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ABSTRACT 
 

A nonlinear ∞H  output feedback controller is proposed and coupled to a PI controller to 
regulate an UAV in the presence of aerodynamic force and moment perturbations. The 
plant to be controlled is a Quadrotor helicopter described by nonlinear dynamics with 
plant uncertainties due to the variations of inertia moments and payload operation. A 
robust state estimation is considered under model uncertainties as well as 
external/measurement disturbances. Performance issues of the controller are illustrated 
in a simulation study made for an UAV prototype. 
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INTRODUCTION 
 
A Quadrotor UAV is usually required to move in different environments, following 
specific tasks and providing good performance under parameter variations and external 
disturbances. The aircraft dynamics is of 6 degree of freedom, it is nonlinear, and being 
affected by aerodynamic forces, it is subject to parameter uncertainties. While 
controlling an UAV, the following factors, relevant in practice, should be addressed in 
combination: i) to ensure the stability, robustness and desired dynamic properties; ii) to 
handle nonlinearity; iii) to be adaptive to changing parameters and environmental 
disturbances. Since, in addition, incomplete and imperfect state measurements are only 
available; the design of stabilizing controllers for Quadrotor UAV presents a challenging 
problem. 
 
Various methods such as sliding mode approach [1], backstepping technique [2], 
input/output linearization [3] and nonlinear dynamic inversion [4] have recently been 
tested to control UAV's. Since these methods required perfect state measurements 
their practical utility remained limited. In this regard, potential applications of the 
nonlinear ∞H  control techniques from [5], [6], [7], [8] to UAV's seem to be attractive for 
handling all the above factors, including output feedback design. Such an application is 
studied in the present work. 
 
The nonlinear ∞H  output feedback control of a Quadrotor UAV to be developed is 

inspired from [8]. A local ∞H  output feedback controller is derived by means of a certain 
perturbation of the differential Riccati equations, appearing in solving the ∞H  control 
problem for the linearized system, when these unperturbed equations have positive 
semi definite solutions. The local stabilizability/detectability conditions are thus ensured 
by the existence of the proper solutions of the unperturbed Riccati equations. This 
feature allows us to develop an ∞H -design procedure with no a priori-imposed 
stabilizability-detectability conditions on the control system. The procedure is opposed 
to that of [5], [6], [7] where an extra non-trivial work on verification of these conditions is 
required. In order to reenforce the compensation of the aerodynamical moment 
perturbations a PI regulator is additionally involved into the loop. 
 
The paper is outlined as follows. The dynamic UAV model is introduced in Section 2. 
The ∞H  control synthesis is developed in Section 3. Simulation results are discussed in 
Section 4. Finally, Section 5 presents some conclusions. 
 
 
DYNAMIC MODEL 
 
A Quadrotor UAV is a rotating rigid body of six degrees of freedom. Two diagonal 
motors (1 and 3) are running in the same direction (anti-clockwise) whereas the others 
(2 and 4) in the clockwise direction to eliminate the anti-torque. Varying the rotor 
speeds, all with the same quantity, the lift forces affect the attitude thus enabling the 
vertical take-off/on. Yaw angle is obtained by speeding up the clockwise motors or 
slowing down dependent on the desired angle direction. Tilting around x (roll angle) axe 
allows the Quadrotor to move toward y direction. The sense of direction depends on the 
sense of angle whether it is positive or negative. Tilting around y (pitch angle) axe 
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allows the Quadrotor to move toward x direction. The rotor is the primary source of 
control and propulsion for the UAV. The Euler angles orientation to the flow produces 
the forces and moments, controlling the altitude and position of the system. The 
absolute position is described by three coordinates (x0, y0, z0),, and its attitude by Euler 
angles(ψ, θ, φ), under the conditions  (-π≤ ψ<π)  for yaw, (-(π/2) < θ< (π/2)) for pitch and (-
(π/2) < φ< (π/2)) for roll.  
 
The Newton law-based equations, describing the attitude and position of the UAV, are 
partitioned into kinematic equations and dynamic equations [9], [10] and they generate 
a MIMO nonlinear system given by  
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In the above equations the state vector 14ℜ∈x  is as follows 
 

( )Tzyxzyxx ϕθψξζϕθψ &&&&&& ,,,,,,,,,,,,, 1000000=                                                                        (2) 
  
The control input 4ℜ∈u  is formed by means of the real control signals ( )4321 ,,, uuuu  
through the relations 
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(i.e., for ensuring the system controllability the scalar control signal 1u  has been 
delayed by double integrating whereas the others ( )432 ,, uuu  have remained the same), 

8
1 ℜ∈y  is the controlled output, 4

2 ℜ∈y  is the available measurement, the perturbation 
vector ( ) 10, ℜ∈T

dn ww  consists of the measurement imperfection ( )Tn wwwww 4321 ,,,=  

and external disturbances ( )Trqpzyxd AAAAAAw ,,,,,=  .The external disturbance dw , 

that affects the UAV, is composed by aerodynamical forces disturbances ( )Tzyx AAA ,, and 

aerodynamical moment disturbances ( )Trqp AAA ,, . Being computed from the 

aerodynamical coefficients rqpzyxiCi ,,,,,=  these disturbances  2

2
1 WCA iairi ρ=  

appear to depend on the air density airρ , the velocity W of the UAV with respect to the 
air whereas iC  depends on several parameters such as the angle between airspeed 
and the body fixed reference system, the aerodynamical and geometric form of the 
wing. The other parameters, governing the state dynamics (1), are given by 
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While the state vector being represented in the form 
 

Txxx ][ 141L=  
  
the above relations are specified with 
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Where g is the gravity constant (
281.9 −= msg ), d is the distance from the center of mass 

to the rotors. U1 is the resulting thrust of the four rotors defined as 
( )43211 FFFFu +++= . U2 is the difference of thrust between the left rotor and the right 

rotor defined as ( )242 FFdu −= . U3 is the difference of thrust between the front rotor 
and the back rotor defined as ( )133 FFdu −= . U4 is the difference of torque between the 
two clockwise turning rotors and the two counter-clockwise turning rotors defined as 

( )43214 FFFFCu f −+−= , With fC  being the force moment scaling factor and 321 ,, FFF  
and 4F are the thrust forces of the rotors. zyx III ,,  represent the diagonal coefficients of 
inertia matrix of the system. 61 ⋅⋅K  are drag coefficients. 
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NONLINEAR ∞H  CONTROL SYNTHESIS 
 
For stating the nonlinear ∞H -regulation problem we recall the following. 
A causal dynamic feedback compensator  
 
 )(yKu =                                                                                          (4) 
 
 With internal state sℜ∈ξ , is said to be a globally (locally) admissible controller if the 
closed-loop UAV (1), (2) is globally (uniformly) asymptotically stable when w=0. 
     
Given a real number 0>γ , it is said that UAV (1), (2) has 2L  gain less than if the 
response z, resulting from w for initial state 0)0(;0)( 0 == ttx , satisfies: 
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for all 01 tt >  and all piecewise continuous functions w(t). The nonlinear ∞H  regulation 
problem is in finding a globally admissible controller (2) such that 2L -gain of the closed-
loop UAV (1), (2) is less thanγ . In turn, a locally admissible controller (2) is said to be a 
local solution of the nonlinear ∞H -control problem if there exists a neighbourhood U of 
the origin such that inequality (5) is satisfied for all 01 tt > and all piece-wise continuous 
functions w(t) for which the state trajectory of the closed-loop UAV starting from the 
initial point )0()( 0 ξ=tx  remains in U for all [ ]10 , ttt ∈  . 
 
In the above problem statement, we have assumed for simplicity that the origin is the 
desired destination of the UAV. If it is not the case one should rewrite the UAV 
equations in terms of the state deviation from the desired destination and then 
reformulate the problem for the resulting deviation equations. 
     
Our subsequent local analysis involves the standard linear ∞H -control problem for the 
UAV linearization 
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Such a problem is well-understood if the linear system (6) is stabilizable and detectable 
from u and y, respectively. Under these assumptions, the following conditions are 
necessary and sufficient for a solution of this problem to exist: 



Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008 RC 48 
 

 
(A1) there exists a positive semi definite symmetric solution of the algebraic Riccati 
equation 011111 =Γ+++ PPCCPAPA TT ; specified with TT BBBB 2211

2
1 −=Γ −γ  such that the 

matrix PA 11 Γ−  is Hurwitz. 
 
 (A2) there exists a positive semi definite symmetric solution of the algebraic Riccati 
equation 0211 =Γ+++ ZZBBZAAZ TT ; specified with PBBAA T

11
2

1
−+= γ  and 

2222
2

2 CCPBPB TT −=Γ −γ ;such that the matrix 2ZA Γ+  is Hurwitz. 
 
According to [8], conditions (A1) and (A2) ensure that there exists a positive constant 

0ε  such that the system of the perturbed algebraic Riccati equations 
 

IPPCCPAAP TT εεεεε −=Γ+++ 11111                                                                         (7) 
IZZBBAZAZ TT εεεεε −=Γ+++ 211                                                                        (8) 

 
has a unique positive definite symmetric solution ),( εε ZP  for each ( )0,0 εε ∈ . In the 
sequel, equations (7), (8) are utilized to derive a local solution of the above nonlinear 

∞H -regulation problem. The following result is extracted from [8]. 
 
Theorem1 Let ),( εε ZP   be a positive definite symmetric solution of (7), (8) under some 

0>γ  and   0>ε . Then the output feedback  
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is a local solution of the ∞H -regulation problem, with   
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Proof. It is straightforward to verify that the following hypotheses hold: 
1. The functions )(),(),(),(),(),(),( 21122121 xKxKxHxHxGxGxF  are piecewise Continuous 
2. 0)0(,0)0(,0)0( 21 === HHF ; 
3. IxKxKxGxKIxKxKxKxH TTTT ==== )()(,0)()(,)()(,0)()( 21211211212121  
 
Thus, Theorem 3 from [8] turns out to be applicable to the system in question. The 
validity of the present theorem is then established by applying Theorem 3 of [8] to the 
UAV dynamics (1). The proof of Theorem 1 is completed. 
 
In order to apply the synthesis procedure, resulting from Theorem 1, one should utilize 
a certain perturbation of the algebraic Riccati equations that appear in solving the 
standard ∞H  control problem for the linearized system. Since the local stabilizability 
and detectability are then ensured by the existence of a proper solution of the 
unperturbed algebraic Riccati equations ([8] for details) an extra work on the 
stabilizability/detectability is thus obviated. 
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Due to the nature of the nonlinear ∞H  control approach, the closed loop UAV is robust 
against the measurement imperfections and aerodynamical force perturbations. We 
must emphasize that drag forces and moments has been taken as output perturbations. 
However, the closed-loop system becomes extremely sensitive if it is affected by 
aerodynamical moment perturbations whose influence on the system dynamics (1) is 
amplified by a nonlinear state-dependent gain. This fact has been confirmed by 
simulations since the matching condition is not satisfied. To address the latter 
perturbations a modification of the ∞H  control law was proposed. Since qp AA , , and rA  
affect 00 , xy ,and  ψ  respectively, a PI control law is added into the loop to enhance 
robustness against these disturbances and drag forces and moments. So the internal 
state vector is modified as follows (Fig-2): 
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SIMULATION  RESULTS 
 
The controller performance was studied by simulation made for the laboratory prototype 
of the Quadrotor UAV with the constant parameters m=1Kg, Ix=Iy=0.0996N.m/rad/s², 
Iz=0.1219N.m/rad/s², d=0.17m, g=9.81m/s², K1..6=0.04. 
 
In the simulations performed with MATLAB the Quadrotor was required to move from 
the initial point  
 

,0)0(,1)0(,0)0(,1)0(,0)0(,1)0( 000000 =−===== zzyyxx &&&

,0)0(,0)0(,0)0(,0)0(,0)0(,1)0( ====== ϕϕθθψψ &&& to the origin. 
 
To design the nonlinear ∞H  controller (9) the following positive definite symmetric 
solutions of the Riccati equations (7),(8) were numerically found for 2.0,55 == εγ : 
The parameters of the PI regulator (11) were tuned to 
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The aerodynamic force and moment perturbations were applied for: 
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with ∆f,∆a are random variations of period 60sec and magnitude 50% and 20% of the 
mean values of force and moment perturbations respectively. 
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The measurement noise signals used in all the simulation runs were uncorrelated, 
white, zero mean, and of 0.01 variance. To better demonstrate robustness features of 
the proposed synthesis various scenarios of the force perturbations were also played. 
Results for this case are presented in Figs(3,4,5,6). It is concluded from these figures 
that aerodynamical force and moment perturbations are better attenuated by the ∞H  
controller when combined with PI. 
 
 
CONCLUSION 
 
 A nonlinear ∞H  output feedback synthesis is developed to control a Quadrotor UAV, 
operating under uncertainty conditions. The controller consists of a nonlinear 
compensator and disturbance attenuator, being robust against external disturbances, 
measurement imperfections, and aerodynamical force perturbations. For enhancing 
robustness margins towards aerodynamical moment perturbations the controller is 
coupled to a PI controller. Theoretical results are supported by numerical simulations 
that demonstrate efficiency of the proposed combined PI/ ∞H -controller design. 
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Fig.1: Quadrotor UAV 
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Fig.2 : Closed loop system 

 
 
 

 
 

Fig.3: Output responses. 
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Fig.4: φθ ,  responses. 

 
 

 
 

                                                   
Fig-5: Force responses. 

 
 
 

 

 
                                         

Fig-6:Force and moment disturbances 




