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ABSTRACT 
 

In the article, using spinor representation of orthogonal transformations, the expressions 
between second order complex unitary transformations matrixes and real orthogonal 
matrixes of spatial rotations in three dimensional Euclidean space L3 are received, that 
allows easily calculating of corresponding Euler’s angles. The obtained results have 
enabled reducing the actually three-dimensional problem of spatial motion control to the 
one-dimensional problem; control kinematical   functions of Euler’s angles and control 
spinor matrix of rotation were constructed, by means of which control process of spatial 
rotations  is completely determine.  
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STATEMENT OF THE PROBLEM  
 
Methods of representation of three-dimensional rotations used in solving of various 
engineering problems are usually confined to the description of individual concrete 
rotations centered at the origin (zero center). Among these methods is in particular the well 
known method of orthogonal real matrices whose elements are functions of Euler angles 
[1, 2]. At the same time it should be said that the problem of describing so-called 
generalized rotations [3] evokes a much greater interest both from the theoretical 
standpoint and from the standpoint of applications (in the first place we mean an 
application in robotics and in particular  in the planning of trajectories in the case of 
obstacles). Under generalized rotations we mean the set of all possible rotations with both 
zero and nonzero centers which transform the initial three-dimensional point to the finite 
one. The basic problem arising in this context can be formulated as follows: Given two 
three-dimensional points ),,( 321 xxxx  and  ),,( 321 yyyy , it is required to define the set of all 
possible transformations and centers of rotations which  bring about the transformation of 
the point x to the point y. It is obvious that this problem can be easily extended to the case 
where instead of two points we consider two finite sets of points },,({ 321

iiii xxxx  and 
},,({ 321
iiii yyyy  i=1,2,…m, which corresponds to the case of rotations of a solid.  

 
 
EQUATIONS FOR GENERALIZED ROTATIONS 
 
Let L3 be a linear Euclidean space with orthonormalized basis vectors e1, e2, e3. To each 
vector  x=x1e1+ x2e2+x3e3  of the space L3

 we assign a traceless Hermitian matrix  
  

321

213

xixx
ixxx

X
−+
−

= , (1) 

 
whose elements are the so-called spinor components of the vector x [4]. When we pass 
from the usual Euclidean components of the vector x to the spinor ones, we thereby 
identify the vector x with Hermitian functionals on the two-dimensional linear space С2 over 
the field of complex numbers С [4].  Denote by L(С2) the set of all Hermitian functionals on 
С2 and consider the following decomposition  
 

X= x1σ1+ x2σ2+x3σ3 , (2) 
 
where  

10
01

,
0

0
,

01
10

321 −
=

−
== σσσ
i

i
  

 
are Pauli matrices [4].  
 
From decomposition (2) it follows that the set L(С2) is a linear three-dimensional space 
over the field of real numbers and thus it can be identified with L3. Note that to each basis 
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vector of the two-dimensional space C2 we can assign the basis elements σ1,σ2,σ3 of the 
space L(С2) (and also the orthonormalized basis vector e1,e2,e3 due to the identification of 
L3 and L(С2)): each of the matrices σi is represented as some linear combination of tensor 
products of basis vectors of the space C2 [4]. The foregoing  reasoning implies that for any 
matrix С ∈ С2, which is a matrix of transformation between two basis vectors of the space 
C2, there also exists a transformation matrix of the corresponding orthonormalized basis 
vectors in the space L3.  

 
Proposition  The matrix of transformation of the basis elements in C2 is unitary.  
Proof. If on the space C2 we consider Hermitian functionals of the form 
 

321

2130

xxixx
ixxxx

X o −+
−+

= ,  

 
then they will correspond to the four-dimensional vectors of a pseudo-Euclidean space 
with signature (1,3) and with basis vectors  
 

10
01

,
0

0
,

01
10

;
10
01

3210 −
=

−
=== σσσσ
i

i
. (3) 

 
Now, transformations of the basis vectors of the two-dimensional space C2 lead to 
transformations of the basis vectors (3), while the transformation matrices remain the 
same as in the case of functionals of form (1). The orthogonal complement ⊥σ0 of the first 
basis vector σ0 is an anti-Euclidean space (because of the pseudo-Euclidean property of 
the space defined by vectors (3)) and,  after changing the  signs of the scalar products, a 
three-dimensional Euclidean space that coincides with L(С2). The narrowing of the action 
of matrices of basis vector transformation in С2 to the subspace ⊥σ0 means that these 
matrices satisfy the condition 00 σσ =CC T , i.e. TCC =−1 , Q.E.D.  

 
The problem posed in Subsection 1 can be now reformulated in terms of the spinor space 
С2:  Given two traceless matrices of Hermitian functionals  
 

321

213

xixx
ixxx

X
−+
−

=  и 
321

213

yiyy
iyyy

Y
−+
−

= ,   

 
it is required to define: 

1) a set of unitary matrices 
αβ
βα −

=C  which satisfy the equality  

 XCCY T= ; (4) 
 
2) one-dimensional subspaces which are invariant with respect to transformations 

represented by matrices  C (i.e. a set of respective rotation centers).  
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Note that since the transformation  C is unitary, the vector norms defined by the 
determinants of matrices of the Hermitian functionals X and Y coincide and therefore (4) 
defines  rotation. 

 
From equality (4) we can obtain the following system of linear homogeneous equations 
with respect to the unknown variables α and β:  
 

 
αββα
βαβα

)()(
)()(

213321

213213

iyyyxixx
iyyyixxx

++=−−
−−=++

. (5) 

 
For arbitrary α, a solution of (5) is given by  
 

33

2121 )()(
yx

iyyixx
+

−−−
=

αα
β  . (6) 

 
From  (6) we have   
 

33

222111
1

)()(Re
yx

yxyx
+

++−
==

ααββ  and
33

221112
2

)()(Im
yx

yxyx
+

−−+
==

αα
ββ . (7) 

 
Using the one of the properties of unitarity of the matrix С ( 1det 2

2
2

1
2
2

2
1 =+++= ββααC ), we 

can define either αα Re1 =  or .Im2 αα =  Note that one of these parameters remains 
arbitrary. Thus (6) defines rotation for 0≠α  and 033 ≠+ yx . 

 
The invariance of the rotation ceneter z(z1, z2, z3) with respect to the transformation C is 
written as a condition  
 

ZZCC T = ,  
 

whence we obtain   
 

.0;0;0 321131222211 =−=−=− zzzzzz βαβαββ   
 
It is not difficult to verify that the determinant of this system considered for the unknown 
values z1, z2 and z3 is identically zero and therefore for given α1, α2, β1 and β2 ( 0≠α   
and 033 ≠+ yx ) there always exist nontrivial solutions written in the form  
 

3
2

2
1 zz

α
β

= ;  3
2

1
2 zz

α
β

= ,  (8) 

 
where z3 is arbitrary.  
 



5 RCProceedings of the 13th Int. AMME Conference, 27-29 May, 2008 
 

 

Thus, (7) together with the normalization property define a generalized rotation 
transforming   (x1,x2,x3) to (y1,y2,y3) with respect to the set of centers which is defined by 
(8).  

 
 
RELATIONS BETWEEN TRANSFORMATIONS IN C2 AND L3 
 
We can establish the correspondence between the elements of the transformation matrix 

αβ
βα −

=C  in C2 and the elements of the orthogonal real matrix of rotation A in L3.  

 
The matrix A is, by definition, the matrix of transformation between two orthonormalized 
basis vectors of the space L3 and its rows are decompositions of the new basis vectors in 
terms of the initial basis vectors. Hence due to the identification of the spaces L(С2) and L3 

we have  
 

)3,2,1,( =′= ′
′ iiaCC i
i
ii

T σσ , (9) 

 
where iσ  are the Pauli matrices corresponding to the initial basis,  i′σ are the Pauli 
matrices of the new basis, and i

i
′α  are the elements of the matrix  A-1.  

 
Equation (9) can be written explicitly in the form of three matrix equalities  
 

αβ
βα

αβ
βα

−
−

=
−

+
−

+ *
01
10

*
10

01
0

0
01
10 1

3
1
2

1
1 a

i
i

aa ,  

 

αβ
βα

αβ
βα

−
−−

=
−

+
−

+ *
0

0
*

10
01

0
0

01
10 2

3
2
2

2
1 i

i
a

i
i

aa . 

 

αβ
βα

αβ
βα

−−
−

=
−

+
−

+ *
10

01
*

10
01

0
0

01
10 3

3
3
2

3
1 a

i
i

aa
 

 
which readily yield the following expressions for calculating the elements of the matrix A  
by the elements of the matrix C:  

 
)()( 2

2
2

1
2
2

2
1

1
1 ββαα −−−=a ;  )(2 2121

1
2 ββαα +=a ; )(2 1122

1
3 βαβα −=a ; 

)(2 2121
2
1 ααββ −=a ;  )()( 2

2
2

1
2
2

2
1

2
2 ββαα −+−=a ; )(2 1221

2
3 βαβα +=a ; 

)(2 2211
3
1 βαβα +=a ;  )(2 2112

2
3 βαβα −=a ;  )()( 2

2
2

1
2
2

2
1

3
3 ββαα +−+=a . (10) 

 
Expressions (10) enable to calculate the elements of the matrix A through the given 
coordinates of three points (initial, terminal and the center) which define rotation. On the 
other hand, taking into account that the matrix A can be written in the form [1] 
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θθψθψ
θϕψϕθψϕψϕθψϕ
θϕψϕθψϕψϕθψϕ

cossincossinsin
sincoscoscoscossinsinsincoscoscossin

sinsinsinsincossincossinsincoscoscos
−+−+

−−−
=A , (11) 

 
where −π<ϕ≤π, 0≤θ≤ π и −π<ψ≤π are Euler angles, it easily follows that expressions (10) 
enable to define Euler angles as well 
 

33cos a=θ ; 31sinsin a=θϕ  and 13sinsin a=θψ  (12) 
 

 
CONTROL OF SPATIAL ROTATIONS 

 
Having expressions (7) and (12), it is easy to calculate the Euler angles which ensure 
rotation of the point ),,( 321 xxxx  to the point ),,( 321 yyyy . If it is assumed that to the initial point 

),,( 321 xxxx  there correspond the zero Euler angles 0000 === ψφθ , then the control of 
rotation consists in making a time-dependent change of the Euler angles from the initial 
values 000 ;; ψφθ  to the terminal values fff ψφθ ;; calculated by equations (12).  

 
In a general form, the control process can be represented as change functions of the Euler 
angles )(tθ ;  )(tφ ; )(tψ which must satisfy the conditions 
 

0)( 0 =tθ ;  0)( 0 =tφ ; 0)( 0 =tψ , 

fft θθ =)( ;  fft φφ =)( ; fft ψψ =)( ,  
 
where  0t   and ft  are the initial and terminal moments of time.  

 
The above-said naturally implies the problem on defining the control 
functions )(tθ ; )(tφ ; )(tψ . It should be emphasized that dependences )(tθ ; )(tφ ; )(tψ  have a 
kinematics character, since they take into account neither moments, nor elastities nor any 
other dynamic characteristics of the process and therefore, after defining them, there 
arises a problem of synthesizing – on the basis of these functions –  the dynamic adaptive 
control. This issue is discussed in [5].  

 
Figure 1 shows the fixed vectors ),,( 321 xxxx ; ),,( 321 yyyy  and the intermediate rotating 
vector ),,( 321 ξξξξ  which at the initial moment of time t = t0 coincides with the initial 
rotation vector ),,( 321 xxxx  and, at the terminal moment of time t = tf, with the terminal 
vector ),,( 321 yyyy  . The moving angle γ  between the vectors ),,( 321 xxxx  and ),,( 321 ξξξξ  
is equal, at the initial moment of time t = t0,, to zero and, at the moment of time t = tf , to 

fγγ = , where   
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)),(cos()
*

),(cos( 2x
yxar

yx
yxarf ==γ 2; )y,x(  is the dot product of the vectors x and y. It is 

obvious that the moving angle between the vectors ),,( 321 yyyy  and ),,( 321 ξξξξ  is equal 
to γγ −f .  

 
Let us define the coordinates of the vector ),,( 321 ξξξξ  assuming that it forms the angles 

γ  and γγ −f  with the vectors ),,( 321 xxxx  and ),,( 321 yyyy   and is located in their plane. 

To this end, we introduce the vector ),,( 122131132332 yxyxyxyxyxyxr −−−= which is the 
cross product of the vectors x and y. Then the above conditions can be written in the form 
of the following system of linear equations:  
 

;0),( =rξ  
;cos),( 2 γξ xx =  

).cos(),( 2 γγξ −= fxy  (13)  
 

It is not difficult to see that the vector ),,( 321 ξξξξ  defined from system (13) satisfies the 
following conditions:  

1. for 0=γ  , ),,( 321 ξξξξ = ),,( 321 xxxx , which follows from the second equation 

of system (2.12), since in this case  2),( xx =ξ , which is possible only 

provided that ),,( 321 ξξξξ = ),,( 321 xxxx ; 
2. for fγγ = , ),,( 321 ξξξξ = ),,( 321 yyyy , which follows from the third condition of 

system (13), since in this case 2),( xy =ξ , which is possible only provided that 

),,( 321 ξξξξ = ),,( 321 yyyy ; 
3. yx ==ξ , which follows from the second and third equation of system (13). 

 
Therefore the vector ),,( 321 ξξξξ  defined from system (13) corresponds to Fig. 1, i.e. it can 
actually be regarded as the vector rotating (condition 3) from the vector 

),,( 321 xxxx (condition 1) to the vector ),,( 321 yyyy  (condition 2). Note that in this case the 
angle  γ  changes in within fγγ ≤≤0 . 

 
The equations of system (13) can be written in the coordinate form as follows:  
 

0222211 =++ rrr ξξξ  
γξξξ cos2222211 xxxx =++  

)cos(2222211 γγξξξ −=++ fxyyy .   

                                                 
2 

2* xyx = , since for rotation yx = . 
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It is not difficult to see that its determinant is equal to  
 

2

321

321

321

r
yyy
xxx
rrr

==∆ .  

 
Other determinants of Kramer's equations for system (13) will be equal to  
 

))(cos))(((cos(
)cos(

cos
0

233223322

322

322

32

1 yryrxrxrx
yyx
xxx
rr

f
f

−−−−=

−

=∆ γγγ
γγ

γ ; 

 

))(cos))(((cos(
)cos(

cos
0

311331132

321

321

31

2 yryrxrxrx
yxy
xxx
rr

f

f

−−−−=

−

=∆ γγγ
γγ

γ ; 

 

))(cos))(((cos(
)cos(

cos
0

122112212

221

221

21

3 yryrxrxrx
xyy
xxx

rr

f

f

−−−−=

−

=∆ γγγ
γγ

γ .  

 
If we introduce the new vectors );;( 122131132332 xrxrxrxrxrxrrx −−−=  and 

);;( 122131132332 yryryryryryrry −−−=  which equal to the vector products [r×x]  and [r×y], 
respectively, then the coordinates of the rotating vector will be presented in the following 
form:  
 

)3,2,1()cos)(cos()( 2 =−−=
2

itrrt
r

x
t i

y
i
xf

i ωωγξ  (14) 

 
In these expressions, the angle γ  is an independent variable and can be treated as time 
function, which means that the coordinates of the vector ),,( 321 ξξξξ  are also time 
functions. We would like to emphasize that the problem of synthesis of spatial motion 
control thus reduces to defining a function )(tγ of the concrete form, which is connected 
with the rotation process dynamics and was discussed in [5]. Here we assume that )(tγ  is 
sufficiently smooth and satisfies the conditions ffo ttиtt γγγ ==== )(0)( . For 

definiteness, we assume that tt ωγ =)( ,where  fπω 2=  is the constant angular velocity.            
 
As has already been noted, the vector ),,( 321 ξξξξ  is a rotating vector and therefore at 
each moment of time it can be considered as a terminal vector of the current moment of 
the rotation process. If in equations (7) we replace the coordinates of the point ),,( 321 yyyy  
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by expressions (14), then we obtain representations of the parameters of the spinor matrix 
С, the orthogonal matrix А (11) and Euler angles (12) in terms of time functions. Thus, we 
obtain a time-dependent (kinematics) representation of the rotation of the point ),,( 321 xxxx  
to the point ),,( 321 yyyy . However first we should predetermine the matrix С so that at the 
initial moment of time the spinor equations of rotation (4) would have the form XCCX T= , 
which is evidently possible only if C is a unit matrix. This can be done by an appropriate 
choice of the parameters α1 and α2.  

 
Indeed, setting 0;1 21 == αα  we obtain  
 

33

11

1Re
yx
yx

+
−

== ββ ; 33

22

2Im
yx
xy

+
−

== ββ .    

 
By substituting the last equations and (14) for corresponding elements of the matrix С, it  
will take the following form:  
 

1
)(

)))(())(((
)(

)))(())(((1

1
1)(

33

2211

33

2211

2

tx
txitx

tx
xtixt

tC

ξ
ξξ

ξ
ξξ

β
+

−−−
+

−+−

+
= , (15) 

 

where 233

222211
2

))((
))(())((

tx
txtx

ξ
ξξβ

+
−+−

= . Note that detC(t)=1 for any t. 

 

It is obvious that at the initial moment of time 0t  the matrix
10
01

)( == ottC , since in that 

case 0)( 0 =tγ  and );;( 321 ξξξξ = ),,( 321 xxxx .  
For ftt =  we have fft γγ =)( , );;( 321 ξξξξ = ),,( 321 yyyy .  

 
From the above-said it follows that the obtained spinor matrix of rotation (15) is defined 
correctly. But in that case the Euler angles (12), too, are defined correctly. They also turn 
out to be the functions of time 
 

)
))((

))(())(())((arccos()( 233

222211233

tx
txtxtxt

ξ
ξξξθ

+
−−−−+

= ; 

)
)(sin))((

))((2arcsin()( 33

11

ttx
txt
θξ

ξϕ
+

−
= : 

)
)(sin))((

))((2arcsin()( 33

11

ttx
xtt
θξ

ξψ
+

−
= . (16) 
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Expressions (16) solve the problem we have formulated on defining the kinematics 
functions )(tθ ; )(tφ ; )(tψ . On the other hand, it should be noted that the proposed theory 
allows one to reduce an actually three-dimensional problem of spatial motion control to a 
one-dimensional problem. Indeed, for this it is sufficient to synthesize in one way or 
another function )(tγ  satisfying the corresponding boundary conditions [5]. Then it is 
obvious that the control process is completely defined by the spinor matrix of rotation (15) 
and the Euler angle functions (16).  

 
 
A NUMERICAL EXAMPLE 
 
Let us consider a numerical example illustrating the above reasoning. Assume that the 
initial vector x(10, −45, 30) and the terminal vector  y(1, 20, 51.225) are given arbitrarily. 

The angle between them is equal to 0
2 65.77),(cos =













=

x
yxarfγ . Assuming for the sake of 

simplicity that 1=ω  with a step equal to 
3
fγ , lets us calculate in two different ways three 

intermediate positions of the rotating vector );;( 321 ξξξξ . Using equations (14), we obtain 
the following coordinates of the rotating vector for three angle values (Table 1). 
  
The procedure of  verifying whether the Euler angles have been calculated consists in the 
following:  using the obtained coordinates of the intermediate positions of the vector 

);;( 321 ξξξξ , for each of three angle values from Table 1 we should calculate the Euler 
angles by equations (16) and the three-dimensional orthogonal matrix A of the basic 
representation3 (11) and then again the intermediate coordinates of the rotating vector by 
the equation Ax=ξ , where x is the initial rotation vector. The obtained values should 
coincide with those given in the Table 1. The results of the corresponding calculations are 
presented in Table 2.  

 

The matrix A given in Eqn. (11) was calculated for the Euler angle values by equations 
(16) and given in column 2 of Table 2. The coordinate values of the rotating vector 

);;( 321 ξξξξ  were calculated by multiplying matrix A by the initial rotation vector x(10, 
−45,30): Ax=ξ . From columns 4÷6 of Table 2 we see that the coordinates of the rotating 
vector coincide with the coordinates calculated by equations (14) (Table 1). 

 

 

                                                 
3 The term “basic representation” came from groups’ representation theory: describing physical rotation group by means 
of 3×3 orthogonal matrices is called basic representation, meanwhile spinor representation used in the article is 
representation of weight ½ [6]. 
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Tables and Figures: 
 

Table 1.  Calculation of spatial rotation states by means of spinor approach 

Angle γ  

Coordinates of rotating vector 
(equations (14)) Norm of ξ  

1ξ  2ξ  3ξ  ξ  

3
fγ  =25.880 8.48 −27.25 47.02 55 

3
2 fγ =51.770 5.2 −4.03 54.60 55 

fγ =77.650 1 20 51.23 55 
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Table 2. Check-up calculation of spatial rotation states 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Fig.1. The initial, terminal and intermediate vectors of spatial rotation. 
 

Angle γ  

 

Euler angles 

(equations (16)) 

Orthogonal matrix  А 

(equations (12) and (16)) 

Coordinates of rotating vector 

(ξ=Ax) 

1ξ  2ξ  3ξ  

1 2 3 4 5 6 

3
fγ  =25.880 

0

0

0

87.4
87.4
05.26

−=

=

=

ψ

ϕ

θ
 

A1=
0.999

8.59 10 3−
×

0.037−

8.59 10 3−
×

0.899

0.438

0.037

0.438−

0.898













 

8.48 -27.25 47.02

3
2 fγ =51.770 

0

0

0

58.6
58.6
98.56

−=

=

=

ψ

ϕ

θ

 
A2=

0.995

0.044

0.09−

0.044

0.621

0.783

0.09

0.783−

0.616










 

 

5.27 -4.03 54.60

fγ =77.650 

0

0

0

88.7
88.7
87.77

−=

=

=

ψ

ϕ

θ
 

A3=
0.985

0.107

0.134−

0.107

0.225

0.968

0.134

0.968−

0.21










 

 

1 20 51.23

),,( 321 xxxx  ),,( 321 yyyy  

),,( 321 ξξξξ  

)(tγ  
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