" can be a useful 

characterization of life time data analysis. The reliability function of the TGPD 

is denoted by 𝑅𝑇𝐺𝑃 also known as the survivor function and is defined as: 

𝑅𝑇𝐺𝑃(𝑥; 𝜏) = |

|

1 − 𝐹𝑇𝐺𝑃(𝑥; 𝜏)

1 − {(1 + 𝜆) (
































x
11 ) − 𝜆(
































x
11 )

2

}
     (7) 

       It is important to note that 𝑅𝑇𝐺𝑃 + 𝐹𝑇𝐺𝑃(𝑥; 𝜏) = 1, One of the characteristic in 

reliability analysis is the hazard rate function (HRF) defined by 

ℎ𝑇𝐺𝑃(𝑥; 𝜏) =
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Figure 3: Plots of the TGP Reliability function for some parameter values of transmuted and 

shape parameters.  

 

 

 

 

 

 

 

Figure 4: Plots of the TGP Hazard Rate function for some parameter values of 

transmuted and shape parameters.  

4. STATISTICAL PROPERTIES 

          In this section we discuss the statistical properties of the transmuted 

Generalized Pareto Distribution "TGPD", specifically Quantile function, 

median, moments, and moment generating function. 

4.1 Moments 
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4.2 Variance 

Using the appropriate moment expressions, the variance is given as follows:  

22 ))(()(=)( XEXEXVar                               (10) 

 

 

 

4.3 Quantiles 

       The thq quantile qx  of the transmuted G-Pareto Distribution "TGPD" can be 

obtain from (3), 
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Hence, the distribution median is 

𝑥0.5 = 𝛽 {(1 +
(1 + 𝜆) + √1 + 𝜆2

2𝜆
)

−
1
𝛼

− 1}

1
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4.2 Skewness and Kurtosis 

      The shortcomings of the classical kurtosis measure are well-known. There 

are many heavy tailed distributions for which this measure is infinite. So, it 

becomes uninformative precisely when it needs to be. Indeed, our motivation to 

use quantile-based measures stemmed from the non-existance of classical 

kurtosis for many of the Trunsmuted distributions; the Bowley’s skewness (see 

Kenney and Keeping) is based on quartiles: 

Sk =
Q(3 4)⁄ −2Q(1 2⁄ )+Q(1 4⁄ )

Q(3 4)⁄ −Q(1 4)⁄
                                            (12) 

And the Moors’ kurtosis (see Moors (28)) is based on octiles: 

Ku =
Q(7 8)⁄ −Q(5 8⁄ )−Q(3 8⁄ )+Q(1 8⁄ )

Q(6 8)⁄ −Q(2 8)⁄
                                  (13) 

Where 𝑄(·) represents the quantile function 

 (a)                                                            (b) 
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Figure 6: 

(a) Plots of the TGP skewness for some parameter values of shape parameters 

(a) Plots of the TGP skewness for some parameter values of transmuted parameters. 

(b) Plots of the TGP skewness for some parameter values of shape parameters. 

(a)                                                                 (b) 
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Figure 6: 

(a) Plots of the TGP kurtosis for some parameter values of shape parameters. 

(b) Plots of the TGP kurtosis for some parameter values of shape parameters. 

(c) Plots of the TGP kurtosis for some parameter values of transmuted parameters 

 

 

 

4.3 Quantile function and simulation 

     We present a method for simulating from the "TGP" distribution (5). 

The quantile function corresponding to (6) is 



9 | P a g e  
 

𝑄(𝑢) = 𝐹−1(𝑢) = 𝛽 {(1 +
(1+𝜆)+√(1+𝜆)2−4𝜆𝑢

2𝜆
)
−
1

𝛼

− 1}

1

𝛿

                 (14) 

 

Simulating the TGP random variable is straightforward. Let 𝑈 be a 

uniform variate on the unit interval(0, 1). Thus, by means of the 

inverse transformation method, we consider the random variable 𝑋 

given by 

𝑥 = 𝛽 {(1 +
(1+𝜆)+√(1+𝜆)2−4𝜆𝑢

2𝜆
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which follows (6), i.e.  𝑋~ 𝑇𝐺𝑃(𝛽, 𝜂,𝛼, 𝛿, 𝜆), the plots comparing the exact TGP 

density and histograms from two simulated data sets for some parameter values 

 

5. Estimation and information matrix 
 

    In this section, we discuss maximum likelihood estimation and inference for 

the T-GP distribution. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from 

𝑋~ 𝑇𝐺𝑃(𝛽, 𝜂,𝛼, 𝛿, 𝜆) where (𝛽, 𝜂, 𝛼, 𝛿, 𝜆)be the vector of the model Parameters, 

hen the likelihood function can be written as 
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By accumulation taking logarithm of equation (16), and the log-likelihood 

function can be written as  
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               (17) 

 

     The score vector 𝑈𝜏 = (
𝜕𝐿
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corresponding to the parameters in   are given by differentiating (17) by setting 
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The maximum likelihood estimates (MLEs) of the parameters are the solutions 

of the nonlinear equations (14),    0  , which are solved iteratively, these 

solutions will yield the ML estimators for the parameters. 

 

 

 

 

 

6 Simulation study 
 

    We conducted Monte Carlo simulation studies to assess on the finite 

sample behavior of the maximum likelihood estimators of 𝛼 , 𝛽, 𝛿,  and 
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𝜆 All results were obtained from 1000 Monte Carlo replications and the 

simulations were carried out using the statistical software Mathcad , 

The true parameter values used in the data generating processes are 

𝛼 = 1.2, 𝛽 = 0.2, 𝛿 = 0.3 and 𝜆 = 0.4 , Table 1 presents the mean 

maximum likelihood estimates of the parameters that index the TGP 

distribution along with the respective root mean squared errors (RMSE) 

and bias for sample sizes 𝑛 = 30 , 50, 80, 100 
 

Table 1: Mean estimates, root mean squared errors and bias of𝛼 , 𝛽, 𝛿 , and 𝜆  the 

maximum likelihood Estimators of the TGP parameters 

𝒏 Parameter estimates  RMSE bias 𝝁 𝝈(𝒙) 

30 

𝜶 

𝜷 

𝜹 

𝝀 

1.319 

0.29 

0.469 

0.958 

0.336 

0.536 

2.84 

6.633 

0.319 

0.2 

0.469 

-1.358 

 

 

0.464 

 

 

 

1.335 

 

 

50 

𝜶 

𝜷 

𝜹 

𝝀 

1.297 

0.26 

0.430 

1.336 

0.316 

0.408 

3.016 

6.51 

0.297 

0.06 

0.13 

1.336 

 

0.882 

 

 

1.404 

 

100 

𝜶 

𝜷 

𝜹 

𝝀 

1.257 

0.251 

0.22 

0.857 

0.26 

0.46 

3.878 

6.15 

0.63 

-2.323 

-1.808 

0.706 

2.737 

 

3.677 

 

 

From the results in Table 1, we notice that the biases and root mean squared errors of 

the maximum likelihood estimators of𝛼 , 𝛽, 𝛿, 𝛽 and 𝜆 decay toward zero as the sample 

size increases, as expected. We also note that there is small sample bias in the estimation 

of the parameters that index the TGP distribution. Future research should obtain bias 

corrections for these estimators. 

 

 

 

 

Conclusion 

 
In the present study, we have introduced a new generalization of generalized 

Pareto Distribution called the transmuted Generalized Pareto distribution. The 
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subject distribution is generated by using the quadratic rank transmutation map 

and taking the Generalized Pareto distribution as the base distribution. Some 

mathematical properties along with estimation issues are addressed. The hazard 

rate function and reliability behavior of the transmuted Generalized Pareto 

distribution shows that the subject distribution can be used to model reliability 

data. We expect that this study will serve as a reference and help to advance 

future research in the subject area. 
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