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ABSTRACT  
 
In this paper, we present a new error indicator for the frictional contact problem 
governed by Coulomb’s law. This indicator is built over the combination of two known 
methods. The first concerns the error obtained from the projection techniques where 
super convergence properties are used for smoothing the finite element stress fields. 
The second method takes into account the errors in the constitutive relation of the 
contact zones. By using both the error indicator and procedures of mesh adaptivities, 
we show example of optimised computations.  
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1. INTRODUCTION 
 
The numerical resolution of contact problems is often carried out by finite element 
methods. An important task consists in evaluating the numerical quality of the finite 
element computations by using either a priori or a posteriori error estimator.  The a 
priori analysis gives information about convergence and rates of convergence of the 
solution. However, it does not allow us to quantify the descretisation errors. This 
quantification requires the definition of a posteriori error estimation. 
 
For linear problems, several different approaches leading to various estimators have 
been developed. In particular, we cite the estimator introduced by Babuska and 
Rheinboldt [02] and based on the residual of the equilibrium equations; the estimators 
linked to the smoothing of finite element stresses performed by Zienkiewicz and Zhu 
[18]; and the estimator based on the errors in the constitutive relation developed by 
Ladeveze [12]. A review of different a posteriori estimators can be found in Zienkiewicz 
[19].  
 
For non linear problems and especially for the non linearity of contact, the work 
available is much less abundant. However, an estimator based on the residuals has 
been developed by Wriggers et al [15].  By using a penalty method, they transformed a 
variational inequality into a variational equality. Nevertheless, this estimator explicitly 
uses a penalty parameter, which represents a major drawback. Moreover, for 
frictionless unilateral contact problems, there are principally three methods studied: the 
residual method by Carstensen et al [04] using a penalised approach; the study of error 
in the constitutive relations performed by Coorevits et al [06]; and the error indicator 
which uses the super convergence properties studied by Wriggers and Sherf [16]. 
 
In this paper, we are interested in the most used model of Coulomb’s frictional law. In 
this domain, we can cite the works of Coorevits et al [07] and Louf et al [13], who used 
the estimator based on the error in the constitutive relation. This estimator requires the 
building of cinematically and statically admissible fields. The construction of these fields 
is complex and represents the principal difficulty for the use of this method. For the 
residual error estimator, it seems that only the contribution of Bostan and Han [03] for a 
bilateral contact problem is available. Although they used a Lagrangian approach, their 
studies were only limited to the Tresca’s friction law. Indeed, so far, for the residual 
method applied to the Coulomb’s law, the validation problem of the coefficients linked to 
different residual terms (such as interior and side residuals for each element) has 
remained unsolved. In the same article, a dependence of these coefficients to the mesh 
refinement and adaptation has also been shown. Consequently, the choice of these 
coefficients constitutes the principal difficulty for the use of this method. 
 
The aim of this paper is to present a simple method that we have developed in Becheur 
et al [01] and where the performed error indicator would be easy to build and could take 
into account the error due to the contact. For this purpose, we propose to build this 
indicator by the combination of two known methods. The first method is based on the 
error obtained from the projection techniques where super convergence properties are 
used for smoothing the finite element stress fields. This method was developed by 
Zienkiewicz and Zhu [18]. The second method used by Coorevits et al [07] takes into 
account the error in the constitutive relation of the contact zones. The information given 
by this indicator is then coupled with mesh adaptivity techniques which provide the user 
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with the desired quality and minimises the computational costs. The numerical 
implementations of the error indicator as well as optimised computations are performed. 
 
 
2. PROBLEM SETUP 
 
General Notations 
 
We consider the two dimensional unilateral contact problem between two elastic bodies 
denoted by  1Ω  and 2Ω  (figure 01) respectively and 21 ΩΩΩ ∪= . We assume that 
the boundary lΩ∂  of 1,2  , =llΩ  is divided into three parts: 

 In the first part lΩ1∂ , the displacement field is given by:  

            1,2.                  ==
∂

lll
l ,

1
dUU

Ω
                            (2-1) 

To simplify, we suppose that:                                                         1,2.                           == ll ,0dU  

 In the second part lΩ2∂ , surface forces of density l
dF  are applied. 

 The complementary part, denoted by lΩC∂  such as )( 21
llll ΩΩΩΩ ∂∪∂−∂=∂C  is 

the candidate contact zone between the two solids. We suppose that 
21 ΩΩ CC ∂=∂ which we denote by ΓC. 

Each body lΩ  is submitted to volume forces of density l
df . We assume that the strain 

tensor  ε is linearised and we denote lK  by the elasticity operator associated with lΩ . 
The notation ln  stands for the unit outward normal on the boundary of lΩ . 
 
The Constitutive Relation of the Contact Zone 
 
In order to clearly express the contact error, we represent the contact zone ΓC as a 
mechanical entity equipped with its constitutive relation. We choose the orientation of 
ΓC by setting   nc= n1. 
 
Then we introduce on the interface ΓC the functions W1, W2, representing, two 
displacement fields on each side of the interface; and two fields of surface forces of 
densities R1 and R2 (stresses transmitted to Ω1 and Ω2) and an interior field of surface 
forces of density RC. 
 
The equilibrium of the interface is represented by  

RC  =R1   and  RC  =-R2  on ΓC ,                                  (2-2) 
such as:                   1,2       , == llll nR :σ                                                               (2-3)  

Let us define WC the jump in displacement which, for the interface, plays a similar role 
as a strain: 

WC = W1 – W2                                        (2-4) 
For any vector Z, we can write:  Zn = ZTnc  and   Zt = Z - Znnc                             (2-5). 
The notation T represents the transposition. 
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The relative displacement field WC= Wn
Cnc + Wt

Ctc and the reaction density 
 R R tn

CCCCC tnR += , verify the Coulomb’s frictional contact at the interface ΓC. 

Thus, the contact constitutive relations with Coulomb’s law can be written as follows: 

0≤−= 2
n

1
n

C
n WWW                                                                                          (2-6), 

           Rn 0≤C                                                                                                 (2-7), 
    WR C

nn 0=C                                                                                                  (2-8), 

   RR nt
CC µ≤                                                                                                 (2-9), 

if        0W        RR tnt =⇒< CCC µ                                                                   (2-10), 

if        R W  as   such0          RR ttnt
CCCC λλµ −=≥∃⇒=                                  (2-11). 

The friction coefficient µ is assumed to be constant and positive on ΓC. 
 
The inequality in (2-6) expresses the non penetration of the two bodies; only contact or 
separation is allowed. The inequality in (2-7) states the sign condition on the normal 
reaction density and (2-8) represents the complementary condition. 
 
We introduce the conjugate convex potentials ϕ and ϕ* (Ekeland and Temam [10]): 





<∞+
≥

=     
0Vif
0Vif0

n

n)(Vϕ                                                                  (2-12a) 





>>∞+
≤≤

=
ntn

ntn

ZµZor   0Zif
ZµZand0Zif0

)(* Zϕ                                           (2-12b) 

By following the scheme described in De Saxcé (1992), we introduce the function  

tn VZµ++=Φ )(*)(),( ZVZV ϕϕ                            (2-13a) 

A detailed proof of the properties of  ),( ZVΦ  can be found in the previous reference. In 
particular, ),( ZVΦ  is a bipotential, such as: 

 For a fixed V, ),( ZVΦ  is convex with respect to Z 

 For a fixed Z, ),( ZVΦ  is convex with respect to V 

 For any V and for any Z, we have :         0≥−Φ VZZV T),(           (2-13b) 

On the other hand, the contact constitutive relations (2-6) to (2-11) can be written in the 
three following equivalent forms: 

   

          WRW RWRµ

                     
                       

C
nntttn









=++++−

−∂∈

∂∈−

0CCCCCCC

CC

CC

RW

WR
RW

)(*)(

),(
),(*

ϕϕ

ϕ
ϕ    (2-14a) 

According to the definition introduced in (2-13a), we can write : 

    

          

                     
                       









=+−Φ

−∂∈

∂∈−

0CCCC

CC

CC

RWRW

WR
RW

T

),(

),(
),(*

ϕ

ϕ
                                     (2-14b) 
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The Reference Problem 
 
The problem of unilateral contact of two elastic bodies with friction can be formulated as 
follows. Find the pair (( lσ , lR ) ;( lU , lW )) defined in lΩ  1,2   , =l  and ΓC such it 
satisfies: 

 The cinematic conditions: 
lU  = 0 on lΩ1∂     and      lU = lW  on ΓC                       (2-15) 

 The equilibrium equations : 

[ ] llllllllll

l l l

00)( UVdVRdVFdVfdVTr
TTT

dd ∈∀=+++− ∫ ∫ ∫ ∫
∂

                  
2 CΩ Ω Ω Γ

ΓΓΩΩεσ   (2-16) 

{ }lllll Ω∂== 10 on    0  assuch  on  enough regular   and  definedw UΩUUith and  RC 
=R1  and  RC = -R2  on  ΓC 

 The constitutive relations: 









=+−Φ

==

b)17-(20),(

a)17-(2)(

                                         

                                       1,2              

CCCC RWRW

UK

T

llll εσ
 

 
The first existence result for problem (2-15) to (2-17) has been obtained by Necas et al 
[14] and Jarusek [11]. An improvement in Eck and Jarusek [09] states existence when 
the friction coefficient µ is lower than

ν
ν

22
43

−
− ,  ν  denoting Poisson ratio in Ω  such as 

5.00 <<ν .  About the uniqueness of the solution of this problem, there is to our 
knowledge no available result in the literature. Nevertheless, let us mention that there 
exist several laws “mollifying” Coulomb’s frictional contact model and that such 
regularizations lead to more existence and uniqueness properties. Indeed, there are 
some uniqueness results given for the case of small coefficient of friction and with some 
kind of mollification (Duvaut [08]). However, for the more general problem without 
regularization, no uniqueness results are known. A review of mathematical results of 
existence and uniqueness of solutions to problems involving friction can be found in 
Andersson and Klarbring [01]. For the experimental results, it seems that the works 
available are much less abundant. 
 
 
3. THE ERROR INDICATOR FOR COULOMB'S FRICTIONAL CONTACT PROBLEM 
 
The Finite Element Resolution  
 
The reference problem is usually resolved by the finite element method in 
displacements. It consists in finding the fields l

hU  defined in lΩ  1,2   , =l  of F.E type 
and verifying (2-1) such as:  

 l

hV∀  of F.E type and such as 0=l

hV  on lΩ1∂  and l

hV = l

hW  on ΓC      (3-1)  
 The equilibrium equations : 
  

[ ] llllllllll

l l l

00)()( UVdVRdVFdVfdVKUTr hhhdhdhh

TTT

∈∀=+++− ∫ ∫ ∫ ∫
∂

                  
2 CΩ Ω Ω Γ

ΓΓΩΩεε    (3-2) 
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{ }lllll Ω∂== 10 on    0  assuch  on  enough regular   and  definedw UΩUUith   
 and the approximated stress field is calculated via the constitutive relation: 
  

                                          1,2              == l
lll )( hh UK εσ  (3-3) 

 
We consider the pair (( lσ , lR ) ;( lU , lW )) 1,2   ,with =l , the exact solution of the 
reference problem (2-15) to (2-17), and the pair (( l

hσ , l
hR ) ;( l

hU , l
hW )) 1,2   ,avec =l , the 

finite element solution of the approximated problem (3-1) to (3-3). If we compare the 
reference and the approximated problems, we can observe that both the finite element 
solution and the exact solution verify the cinematic condition (2-1) and the first equation 
of the constitutive relation (2-17a). But the approximated stress field l

hσ  doesn’t verify 
the equilibrium equation (2-16): in the displacement finite element method. The 
approximation is taken over the equilibrium equations. 
 
Moreover, the fields C

hW  and C
hR  don’t verify strictly the constitutive relations (2-14) on 

the contact zone. Thus, the quantity ( )C
h

C
h

C
h

C
h RWRW

T

+−Φ ),(  is not equal to zero since 
CC

h WW ≠  and CC
h RR ≠ . However, the function ),( C

h
C

h RW−Φ  must have a finite value. 
For this purpose, the reaction densities must always be included (corrected) in the 
friction Coulomb’s cone and the non penetration condition satisfied. This imposes after 
a first resolution with the finite element method, an eventual correction of the reaction 
densities and displacements. Consequently, the condition of equilibrium will impose 
secondly the correction of the approximated stress fields l

hσ . 
 
The Exact Definition of the Contact Error  
 
For all pairs (( lσ , lR ) ;( lU , lW ))   and (( l

hσ , l
hR ) ;( l

hU , l
hW ))defined on 1,2  , =llΩ ,  

respectively the exact solution of the reference problem and the finite element solution 
of the approximated problem, lets set the quantity : 

( ) 2
1

2

1

2

,
),(2 








Γ+−Φ+−= ∑ ∫

=
ΓΩ

l

ll
l

C

T

C
C

h
C

h
C

h
C

hh dRWRWe
σ

σσ                (3-4). 

where          ( ) ( )
2

1

1

, 









−−=− ∫ −

l

l

llllll

Ω
Ω

ΩdK  h
T

hh σσσσσσ
σ

             (3-5) 

By definition, the quantity e  represents the exact definition of the error associated to 
the solution pair (( l

hσ , l
hR ) ;( l

hU , l
hW )) ,  1,2=l .  

Property 01 :  
For any pair of finite element solution (( l

hσ , l
hR ) ;( l

hU , l
hW ))  defined on 1,2  , =llΩ ,  we 

have e  equal to zero if and only if (( l
hσ , l

hR ) ;( l
hU , l

hW ))  is the exact solution of the 
reference problem. 
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Indeed, if (( l
hσ , l

hR ) ;( l
hU , l

hW )) is the exact solut ion, we wil l  have 

1,2  , == lll
hσσ ;  and ( ) 0=+−Φ C

h
C

h
C

h
C

h RWRW
T

),(  since C
hW and C

hR wil l  veri fy 
the consti tut ive relat ions (2.6) to (2.11) in the contact zone. 
 
Property 02 : 
For any pair of finite element solution (( l

hσ , l
hR ) ;( l

hU , l
hW ))  defined on 1,2  , =llΩ ,  the 

defined error e  is either positive or equal to zero. 
 
Proof :  According to (2-13a), we can write : 

( ) 2
1

2

1

2

,
)(*)(2 








Γ++++−+−= ∑ ∫

=
ΓΩ

l

ll
l

C
C

CCCCCCC
h

C
hh dRWe nhnhthththnh WRW RWRµϕϕσσ

σ
              (3-6) 

 
Being the energy norm on the stress tensor f ields, the f i rst term 

2

, l

ll

Ω
−

σ
σσ h  is always posit ive or equal to zero. For the second term, we 

can remark that the integral above is always positive: it is equal to +∞  if 
)(* C

h
C

h RW ϕ∂∉− (if the non penetration condition is not satisfied) or if )( C
h

C
h WR −∂∉ ϕ ( if 

the normal reaction density is positive or the tangential reaction density is outside the 
Coulomb’s cone). Otherwise, it is positive because 0≥C

hh nn
WRC  (according to the 

relat ions (2.6) and (2.7)) and 0≥+ CCCC
t ttn hhhh WRWRµ  (according to the 

relat ions (2.9) to (2.11)) In deed,for the latest inequation, there exist two 
cases. In the f irst case, we may have  RR nhth

CC µ< .  This implies according 

to the relat ion (2.10) that:  0W  
th =C  and 0=+ CCCC

t ttn hhhh WRWRµ . In the second 

case, we may have  RR nhth
CC µ= .  This implies according to the relat ion 

(2.11) that 0W  
th ≠C  and CCCC

thhhh WRWR
ttt

−=  so that 0=+ CCCC
t ttn hhhh WRWRµ .  

Moreover, according to the property due to De Saxcé (1992) and writ ten in 
(2-13b), the term ( )C

h
C

h
C

h
C

h RWRW
T

+−Φ ),(  in (3.4) is always posit ive or 
equal to zero. This concludes the proof �. 
 
Moreover, the error quantity e must have a finite value. For this purpose, we must have:  

0==− )(*)( C
h

C
h RW ϕϕ                                        (3-7). 

 
 
In other words, we must have )(* C

h
C

h RW ϕ∂∈−  and )( C
h

C
h WR −∂∈ ϕ . Nevertheless, this 

is not always verified by the finite element solutions. Consequently, the correction at the 
interface ΓC of the displacement fields C

hW  and reaction densities C
hR  is indispensable. 

And then, the condition of the equilibrium requires a second resolution we can name 
the corrected problem which consists of finding the fields l

cU  defined in lΩ  1,2   , =l  of 
F.E type and verifying (2-1) such as:  

 l

hV∀  of F.E type and such as 0=l

hV  on lΩ1∂  and l

hV = l

hW  on ΓC  
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 )(* C
h

C
c RW ϕ∂∈−  and )( C

h
C
c WR −∂∈ ϕ  

 The equilibrium equations : 
 

[ ] llllllllll

l l l

00)()( UVdVRdVFdVfdVKUTr hhchdhdhc

TTT

∈∀=+++− ∫ ∫ ∫ ∫
∂

                  
2 CΩ Ω Ω Γ

ΓΓΩΩεε  

{ }lllll Ω∂== 10 on    0  assuch  on  enough regular   and  definedw UΩUUith  
 
The corrected stress field is calculated via the constitutive relation:  

1,2      == l
lll )( cc UK εσ  and the pair (( l

cσ , l
cR );( l

cU , l
cW )) is the corrected solution so that 

0==− )(*)( C
c

C
c RW ϕϕ .  

 
This lead to the final definition of the error which can be written as: 

( ) 2
1

2

1

2

,
2 








Γ+++−= ∑ ∫

=
ΓΩ

l

ll
l

C
C

CCCCCC
c de  WRW RWRµ ncnctctctcncσ

σσ              (3-8) 

 
The Error Indicator  
 
The exact solution is generally unknown; we must then calculate an indicator of the 
error over the finite element solution. The idea consists in substituting, the exact stress 
field 1,2 , =llσ  in (3-8) by a stress field 1,2 ,~ =llσ  whose properties of internal 
equilibrium and continuity between elements are verified sufficiently. 

Moreover, it is known that the finite element solution is not smooth and regular enough 
compared to the exact solution. Thus, Zienkiewicz and Zhu [18] had the idea of building 
from the finite element solution, a new stress field of high degree of smoothing and 
which is assumed to be as near as possible to the exact solution. For this purpose, they 
used super convergence properties of the stress fields. Indeed, Hinton and Campbell 
(1974) observed that the finite element solution oscillated over the exact solution and in 
some points, named super convergent points, the two solutions coincided. 

Consequently, we can estimate the error by substituting in the first term of (3-8) 

l

ll

Ω,σ
σσ c−  by 

l

ll

Ω,
~

σ
σσ c−  such as:  

( ) ( )
2

1

1

,
~~~











−−=− ∫ −

l

l

llllll

Ω
Ω

ΩdK c
T

cc σσσσσσ
σ

                                     (3-9) 

 
Finally we can compute an approximation of the error denoted by eS, so that: 

( ) 2
1

2

1

2

,
2~









Γ+++−= ∑ ∫

=
ΓΩ

l

ll
l

C
C

CCCCCC
c dse  WRW RWRµ ncnctctctcncσ

σσ                       (3-10) 

Where lσ~ is the smoothed stress field over each body 1,2  , =llΩ . 
 
On the other hand, lσ~  can be obtained either by the classical global method projection 
also named ZZ1 and developed by Zienkiewicz and Zhu [18], or by the superconvergent 
patch recovery (SPR) method by the same authors Zienkiewicz and Zhu [17]. The 
second method (SPR) is more accurate than the global method ZZ1. Nevertheless, it 
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seemed to be more difficult to implement and to control, particularly, in a finite element 
contact program. That is why, we have chosen, in this article, to study firstly the quality 
of use of the global method. 
 
In this method, the smoothed stress field can be obtained by the minimisation in the 
sense of least squares, of the distances between the continued field σ~  and the 
corrected finite element field l

cσ .The nodal values ( )liσ~  of the smoothed field can be 
obtained by minimising the two following functions: 

( ) ( ) 1,2    == ∫ l
l

lll

l ,~~ 2

Ω
ci d-σ    σF Ωσ                                                   (3-11) 

It results in two systems of linear independent equations: 

1,2.    ,     ~        0~ ==⇒=
∂
∂

llll

l
l bσA   

σ
F 

i

                                                  (3-12) 

Moreover, we associate to this error measure of descretisation the global relative error 
which is defined by: 

( ) 2
1

2

1

2

,

2

1

2

,

~

2~



















+

Γ+++−
=

∑

∑ ∫

=
Ω

=
ΓΩ

l

ll

l

ll

l

l

σ

σ

σσ

σσ
ε

c

C
CCCCCC

c
C

d WRW RWRµ ncnctctctcnc                     (3-13) 

Thus ε consists of a global accuracy which allows evaluating the global quality of the 
finite element solution. Let us consider E a part of lΩ . Then, we define the local 
contribution of E to the global error ε  by the quantity εE , such as: 

( )
2

1

2

1

2

,

2

,

~

d~



















+

+++−
=

∑

∫

=
Ω

∩Γ

l

ll

ll

lσ

σ

σσ

σσ

c

E C
CCCCCC

Ec

E
C

Γ
ε

 WRW RWRµ ncnctctctcnc                (3-14) 

 
In practical situations, E is an element of the mesh descretisation associated to lΩ . The 
local contributions allow obtaining information concerning the errors located on the 
structure. By construction, one has 
  

     ∑=
E

E  22 εε                                                       (3-15) 

 
4. NUMERICAL STUDIES 
 
The goal of a mesh adaptation procedure is to guarantee a certain level of precision to 
the finite element user, by minimising the computational costs. We will use the h-
generation, which is the most frequently used procedure: the size and topologies of the 
elements are changed while the type of finite element functions on the different meshes 
remains the same. 
 
A mesh T* is said to be optimal for an error measure ε if: 
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



 =

)mesh     theof  elements ofnumber   total theis*(N   minimal  is  *N

user  by  the  prescribedaccuracy       the,0for  
*T

εε
                     (4-1) 

 
In order to solve the problem in (4-1), we adopt the following technique (Coorevits et al 
[05]): 

• Computation on a coarse mesh  T   
• Computation of both the global relative error ε and the local contributions εE 
• Determination of the optimised mesh  T* 
• And a second computation on the new mesh T*. 

 
The implementation of this method is achieved using CASTEM 2000 developed at the 
CEA in France. We consider the problem of two elastic bodies initially in contact (figure 
02). The upper body is submitted to a uniform load of 10 Nmm-2. The body Ω2 is fixed 
on its lower side. The two materials are identical (E = 130 GPa and ν = 0.3). The 
dimensions are 100mm x 100mm and 200mm x 200mm and the friction coefficient is µ 
= 0.3. 
 
The initial mesh is made of 398 three nodes elements, and 370 nodes (figure 03). By 
applying the developed indicator, a global accuracy ε of 6.58 % is obtained. We show 
the deformed bodies in figure 04 and the contribution to the error εE in figure 05. 
The contact pressures are drawn in figure 06. We can observe that the computed 
tangential pressure is outside the friction cone (on both extreme meshes) and it can be 
successfully modified to compute the error indicator. 
 
A global accuracy εo of 05% is prescribed. The resolution of the problem (4.1) gives an 
optimised mesh made of 426 three nodes elements, 259 nodes, and the developed 
indicator provides a global accuracy ε of 5.32 % (figure 07a). 

 
By using the error in constitutive relation method, this example was also treated in 
Coorevits et al [07] (see figure 07b). In deed, for a same prescribed error of 05 %, we 
can observe on this figure, that after remeshing, a final error of 5.46% is obtained for an 
optimised mesh of 381 three nodes elements. Whereas the use of the developed 
method gives a final error of 5.32 % for an optimised mesh of 426 three nodes 
elements (figure 07a). On the other hand, by comparing the mesh adaptation obtained 
by the two methods, we can observe on these figures (07a and 07b) that, despite its 
low cost, the developed method proves its efficiency by sufficiently taking into account 
the contact error and providing an optimised mesh on the contact zone for 
approximately the same level of accuracy.  
 
 
5. CONCLUSION  
 
After this study, we can conclude that the method developed presents the principal 
advantage of a low cost compared to other methods. This method has allowed 
overcoming the drawbacks related to the construction difficulties of the admissible 
fields, and the choice of coefficients for the residual method. Indeed, by combining the 
projection techniques and the error in the constitutive relation on the contact zone, we 
have developed a rather simple error indicator to build and to implement in a finite 
element code. It also gives large possibilities to be applied either on non linear 
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behaviours or on three dimensional contact problems. Moreover, when comparing with 
the results obtained by the error in the constitutive relations, the numerical study has 
shown that this indicator presents the ability to take into account the contact error and 
to provide optimised meshes in the structure.  
 
 
6. REFERENCES 
 
[1]  Becheur, A. Tahakourt, A. Coorevits, P. An a posteriori error indicator for 

Coulomb’s frictional contact. To be published and available on line in Mechanics 
Research Communication Journal Elsevier Ed (2008). 

[2]  Babuska, I., Rheinboldt, W.C.,. Error estimates for adaptive finite element 
computations. SIAM J. Numer. Anal. vol. 15, n°4, 736-754. (1978) 

[3]  Bostan, V., Han, W.,. A posteriori error analysis for FEM solutions of a frictional 
contact problem, Comput. Meth Appl. Mech. Engrg. Vol 195, pp 1252-1274, 
(2006). 

[4]  Carstensen, C., Sherf, O., and Wriggers, P., Adaptive finite elements for elastic 
bodies in contact, SIAM J. Sci. Comput. 20,. 1605-1626. (1999). 

[5]  Coorevits, P., Ladeveze, P., Pelle, J.P. Mesh optimization for problems with 
steep gradient areas. Engineering computations.  11, 129-144. (1994). 

[6]  Coorevits, P., Hild, P.,. Pelle, J.P. A posteriori error estimation for unilateral 
contact with matching and non matching meshes.  Comp Meth. Appl. Mech. and 
Engrg. 186, 65–83, (2000). 

[7]  Coorevits, P., Hild, P., Hjiaj, M. A posteriori error control for finite element 
approximations of Coulomb frictional contact. SIAM J. Sci. Comp. vol 23, n°3, 
976-999. (2001) 

[8]  Duvaut, G., Lions, J.L., Les inéquations en mécanique et en physique, Dunod 
editions. Paris. (1980). 

[9]  Eck, C., Jarusek, J. Existence results for the static contact problem with coulomb 
friction. Math. Models Methods Appl. Sci.. 8,. 445–468 (1998). 

[10]  Ekeland, I., Temam, R. Convex Anal. Variational  Problems; Amsterdam, North- 
Holland (1976). 

[11]  Jarusek, J. Contact Problems with Bounded Friction.   Czechoslovak. Math. J. 
33, 237–261 (1983). 

[12]  Ladeveze, P. Comparaison de modèles de milieux continus, Ph.D. thesis, Paris 
VI, university (1975) 

[13] Louf, F., Combe, J.P., Pelle, J.P. Constitutive error estimator for the control of 
contact problems involving friction. Computers and Structures J. 81, 1759-1772 
(2003). 

[14]  Necas, J., Jarusek, J., Haslinger, J.,. On the solution of the variational inequality 
to the Signorini problem with small friction, Boll. Un. Mat. Ital. B (5), 17,. 796–811 
(1980). 

[15]  Wriggers, P., Scherf, O., Carstensen, C. Adaptive techniques for the contact of 
elastic bodies. in Recent developments in FEM analysis, eds. Hughes, Onate, 
Zienkiewicz, 78-86. (1994) 

[16]  Wriggers, P., Scherf, O. Different A Posteriori Error Estimators And Indicators 
For Contact Problems. Math Comput Modelling Vol 28, No 4-8, 437-447, (1998). 



Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008  SM 85 
 

nC 

∂2Ω
2 

ΓC 

 

nl 

∂1Ω
1 

F1
d 

∂2Ω
1 

Ω1 

f2
d 

n2 

∂1Ω
2 

F2
d

Ω2 

Figure 1 : Setting of the problem

fd2fd1 

nc

[17]  Zienkiewicz, O. C., Zhu, J. Z.,. The Superconvergent Patch Recovery and 
adaptive finite element refinement. Comp Methods in Applied Mechanics and 
Engineering, Vol 101, Iss 1-3, 207-224 (1992).  

[18] Zienkiewicz, O.C., Zhu, J.Z. A simple error estimator and adaptive procedure for 
practical engineering analysis. Int. J. for Num. Meth. in Engng. 24, 337-
357(1987). 

[19]  Zienkiewicz, O.C. The background of error estimation and adaptivity in finite 
element computations. Comput Methods Appl Mech Engrg. 195, 207-213 (2006). 

 
Figures 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                                                                            
 
 
 
 

                                                            . 
        Figure 4: Deformed shapes                           Figure 5: Local contributions εE  
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Figure 2 : Setting of the problem 
Figure 3 : Initial mesh : 398 three 
node elements, 370 nodes, ε = 6.58 % 
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Figure 6: Contact pressures. 
 
 
 

                                                    
 
 
 

Figure 7a: optimised mesh of 426 
three nodes elements, 259 nodes for a 
final accuracy of 5.32 % (by using the 
developed method) 

Figure 7b: optimised mesh of 381 
three nodes elements, 376 nodes for a 
final accuracy of 5.46 % (method 
developed by Coorevits et al 2001) 




