
33 RCProceedings of the 13th Int. AMME Conference, 27-29 May, 2008 
 

13th International Conference 
on Applied Mechanics and 
Mechanical  Engineering. 

Military Technical College 
Kobry El-Kobbah, 

Cairo, Egypt. 

 
SOCIAL POTENTIAL MODEL TO SIMULATE  

EMERGENT BEHAVIOUR FOR SWARM ROBOTS 
 

MABROUK* M. H. and MCINNES** C.R 
 
 

ABSTRACT 
 
Swarm robotics has a wide range of applications in numerous fields from space and sub-
sea exploration to the deployment of teams of interacting artificial agents in disposal 
systems. In this paper, we introduce a model to simulate the emergent behaviour of multi-
agent robot systems, based on principles from physical mechanics. The model is based on 
mutual interactions among the swarm individuals. The main elements of these interactions 
are repulsion forces, attraction forces, alignment forces and dissipative forces generated 
by the swarm members. Using statistical tools, which are used to investigate simulated 
group behaviour, we discuss the importance of introducing some dissipation to the system 
as well as the effect of the interaction parameters on various components of the model.  
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NOMENCLATURE 
Cai     Amplitude of attraction potential of the ith agent. 
Cg             Amplitude of goal constant potential. 
Co              Amplitude of alignment force term. 
C  Potential amplitude ratio. 
Cri              Amplitude of repulsive potential of the ith agent. 
Fcohesion(ri)      Cohesion force exerted on the ith agent. 
 
Falignment(ri)      Alignment force exerted on the ith agent. 
Fdissipation(ri)      Dissipation (friction) force exerted on the ith agent. 
Fgoal(ri)      Goal attractive force exerted on the ith agent. 
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Ftotal(ri)      Total forces exerted on the ith agent. 
lai               Range of attractive potential for the ith agent. 
lg               Range of goal constant potential. 
lo               Range of alignment force term. 
lri               Range of repulsive potential of the ith agent. 
l  Potential range ratio 
mi               Mass of the ith agent. 
mG Group angular momentum. 
N  Number of agents. 
rig                              Goal – ith agent position vector. 
rij              ith – jth agent position vector . 
ri                    ith agent position vector. 
ric                   ith agent – group center position vector. 
rc                   Group center position vector. 
Vcohesion (ri)          ith – jth agent interaction potential. 
Vgoal(ri)               Goal potential field. 
vc                Group center velocity vector. 
vij              ith – jth agents velocity vector . 
vi              ith agent velocity vector. 
β               Friction self decelerating force coefficient. 
εG Group expanse   
φ System total energy. 
φG Group polarization. 
σ Group spherical variance. 
 

INTRODUCTION 
 
Swarm robotics is a new and promising approach to the design and control of multi-agent 
robotic systems. Specific features of aggregations are striking in natural systems whose 
members have high rates of information exchange such as animal herds, insect swarms, 
bird flocks, and fish schools [1]. This leads us to discuss one of the most important 
phenomena in natural systems, which is the emergent behavior. 
 
  
Emergent Behavior in Literature 
 
Natural examples of emergent behaviour in groups due to interactions between each of the 
group’s elements are numerous. Beehives, locust swarms, geese flocking, bacterial 
mutation are all examples of emergent phenomena where a collection of individuals 
interact without central control to produce results which are not explicitly "programmed". 
The advantages of emergence-based systems can be summarized in the following: (1) 
they are robust in a way that the system still works even if one of its unit fails (2) they can 
adapt to changing parameters environment, which is typical of the real world (3) they don’t 
need to have complete knowledge to achieve a goal (4) they find a reasonable solution 
quickly and then optimize it. Concerning the simulation of individuals’ motion in groups, 
most simulation studies assume that all individuals are identical. The author in [2] 
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discussed that, among a school of fish, the inclusion of a single different fish may alter the 
group’s collective behaviour. Common swarming patterns have been observed and 
reported in various species in nature [3]. The coherent flock and the single-mill states are 
among the most common patterns observed in biological swarms [4-5]. The double-mill 
pattern is also occasionally seen [6]. Models of natural or artificial individuals, which 
interact through pair-wise long-range attraction and short-range repulsion within a swarm, 
were introduced [7-12]. In [12], the authors were able to predict stability and emergent 
patterns of organization starting from the form of the two-body interaction through a model 
specially designed to simulate the motion of self-accelerated particles. On the other hand, 
propagating the motion of the swarm using artificial potential fields shows that swarms of 
interacting particles can relax into vortex-like states [13]. Such evolutionary behaviour may 
offer new approaches to many classes of information processing problems, which currently 
prove infeasible. In recent years, there has been much interest in decentralized, multi-
robot systems due to their potential advantages in many applications over more traditional, 
monolithic architectures [14]. Another challenge is to design systems that can accomplish 
their tasks more reliably, faster and cheaper than could be achieved by a single more 
complex robot. An application is to develop controllers for the individual robots such that 
the group as a whole performs the desired higher-level task through the coordinated action 
of the individuals as presented in [15].  
 
Mathematical modeling of emergent behaviors in such systems provides a promising way 
for more robust designs of multiagent robotic systems. However, before going deep in 
modeling we need to mention some statistical tools, which are widely used in the field to 
investigate simulated group movements. These statistics will be used to have insights of 
our model.  
 
 
DESCRIPTIVE STATISTICS TO AID MODEL ANALYSIS  
 
We now consider a system composed of N identical individuals. At a particular time t, each 
individual has an associated position )(tir (a column vector of Cartesian coordinates), a 
velocity vector )(tiv ; a mass im  (assuming the individuals’ mass is identical and equal to 
unity for simplicity), where i = 1, . . . , N  . The group center, which is analogous to the 
center of mass in a multi-particle physical system, is calculated as the mean of all the 
individuals’ position vectors at time t: 
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As defined in [16], the group polarization (φG) measures the degree of alignment amongst 
individuals within the group in a way that a more dispersed group has a lower polarization. 
The group angular momentum (mG) is a measure of the degree of rotation of the group 
around the group center: 
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where |. | is the norm of a vector, and icr̂  is the unit relative position vector between the ith 
individual and the group center. We can also define the spherical variance as an estimate 
of the dispersion of the group in the following way [17]: 
 

Gφσ −= 1            (4) 
 
We can then use two measures to compare the relative size of groups; the average 
nearest neighbor distance (Av. NND) and the group expanse. The nearest neighbor 
distance, which varies for each individual within the group, is the distance between a 
particular individual and its closest neighbor [11]. We calculate the average nearest 
neighbor distance for the group as: 
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The group expanse measures the size of the group. It is the average distance between 
individuals and the group center [11]. Therefore, expanse is calculated as: 
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An increasing average NND implies that the inter-agent distances are increasing and the 
group becomes more dispersed while as expanse increases, the physical size of the group 
increases. 
 
   
SOCIAL POTENTIAL MODEL FOR SWARM ROBOT EMERGENT BEHAVIOR 
 
In Ref. [13], a discrete particle model is introduced where the author discussed the 
emergence of vortex-like behavior that could then be viewed as a constrained minimum 
energy configuration, which the swarm relaxes into. In [18], we model the collective group 
behaviour by using a sum of gradient potentials based on exponentially decayed social 
forces and a linear dissipation force term to prevent agents from abandoning the group 
due to excessive linear momentum and/or having identical initial positions which result in a 
violent repulsion of the individuals. This generates behaviour, which is close to that of real 
biological systems whose members feel a desire to stick together.  In this paper we 
develop the model of cohesive forces to include an alignment force term, which is 
introduced in [13] to allow individuals to orient their velocities with respect to one another. 
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Considering the system defined at the beginning of section 1.2, the equations of motion 
will be: 
 

dtd ii /rv =            (7) 
 

totalii dtdm Fv =/.           (8) 
 
Where Ftotal is the total force that is exerted on the ith agent. It is constituted of cohesion 
forces among the agents, alignment forces and a dissipation (friction) force.  
 
We now consider only pair-wise interactions among individuals, and we neglect higher 
order interactions because they are less likely to occur in comparison to the likelihood of 
pair-wise interactions. We define the attractive and repulsive forces as decaying 
exponential functions by using the generalized Morse potential [18], giving close to real 
simulation for the individuals’ pair-wise interaction as follows: 
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Where the potential is characterized by attractive and repulsive potential fields of strength 
Ca and Cr with ranges la and lr respectively while C is the potential amplitude ratio and l is 
the potential range ratio (Ca, Cr,  la, and lr  are positive constants; C =Cr / Ca and l =lr / la ). 
Now we can derive a physical definition for the social forces acting on the ith agent, due to 
the cohesion social potentials. Therefore, it can be seen that: 
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where ijr̂  is the unit vector in the direction of the vector ijr . 
 
We now consider a different perspective inspired from the model introduced in [13], by the 
addition of an alignment force to the cohesion model. This alignment force, which is 
designed to act directly on the agents’ velocities, allows individuals to orient their velocities 
with respect to one another. The constant Co is the alignment magnitude, which controls 
the size of the alignment term, and lo is the range over which the orientation interaction 
occurs. Therefore, the alignment force will be defined as: 
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 Now we use a simple dissipative force, similar to a simple frictional force that directly 
acts upon each individual. We define the dissipative force acting on the ith agent as: 
 

iindissipatio vvF β−=)(                   (12) 
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where β is a positive nonzero integer, which governs the amount of dissipation (essentially 
the coefficient of friction). The total force, which acts upon the ith agent at a particular time t 
according to the model, is therefore defined as: 
 

)(),()(),( indissipatioiialignmenticohesioniitotal vFvrFrFvrF ++=                   (13) 

Substituting from Eq. (10-12) in Eq. (13), it can be seen that: 
 

ij
l

ijijo
l

r

rl

a

a
N

ij
iiitotal

oijrjiaji eCe
l
Ce

l
C rrvvvrF rrrrr ˆ)ˆ.(),( /||









−−+−= −−−−−

≠
∑β   (14)  

 
 

STABILITY ANALYSIS OF THE MODEL 
 
We will discuss the stability of the model using the Lyapunov stability method. The 
Lyapunov function used here is the total energy of the system and we will show that the 
system is stable by proving that the system will slowly leak energy and relax to a minimum-
energy state. Substituting from Eq. (10) and Eq. (14) in Eq. (2), and taking the physical 
definition of force into consideration, it can be concluded that: 
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The total energy of the system is therefore: 
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Then, the time derivative of the total energy is given by: 
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Substituting from Eq. (15) in Eq. (17) it can be seen that: 
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Knowing that β>0, Co≥0, then it can be concluded that 0<φ& , therefore the system is 
Lyapunov stable, so that the group will slowly leak energy and relax to a minimum-energy 
state.  
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SIMULATION RESULTS AND DISCUSSION 
 
In this section, we will show the importance of the dissipative force and study the effect of 
the interaction parameters on the group behaviour.  Concerning how the friction 
coefficient affects the model, we use the model from Eq. (7, 8, 14) with default parameters 
(Np = 30, Ca=1, Cr=1.2, Co=0.1, la =1, lr =0.2, lo =1.5) to simulate the individuals’ motion. We 
run our simulations starting from random initial conditions for 500 simulation steps (time 
enough to reach the minimum-energy state). Logically, the dissipation force only acts to 
make the individuals slow down and it has nothing to do with the individual’s inclination to 
align with its neighbours. However, the dissipative force has an effect on group 
polarization; as shown in Fig.1. Therefore, in general, higher dissipation will lead to a lower 
polarization that indicates a more dispersed group arrangement. Fig.1 also shows β = 0.1 
as corresponding to the workable value of dissipation before a rapid leak of the system’s 
energy. The comparison between the simulation results in Fig.2, without a dissipation term, 
and Fig.3, with β = 0.1, shows the effect of adding a dissipation term to the system. 
Clearly, the individuals’ velocities are lower for higher dissipation (friction) force.  
 
Also, it is apparent from the comparison between Fig.4 and Fig.5 that the dissipation has a 
considerable effect on the group angular momentum and the group spherical variance. As 
the dissipation coefficient increases the speeds of the individuals become lower which 
cause two effects; first the polarization decreases noticeably, therefore the value of 
spherical variance approaches unity very soon; secondly the group angular momentum 
decreases rapidly with time until reaching zero, giving an indication of a faster rate of leak 
in system energy for higher dissipation.  
 
There are two parameters that control the strength and range of the alignment force 
respectively, (Co) and (lo). Therefore, it is logical to expect that for higher values of Co the 
group individuals become more likely to emerge in the vortex pattern, which should be 
particularly affecting the group angular momentum. This is illustrated in Fig.6, where we 
have altered the alignment magnitude while fixing the values of the other parameters, so 
that as the value of Co increases the group angular momentum noticeably increases. Also, 
Fig.7 shows the effect of the alignment magnitude on polarization. As the value of Co 
increases, the group polarization decreases (as expected). Logically, the individuals tend 
to form a less compact cluster for increasing values of Co due to centrifugal action 
increasing, which has a low effect on the group size. This is shown in Fig.8, which 
demonstrates that the values of the group expanse and average NND slowly increases as 
the alignment magnitude increases. 
 
The main effect on the model due to the cohesion forces is caused by the potential ranges 
(lr and la) rather than the potential amplitudes, as these terms are involved in the 
exponential decay [9]. We expect that the effect of increasing the attraction and repulsion 
ranges (la and lr) are to decrease and increase the size of the group, respectively. The 
results in Fig.9 show that as the range ratio l increases, which can be due to either lr 
increasing and/or la decreasing, the values of group expanse and average NND’s increase, 
indicating a more dispersed group emerges. Also as the range ratio C increases, which 
can be due to either Cr increasing and/or Ca decreasing, a more dispersed group emerges. 
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As shown in Fig.10, when the values of C increase so does the value of group expanse 
and average NND’s.  
 
Until this point, the dissipation force helps to control group behaviour and to make the 
model suitable for real applications. Now we introduce an additional attraction gradient 
force that acts on individuals at longer distances than the current repulsion and attraction 
forces. This attraction force should be an attraction to the group as a whole rather than to 
individuals. Assuming a potential sink at point G (the goal position for the swarm) where Cg 
is the potential attraction amplitude of the goal and lg is the potential attraction range, then 
the equation for the goal potential according to generalized Morse potential will be: 
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gigoal eCV rrr −−−=)(                     (19) 

 
Now the total force, Eq. (13), will be modified to include the goal force term:  
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Therefore, Eq. (14) will be: 
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This form of the model will help in using the model in robot path-planning applications 
using the artificial potential fields based navigation technique. Fig.11 shows a swarm of 
agents in a vortex like shape pattern approaching a potential sink at point G.  Also, as a 
future work, we can see that the dissipation term will play a vital rule in controlling the 
agents during navigation in a way that generates swarm emergent behaviour in more 
efficient and robust navigation techniques. 
 
 
CONCLUSIONS  
 
We introduce a model to simulate the emergent behaviour of multi-agent robot systems, 
based on individuals’ mutual interactions, which encounter repulsion forces, attraction 
forces, alignment forces and dissipative forces among the system’s members. Adopting 
the approach of [9], we discuss the stability of the system by using the Lyapunov stability 
method to give clear information about the suitability of the model for robot applications. 
Also by adopting the analysis of some previous work [5] to similar models, the effects of 
the models’ various component parameters on the global behavior of the model are 
investigated. 
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The results show that that when the dissipation coefficient increases, the speeds of the 
individuals become lower which causes two effects; first the polarization decreases 
noticeably, therefore the value of spherical variance approaches its maximum value very 
rapidly; secondly the group angular momentum decreases rapidly with time, giving an 
indication of a faster rate of leak in system energy for higher dissipation, so that we 
concluded that β = 0.1 corresponds to the workable value of dissipation before a rapid leak 
of the system’s energy. The results also show that the alignment magnitude affects the 
group polarization, group angular momentum, and group size. As the value of Co 
increases, the group polarization decreases (as expected). Also when the value of Co 
increases the group angular momentum noticeably increases, and then due to centrifugal 
action, the group expanse and average NND slowly increase. Finally, the results show that 
that the effects of increasing the attraction and repulsion parameters are to decrease and 
increase the size of the group, respectively. 
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Fig.1. Effect of different dissipative coefficients on group polarization. 

(Ca=1;Cr=1.2;Co=0.1;la=1;lr=0.2;lo=1.5;m=1) 
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(a)  (b)  
 
 

Fig.2. Simulation of the group motion according to the model with no dissipative 
forces. Ca=1, Cr=1.2, Co=0.1, la=1, lr=0.2, lo=1.5, m=1, N=20, (a) t=0 (b) t=14 
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Fig.3. Simulation of the group motion according to the model with dissipative 
forces. Ca=1, Cr=1.2, Co=0.1, la=1, lr=0.2, lo=1.5, m=1, β =0.1, N=20, (a) t=0 (b) 

t=14 
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Fig.4. Group spherical variance and angular momentum versus time. 
(Ca=1;Cr=1.2;Co=0.1;la=1;lr=0.2;lo=1.5;m=1,β =0.01) 

 
 

 
 

Fig.5. Group spherical variance and angular momentum versus time. 
(Ca=1;Cr=1.2;Co=0.1;la=1;lr=0.2;lo=1.5;m=1,β =1.8) 
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Fig.6. Group angular momentum as a function of Co. 
(lr =0.2, la =1, Cr=1.2, Ca=1, β = 0.1) 
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Fig.7. Group polarization as a function of Co. 
(lr =0.2, la =1, Cr=1.2, Ca=1, β = 0.1) 
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Fig.8. Group expanse and average NND as a function of Co.  
(lr =0.2, la =1, Cr=1.2, Ca=1, β = 0.1) 
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Fig.9. Group expanse and average NND as a function of  
the ratio l (lr/la). (Cr=1.2, Ca=1, β = 0.1) 
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Fig.10. Group expanse and average NND as a function of the  
ratio C (Cr/Ca). (lr=0.2, la=1, β = 0.1) 
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Fig.11. Simulation of the group motion in a vortex like shape pattern approaching 
a potential sink at point G. Cg=15, Ca=1, Cr=1, Co=0.7, lg=5, la=1, lr=0.2, lo=1.5, 

m=1, β=1, N=31, (a) t=0 (b) t=28 (c) t = 86 (d) t=318 
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