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 ABSTRACT 
 
This work presents a 2-D field model for the study of sound propagation in a diesel 
particulate filter (DPF) unit. The 2-D model is formulated using the field Navier-stocks, 
energy, and continuity equations and retains the normal as well as transverse 
component of gas velocity. Temperature, pressure, density, and velocities are taken to 
be as plane and time harmonic variations. By substituting the differentials of these 
quantities with respect to both plane and time in field equations, a set of three coupled 
linear 2-D field variation equations for pressure, axial and transverse velocities is 
obtained. The obtained model is solved analytically using Fourier series 
approximations. The approximate solution is used to build a 2D acoustic model for the 
exhaust gases emission, with the existence of the diesel particulate filter, which 
accounts for both attenuation and phase shift defining the propagation wave constant. 
In addition the obtained approximate solution is used to determine the acoustics 
impedance of the DPF unit, comparing between different types of  DPF based on sound 
transmission losses performance, soot loading, noise and vibration damping, in addition 
to calculating the noise reduction factor (NRF). In the present study, unlike previous 
ones, six, rather than four, roots for wave propagation constant are obtained 
corresponding to the obtained six port acoustic DPF model. The results obtained using 
the present six -port model, for selected system parameters are graphically displayed 
and compared with those available in the open literature using four- port models. The 
present model results show, in general, similar qualitative behavior and a significant 
quantitative improvement of the available results in the open literature obtained using a 
four port model. 
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INTRODUCTION 
 
One of the leading technologies for meeting future particulate matter (PM) emission 
strict standards is the diesel particulate filter (DPF). These devices generally consist of 
a wall-flow type filter positioned in the exhaust stream of diesel engine vehicles. As the 
exhaust gases pass through the exhaust system, particulate emissions are collected 
and stored in the DPF. Because the volume of diesel particulates collected by the 
system will eventually fill up and even plug the DP filter, a method for controlling 
trapped particulate matter and regenerating the filter is necessary. The DPF is a 
superior system in the reduction of particulate matters because it can reduce about 
70% of the generated PM.  A typical DPF system contains a large number of thin tubes 
or cavities with a diameter of about (1-2 mm), and (0.15-0.5 cm) length.  It is available 
in several types such as: electric heater, burner (ceramic filter), and fuel additive type; 
the latter is a honey-comb ceramic. The honey-comb type constitutes an additive 
supply and an electronic system. In this type Fe is used as an additive whereby iron 
oxide is formed which reacts with carbon and then it is converted to iron. The DPF is 
connected at a suitable intervening location along  the exhaust gases path through the 
main exhaust pipe.  Thus the noise and vibration characteristics of exhaust system are 
expected to change and consequently affect the performance of the engine by 
developing back pressure, changing temperature and velocity of the exhaust 
gases...etc. Hence building an acoustic model for the DPF is valuable to the efforts of  
predicting  its effect on the overall performance of the exhaust system and the engine.  
 
The acoustic characteristics of the DPF systems have been the subject of many 
theoretical and experimental investigations, e.g [1-15]. Greevesm [9] studied 
theoretically the origin of hydrocarbons emission from diesel engines. His results 
indicate that a DPF can eliminate some of PM and is a very promising as an after-
treatment technique. Yu and Shahed [15] studied the effects of injection timing and 
exhaust gas recirculation on emissions from a diesel engine .They classified a DPF 
action as filtration and regenerative processes. Konstandopoulous et al. [13] studied the 
DPF wall-flow, pressure drop and cooling efficiency. They used Darcy's law to describe 
the coupling between neighboring channels of the DPF and to predict system variable 
changes in the fluctuating fields between the neighboring DFP channels. Peat [14] 
studied sound propagation in capillary tubes using FEM solutions of simplified wave 
equations for a visco-thermal fluid flow.   Also, Astley and Cumings [4] presented FEM 
solutions to the axial flow though porous medium, based on simplified wave equation in 
a visco-thermal fluid. They presented an analysis for the laminar flow with a parabolic 
velocity distribution and a quadratic flow cross-section. They simplified the governing 
equations by assuming that the axial gradients are significantly smaller than the 
gradients over the cross-section.  Employing the same simplified analysis presented in 
[4], Dokumaci [6] obtained an exact solution for the case of a plug flow and a circular 
cross-section. Using this approach he presented an acoustic two-port  model for a 
catalytic converter unit, which takes into account the presence of a mean flow , 
assuming a uniform velocity profile, and the presence of a mean pressure gradient . Ih 
et al. [10] have developed analytical solutions for sound propagation in capillary 
cylindrical tubes which assumes a parabolic mean axial flow, and neglects the radial 
component of the particle velocity. Jeong and Ih [11] presented numerical solutions of 
the basic governing flow field equations  taking into account the radial particle velocity. 
Their results showed that the radial velocity has a small but noticeable effect on the 
DPF acoustic behavior. Dokumaci [7] extended his earlier work in [6] to the case of 
rectangular narrow tubes with a plug flow. His analysis was based on approximate 
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double Fourier sine series expansions for the field variables over the channel cross-
section. 
  
Allam and Abom [3] presented an approximate 1-D, two ports, and discrete acoustic 
model for predicting sound transmission losses for an entire diesel particulate filter 
(DPF) unit. Their model was based on an approximate treatment of the viscous and 
thermal losses along the narrow channels of the DPF. Also in this model the steady 
flow resistance was used to calculate equivalent lumped acoustic impedance. To 
include the wave propagation effects the monolith was described using coupled wave 
guide model, where coupling is via the porous walls of monolith. Darcy's law was used 
to describe the pressure drop in the porous walls. This 1-D wave propagation model 
yielded a constant, frequency independent, transmission loss and agreed within 1 dB 
with measured data on a typical  hot filter but for low frequencies (<300Hz).    
     
Allam and Abom [1] modified their 1D model in [2] using the classical (exact) Kirchhoff 
solution for a plane wave propagation in a homogenous , visco-thermal fluid in a rigid 
narrow tube The modified model includes a more detailed account for viscous and 
thermal losses  by solving the convective acoustic wave equations for two neighboring 
channels using Zwikker and Kosten theory. It also uses and modifies the analysis 
followed by Dokumaci [7] to account for the effect of wall permeability. They used a 
straightforward   linearization and segmentation approach to convert the obtained 1-D 
model to a 4-th order (4-port) eigenvalue problem whose four eigenvalue are the wave 
propagation constants. The presented results which showed a fair agreement with 
measured ones for frequencies up to 1000 Hz for a typical filter at operating (hot) 
conditions. It is noted that the above Allam and Abom [1] model assumes the fields to 
be constant with respect to space but vary harmonically with time.  In the present work, 
the model developed by Allam and Abom [1] is used and modified by adding the effects 
of transverse velocity which, to authors' knowledge, has been ignored in previous 
models found in the open literature.  Hence, a 2-D, 6-port acoustic model for the entire 
DPF unit is presented by taking into accounts field variations both with respect to time 
and the 2-D space. The calculated  results for the acoustic transmission losses in a 
typical hot DPF obtained using the present six -port model, for selected system 
parameters are compared with those presented in [1] using a 4-port model. 
 
 
FORMULATION AND SOLUTION OF THE PROBLEM 
 
Following the analysis in [1, 2], the DPF is divided into five parts, as shown in Fig. 1.  
These parts are: the inlet (IN), narrow pipes with impermeable walls (1) and (3), the 
ceramic section (2), and the outlet section (OUT). The DPF may be manufactured from 
different materials (Cordierite or Silicon Carbide for example) and in its most common 
form consists of a substrate of narrow, approximately square in the cross- section with 
a width about (1-2) mm., channels in which each channel is blocked at one end. 
Adjacent channels have this blockage at alternate ends. With this construction exhaust 
gas may enter at one end, but must pass through the wall of a channel before exiting 
and is thus termed a wall flow device. It is clear that the flow in y-direction has a 
considerable effect on the operation of the DPF, i.e. the transverse velocity can have a 
significant effect on the flow characteristics and the 1-D flow approximation   may not 
be a realistic one. Therefore, in the present work, the flow will be considered as 2-D by 
taking into account the effect of the transverse velocity. 
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Fig. 1. DPF sections and the 2D flow of gases. 

 
 
Derivation of the Governing Equations 
 
In derive the acoustic model for the DPF unit the following assumptions, as in [1, 2], are 
considered: a) The DPF unit is considered partially as a porous media, b) The 
transverse “normal” component of velocity (vyj), unlike the model in [1, 2], will not be 
neglected: i.e. the flow is treated as a 2-D, c) Flow is considered as viscous- thermal, 
incompressible, laminar, a steady and Newtonian ideal gas, d) Chemical reactions are 
neglected, and e) Pressure, temperature, velocities, and density are variations are 
considered to be harmonic in both time and the 2-D space. 
 
By considering the field to be 2-D instead of 1-D, the describing field Navier – stocks 
(momentum), continuity, energy and state equations used in [1], become:  
 
A- Navier Stocks equations: 
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B- Continuity equation: 
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C- Energy equation: 
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                                                                                                                                  (5) 
D-State equation: 
With the assumption of ideal gas, the linearized sate equation (linearized ideal gas law) 
takes the form: 
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where  

),,,( tzyxjj ρρ =  
 

( , , , )j jT T x y z t=  
),,( tyxPP jj = ,                                                  (7) 

 
 x, y denotes the channel axis, u, v are the acoustic particle velocities in , respectively, 
the x an y directions , j = 1, 2 represent the inlet and outlet pipes, respectively. Also p, T 
and ρ are the acoustic pressure, temperature and density, respectively, µ is the shear 
viscosity coefficient, thjk is the thermal conductivity of the fluid, R is the gas constant, Cp 
is the specific heat coefficient at constant pressure, P0, T0 and ρ0 denote the ambient 
pressure, temperature and density, respectively, U0, V0 denotes the axial mean flow 
velocity  and transverse velocity respectively, and 2

s∇  denotes the Laplacian over the 
channel cross-section. 
 
 To describe the coupling between neighboring channels (which describes the porosity 
of diesel particulate filter) Darcy’s law is applied to the fluctuating fields [1]: 
 

ww uRpp =− 21                                                     (8) 
 
where a subscript w refers to wall, uw is the acoustic velocity through the wall, Rw is the 
wall resistance, which is given by Rw = µwht/σw, µw is the dynamic viscosity, ht  is the 
wall thickness, and σw is the wall permeability. 
 

In order to convert the above nonlinear model into an analytically tractable one, the 
linearization and segmentation approach presented in [1] is closely followed. 
Accordingly, and noting that the present model is a 2-D one, the following time and 2-D 
space harmonic variations for the fields are assumed:   
 

                                     uxj = A0eiwt                                                 (9) 
 
                                                vj = B0eiwt                                                          (10) 
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Upon substituting equations (9)-(19) and their required differentials into equations (1)-
(3), and using equations (4) and (5), the governing field equations (1)-(3) take the linear 
form 
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It is noted that by setting to zero yjj vV ,0  in the above equations (e.g by neglecting the 
transverse velocity) the above model in Eqns (21)-(24) reduces to the 1-D developed by 
Allam and Abom [1].  
 
To get a description to the acoustic model of DPF unit, and to find acoustic impedance, 
transmission losses, and other parameters needed such as noise reduction factor, 
equations (21) to (23) must be solved  for the variables ,,, xjjj uTP and .yjv  These four, 
homogenous, coupled linear equations with four variables  constitute an eigenvalue 
problem. The condition of a non- trivial solution to these equations leads to a 
characteristic frequency equation and associated eigenvectors. The eigenvalue 
problem is obtained as follows. First one assumes:   
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where jjj FHA ,,  and jB  are constant coefficients. Next substituting the expressions in 
equation (24) into equations (21)-(23) one obtains 
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Next, following Allam and Abom [1], the fields in equations are expanded as Fourier 
sinus series as follows: 
 

jjnm
mn a

zn
a

ymazyxH
2

sin
2

sin),,(
,

ΠΠ
= ∑                             (28) 

jjnm
mn a

zn
a

ymbzyxF
2

sin
2

sin),,(
,

ΠΠ
= ∑                                           (29) 

 
Then upon substituting equations (28) and (29) into equations (25)-(27), and, as in [1], 
averaging the mass conservation equation (22), one obtains the following eigenvalue 
problem:  
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which can be written in matrix form as follows 
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For a non trivial solution the determinant of the coefficients matrix in equation (31): 
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is set to zero, whereby one obtains the following  system characteristic frequency 
equation. 
 

0))(( 211222122111 =+−+ KKKKKK                                            (35) 
 
The above frequency equation is a 6th order equation for the propagation constant "Γ 
which can only be solved numerically.  A specially constructed Matlab program was 
used to solve for the six roots of equation (35) for selected values of system parameters 
.Samples of the obtained numerical results are shown in Table 1.  
 

Table 1. Calculated wave propagation constants .6,.....,1, =Γ jj  
a- Cold conditions (T=293˚K, w=200-300 Hz) 
Γ1=-0.6808-0.5580i; Γ2=0.6808+0.5580i; 

Γ3=-0.6185+0.1188i; Γ4=-0.6185+0.1188i; 

Γ5=-0.0623-0.0748i; Γ6=-0.0623+0.0748i; 

 

b- Hot conditions (T=773˚K, w=400-1000 Hz); 

Γ1=-0.3407-0.1522i; Γ2=-0.3407+0.1522i; 

Γ3=-0.2719+0.2250i; Γ4=-0.2719+0.2250i; 

Γ5=-0.0688-0.0391i; Γ6=-0.0688+0.0391i; 
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Note that the roots (eigenvalues) of equation (35) are complex conjugate pairs, e.g the 
equation has three complex conjugate pairs. The corresponding three complex 
eigenvectors are given by: 
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where  )(xp)  is the acoustics pressure. , na)  is the modal amplitude,  nΓ   is the 
calculated wave propagation constant (eigenvalue) and 2,1,, =je nj , are the 
corresponding components of the 2-D eigenvector, with j=1 corresponds to the inlet and 
j=2 corresponds to outlet.  Note that equation (36) represents the sound field (pressure 
fluctuation) in filter section. In addition to equation (36) one needs the field volume 
pressure velocities to calculate the sound transmission losses in the filter. The 
corresponding volume pressure velocities  )(ˆ xqn  are obtained, as in [1], by dividing   

equation (36) by the characteristic wave impedance Z, where
A
cZ ρ
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sound, =ρ   mass density of the medium, and A   is the cross sectional area of the DPF 
part. This leads to the following expression for the volume pressure velocities )(ˆ xqn : 
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 where   njnjjnj eHae ,,
2'

, 4 ><= ,          112 /81 kikk β−= ,            wjwj RdhC /ρβ =     
<Hj>=4a11/Π2 .    Finally, to calculate the acoustic transmission losses in the DPF unit, 
one uses equation (36) and (37) to formulate the so called the transformation matrix 

DPFT ,  
 

[ ] ]ˆ][[ˆ PTq DPF=                                                            (38) 
 
where the  TDPF is a 66× matrix, which is formed as a product of the l port  matrices for 
the five segments of the DPF, and takes the form [1]: 
 
                                                                TDPF = TIN T1 T2 T3 Tout                                             (39)                            

 
The acoustic transmission losses TL are then calculated using the relation [1]: 
 

TL= 20 log ׀TDPF/2(40)                                                 ׀ 
 
 In addition, the noise reduction factor NRF can be calculated by using the following 
equation: 

1

2
12 log20

P
PLPLPNRF =−=                                         (41) 
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RESULTS AND CONCLUSIONS 

  
The wave propagation constant nΓ , transmission losses TL and the nose reduction 
factor NRF were calculated, for selected system parameters, using equations (35), (40) 
and (41).  A Matlab program was used to carry out all the needed calculations. The 
results obtained were for the cases: hot and cold. For the hot case, the temperature 
was taken as C0500 .  While for the cold case the temperature was assumed to be C025 . 
For  both cases the frequency was varied over the range 1000300 −  Hz. Also results 
were obtained for both cases::  one with soot layer and the other with no soot layer. 
Samples of the obtained for different types of DPF are displayed in figurers (2) – (10).   
From these figures the following points are made: 

1. Both transmission loses and noise reduction factor for the typical filter and other 
types of DPFs tend to increase as frequency increases. 

2. Wave propagation through the DPF unit suffers of both attenuation and phasing 
shift, and both attenuation and phase shift damped as shear wave number 
increases. 

3. Transmission losses for the case of soot layer formation are significantly higher 
than those with no soot layer formation. 

4.  The EX80:200/14 DPF type has the best characteristics of transmission losses, 
while the EX80:100/17 DPF type has the lowest transmission losses 
performance. 

5. The present 6-port model show similar tends concerning transmission losses as 
those presented in [1] using a 4-port model. However the present 6-port model 
result, which takes into account the effect of the field transverse velocity ,   are in 
closer agreement with the experimental ones presented in [1] than the 4-port 
model obtained in [1] which ignore this effect.  Therefore one may conclude that 
ignoring the transverse velocity can have a significant effect on the evaluation of 
acoustic transmission losses for a DPF unit. 
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Figure 2. Transmission losses vs. frequency in the case of cold conditions, with no soot layer, 

                                   Mach=0.02, space and time variation case, and for Typical filter. 
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Figure 3. Transmission losses vs. frequency in the case of cold conditions, with soot layer, 

                                     Mach=0.02, Plane and time variation case, and for Typical filter. 
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Figure 4. Transmission losses vs. frequency in the case of cold conditions for RC 200/12 filter type, 

----- for with soot layer,          is for the case of no soot layer, Mach=0.02, and for space 
and time variation case. 
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Figure 5. Transmission losses vs. frequency in the case of cold conditions for RC 200/20 filter type, 

----- for with soot layer,          is for the case of no soot layer, Mach=0.02, and Plane and 
time variation case. 
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Figure 6. Transmission losses vs. frequency in the case of cold conditions for EX: 100/17 filter type, 

----- for with soot layer,          is for the case of no soot layer, Mach=0.02, and Plane and 
time variation case. 
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Figure 7. Transmission losses vs. frequency in the case of hot conditions for typical filter 

for the case of no soot layer, Mach=0.02 and space and time variation case. 
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Figure 8. Transmission losses vs. frequency in the case of hot conditions for typical filter 

for the case of with soot layer, Mach=0.02, and Plane and time variation case. 
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Figure 9. NRF vs. frequency for typical DPF in the case of hot conditions, (With no soot layer). 

Mach=0.02, in the case of plane and time variation. 
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Figure 10.  NRF vs. frequency for typical DPF in the case of hot conditions, 
(With soot layer). Mach=0.02, in the case of plane and time variation. 

 
 
 




