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ABSTRACT  
 
A high static pressure at the inlet face and minimal total pressure loss at the intake 
entry are required for an efficient operation of the spiked supersonic jet engines. The 
turning (Forebody) angles are optimized for a maximum total pressure recovery at the 
intake entry for the design Mach number condition, so that the compression shocks fall 
on the cowl lip. Non zero incidence angle changes the effective deflection angle up and 
down the spike, so the combining effect of incidence and forebody angles is essential 
for the intake performance. The present analysis investigates the pressure distribution 
at the compressor face at different forebody-Incident combinations at different 
supersonic fly speeds ranging from 1.8 to 2.2 Mach. The numerical analysis is carried 
out under 2-D, steady and viscous flow assumptions. The external flow, which consists 
of the set of waves, is solved analytically. CFD analysis using Control Volume 
Formulation technique is applied to analyze the internal flow. In house program is built 
to solve the governing sets of equations by using SIMPLE algorithm. The analyses are 
carried out at incidence angles ranging from 0o to 10o and forebody angles ranging from 
6o to 25o. The procedure has been verified by comparing with previous experimental 
results. The results obtained have generally shown, that the pressure recovery 
increases by the increasing of the wedge angle and decreases by increasing of 
incidence angle. In some operating conditions, the combination of the three factors, 
Mach no., the incidence, and the forebody angle results in a complicated mechanism 
due to the presence of compression and expansion waves in the external part of the 
intake simultaneously.  
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INTRODUCTION 
 
The aircraft Aero-dynamists are interested in obtaining details of the flow around the 
outsides of the intakes. Aero-engine designers, on the other hand, are interested in 
details of the flow structure inside the intakes. The supersonic engines are provided 
with inlet features which can maintain various pre-designed operation conditions [1]. 
The type of intake without spike is quite unsuitable for supersonic flight conditions. 
There would be a normal shock wave at the mouth which causes a very sharp pressure 
rise with big velocity reduction. To achieve smooth functional operation of the 
supersonic engines, a spike is installed in the intake to provide shock series outside the 
intake frontal face. The spike may be fixed or may be movable. The modern jet engines 
are designed with movable spikes to provide variable geometry intakes [2]. Such types 
of spikes are required mainly for two objectives. Firstly, to produce a variable throat 
area that is large enough, to maintain the design air mass flow rate. Secondly, to 
control the shock wave system created in the external portion of the intake. Many 
factors are affecting the performance of the supersonic intakes. Some factors are 
operational factors and some are design factors. The majors among the operational 
factors are the angle of attack (AOA), α, and the fly Mach no. On the other hand, the 
main design factor is the spike deflection angle, δ or usually called the forebody angle. 
The spikes may have one (single) deflection feature, two deflections feature or may be 
designed with curvature surface to produce smooth expansion waves. In the present 
study, the single deflection, 2-D spike is subjected to analytical and computational 
analysis. 
 
Experimental Backgrounds on Supersonic Intakes 
  
In contrast to many mechanical engineering fields, detailed information and clear 
discussion of the subject of supersonic spiked intakes are not widely available. The first 
serious work on supersonic inlets was done by Oswatitsch [3]*, in Germany during the 
World War II when he performed a series of pioneering analytical and experimental 
investigation on a single and double wedge intake. Then after, the American started a 
series of investigations on supersonic intakes with conical center bodies. Englert and 
Obery [4] carried out investigation of 16 inch ram-jet engine in NACA Lewis supersonic 
wind tunnel at 1.7, 1.9 and 2 free Mach No. at 0o to 10o angles of attack. An extension 
to the work was made by Gorton [5] to study the practicability of a translating spike 
intake. The second series of investigations carried out by NACA was applied on double 
deflection conical spikes. Jones et al [6] have conducted experiments on conical spike 
with 22 and 35 half angles and the tests indicated that the total pressure recovery 
gradually decreases by increase of the free stream Mach No. Connor and Meyer [7] 
conducted another experimental program in NACA Lewis Laboratory on conical spikes 
with 20 and 28 half angles. They claimed 0.92 total pressure recovery at zero AOA. In 
summer 1959, Lockheed Skunk Works designed the SR-71 supersonic engine which 
operates up to 2 Mach. The SR-71 engine intake used variable inlet geometry by 
movable axisymmetric spike. The spike was found to provide higher pressure recovery 
at the compressor face [2]. 
 
Numerical Background on Supersonic Intakes  
   
In the mid of eighties, a trend  towards  the  numerical  techniques has been adopted to 
 
* Extracted from Reference 3 



259 MP Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

reduce time and cost of supersonic intakes analysis, compared to the experimental 
investigations. Biringer [8] presented numerical solution of Euler equations based on 
implicit, time- marching, finite difference technique to analyze the subsonic and 
supersonic regions in the intake. The solution is found to converge rapidly for 
supercritical interpolation, while it converges slowly for the sub-critical intake operation. 
Moretti [9] presented an effective 2-D Euler computational technique at any number of 
shocks of any shape any type. Dudek [10] solved numerically for the turbulent, 
subsonic flow in pipe attached to conical diffusing section with 5o diffusing angle. The 
computations were performed to set a number of iterations until the convergence 
histories were leveled out. Abbood [11], carried out numerical time dependent analysis 
of 2-D convergent-divergent nozzle. The procedure is based on the explicit; second 
order accurate McCormack predictor corrector scheme. This finite difference method 
required an axis transformation from the physical to computational domain. Following 
the experimental work of Yanta et al. [12] on the 2-D scramjet inlet, Gokhale and 
Venkat [13] have carried out numerical analysis adopting the same geometry of the 
inlet of 10o single deflection wedge with only zero angle of attack at 2.5 Mach and 3 
Mach. They have assumed viscous adiabatic flow. Their results are in good agreement 
with the experimental data and the analysis is capable to capture the shock waves and 
their interaction with boundary layer. Fayadh [14] carried out the solution of the external 
supersonic flow of the intake using McCormack explicit method for solving viscous, 2-D, 
full Navier - Stokes equations. The results show that great deal of computation time is 
needed to solve these problems with explicit methods. Al-Kayiem and Sharief [15] 
studied the case of single deflection spike of non-viscous flow in 2-D supersonic intake. 
The analysis has subdivided the problem into two parts. The external part is solved 
analytically and the properties of the flow across the shock wave have been 
determined. The internal part which represents the diffuser flow has been solved 
numerically by the solution of Euler equation using Newton-Raphson iterative method 
with assistance of axis transformations from physical to computational technique. The 
analysis was carried out for different AOA ranging from 0o to 20o at free stream Mach 
ranging from 1.4 to 3.            
 
Aerospace firms using their own financial resources have developed computer codes, 
which are not available for general use, that do a reasonable job of supersonic intake 
design and prediction of its performance. A 2-D computer code called (CATHI) 
developed by McDonnell Douglas is based on oblique shock theory. It is applicable to 
all 2-D inlets with single wedge and multiple wedges. (AXISPX) an axisymmetric 
computer code, is also developed for isentropic spike compression and employs the 
method of characteristics for flow field prediction and does not have angle of attack 
capability. (NPARC)  a CFD code for aerodynamics is a partnership between the NACA 
Glenn Research Center (GRC) and the Arnold Engineering Development Center 
(AEDC). It contains of large applications and supplies a lot of examples, but does not 
consist of applications which combine the supersonic flow filed analysis in the intake at 
various angles of attack and different forebody angles. 
 
The present study is aiming to solve and analyze the flow in supersonic intakes with 
single deflected wedge.  
 
The objective is to solve and analyze the flow in supersonic intakes of single deflected 
wedge at various none zero AOA  and Mach numbers (operational conditions) and 
different wedge angles (design conditions). It can be summarized as: (i) Characterizing 
the waves system and (ii) to predict and analyze the flow field inside the diffuser 
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resulting from the various combinations of operational conditions with the design 
conditions. 
 
The solution methodology adopted in the present analysis is divided the spike into 
two flow regimes. The external flow is solved by analytical modeling using the wave’s 
relations, while, the internal flow is predicted numerically by solving Navier-Stokes 
equations under the assumptions of 2-D, viscous, steady, compressible flow. The 
governing equations have been solved numerically by discretizing the flow field by 
“Control Volume Formulation, CVF”. The preliminary assumption of the flow variables at 
each point is obtained by applying the 1-D formulas of the viscous, compressible flow. 
The methodology is summarized in the flow chart, Fig.1       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Methodology of the solution and analysis 
 

 
 
MODELING OF THE EXTERNAL FLOW  
 
The external flow is representing the regime of the supersonic flow subjected to 
changes once approaching the wedge of the spike. System of waves is created. It may 
consist of Oblique Shock Wave (OSW), Normal Shock Wave (NSW) and expansion 
wave, or so called Prandtl-Mayer Wave (P-MW). To solve this part of the flow, the 
followings are required to be modeled. 
 
Modeling of the Isentropic Flow  
 
The isentropic flow is the most assumed simple flow to simplify the solution of 
equations. It is very close to reality in engine intakes. It is characterized by frictionless 
and adiabatic flow. In this case, the local Mach number is the reference or characteristic 
parameter in compressible flow. Once the flow area is changed, the Mach value along 
the stream wise is changed and the flow properties are evaluated in ratio forms of the 
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total to static values as: [1]  
 
Pressure ratio, po/p; Density ratio, ρo/ρ; and Temperature ratio, To/T = ƒ (M)        
 
Where, M is the local Mach No. The formulas are available in many literatures, e.g. [1], 
[16]. 
 
Modeling of the Normal Shock Wave  
 
Usually, the up stream of the NSW is defined by (x) and just down stream behind the 
wave by (y). The equations appropriate to this flow are derived as function of the up 
stream Mach number Mx. The stagnation temperature across the shock is constant.  
 
Down stream Mach number:  
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The other flow properties are evaluated as 
 
Pressure ratio, py/px; Density ratio, ρy/ρx; and Temperature ratio, Ty/Tx = ƒ(Mx)       
 
where, Mx is the Mach No. of the flow just up stream of the NSW.  
 
Modeling of the Oblique Shock Wave 
  
The properties of flow behind the OSW are function of the up steam Mach number, say, 
M1, and the shock angle (σ) which could be found from the following relation:  
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The equation cannot solve directly and iteration technique is the way to predict δ.  
The down stream Mach number:  
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Pressure ratio, p2/p1; Density ratio, ρ2/ρ1; and Temperature ratio, T2/T1 = ƒ(M1,σ) 
 
where, M1 is the Mach No. upstream of the OSW and σ is the shock angle. 
 
Modeling of Detached Shock Wave  
 
Detached shock wave occurs, when the flow pass a wedge with deflection angle, δ 
greater than maximum deflection angle for detail Mach number i.e. when δ > δmax. δmax 
can be found from the equation:  
 

 
( )
( )

( )6
2cos2

1sincot2tan
maxmax

2
1

max
22

1max
max σδ

σσ
δ

++
−

=
M

M
 

 
where, σmax is the oblique wave angle obtained from: 
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The front side of the wedge is treated as normal shock wave. [16] 
 
Modeling of Prantdl- Mayer Waves  
  
If the angle of attack becomes higher than the wedge deflection angle the nature of flow 
is expanded. The change in the properties occurs gradually across a series of waves 
emanating at the surface.  
 
The turning angle of the flow up stream to down stream of the P-MW is:  
  

( )812 υυδ −=   

Where, υ1 = f (M1) and υ2 = f (M2) related as   
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The change of properties across these waves is isentropic, so both the stagnation 
temperature and stagnation pressure are constants. Down stream Mach number M2 
can be found from equation 9 by iteration (substituting υ by υ2). The other properties can 
be found by using isentropic ratios at down stream Mach number.  
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MODELING OF THE INTERNAL FLOW 
 
Navier-Stokes equations under the assumptions of steady, viscous, compressible, and 
two-dimensional, without body forces or heat transfer can be derived in Cartesian 
coordinates as:  
 
Continuity:  
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X- momentum:  
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Y- momentum:   
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Also, the state equation is required to link the density to the pressure. After derivation 
with respect to x and y, the state equation becomes: 
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The solution of these equations is complex, mainly, if the variables are required to be 
evaluated at large number of points in the flow field. The methods of the CFD technique 
are found to be the best tools to convert the PDE set of the governing equations to sets 
of algebraic equations which can be solved iteratively or by matrix inversions. In the 
present work, Patankar method [17], "SIMPLE algorithm”, stands for "Semi-Empirical 
Method for Pressure-Linked Equation" is adopted, and, the domain is discretized by 
“CVF,. This method depends on discretization of the domain into a number of control 
volumes; each control volume contains main point (node) and neighbor points (nodes). 
The governing equations must be transformed from differential form to the discretization 
form and solved for each node. This requires two approximation schemes. The first 
approximation represents suitable guess of the flow variables at each node. The 
second approximation is used to evaluate the coefficients of the discretization equation.  
 
 
DISCRETIZATION AND GRID GENERATION 
 
One of the methods of deriving the discretization equation is the CVF.  This method 
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depends on discretization of the domain into a number of control volumes; each control 
volume contains main point (node p) and neighbor points (nodes nb).  

 
Fig.2. Nodal notation for the control volume grid generation  

(E: east, W: west, N: north, S: south)  
 
 
Grid Generation 
 
For the 1-D solution, the domain is discretized in equally separated planes in the 
stream wise, x-direction. Each zy plane is parallel to the others and is perpendicular to 
the x-direction of the flow. The domain is discretized to n subdivision in x-direction with 
constant ∆x. For the 2-D solution, each zy plane is discretized in y-direction and the 
properties are considered same in z-direction. The value of ∆y is variable from plane to 
another, but it is constant for all volumes located on same plane (I), where: 
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The resulting mesh from n=20, and, m=20 is shown in Fig.3. 
 
 
 

 
Fig.3. Grid generation for 2-D solution 
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Discretization of the Governing Equations 
 
For a variable Φ in the flow field, it is represented according to the CVF as: 
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Where, 
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A better approximation to the exact solution is given by the power law scheme which is 
described for the present application by [18]. The power law expression, for aE for 
example, can be written as function of Peclet number, which is: 
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The values of aE / De = f (Pee) are given by reference [17] for (Pee < -10), (-10 < Pee < 
0), (0 < Pee <10) and (Pee >10). 
 
Accordingly, the momentum equations can be set in discretization form after 
manipulation and arrangement, as: 
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And, the continuity equation, after integration over the control volume, becomes 
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If the velocity components are substituted, after rearrangement, the following 
discretization equation for (p’) would be obtained: 
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Proposing that the corrected pressure, pc can be obtained from: 
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Then, the corresponding corrected velocities can be introduced in a similar manner, as: 
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It must hinted out that the corrected density should be related to the corrected pressure 
by using the state equation as, 
 

 ( )Pf=ρ . 
 
 
COMPUTATIONAL PROCEDURE 
 
The computational procedure can be summarized in the following analysis steps. 
 
The free stream domain 
 
The analyses are carried out at operational altitude of 10 000 m.   The corresponding 
properties of the free stream, the temperature T∞ and the pressure ρ∞, are evaluated 
from the aerodynamic relations [18] as: 
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The external flow solution 
 
For each selected operational conditions (Mach, AOA and design forebody angle, the 
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solution starts with the analysis of the external flow. The set of equations solving the 
external flow, analytically, have been converted to a computer program with many 
subroutines to solve all excepted wave types may present in the flow. The values of the 
flow variables, M, P, Po, T, V, and ρ obtained from the external flow solution are 
representing the inlet boundary conditions to the internal part of the inlet. 
 
1-D internal flow solution 
 
Subroutine DIM1 generates the nodal points. The internal subsonic flow domain is sub 
divided into n=20 equally spaced segments in the x-dir. Then, under the assumption of 
viscous, compressible, 1-D, the variables of the flow field are evaluated at each node 
using a set of derived equations ending with: 
 

( ) ( )
( )284

21
2

11

1
2

11 2

2

2

2

2





































−

−+
+



















−

−+
−=

HD
fdxM

M

M

A
dA

M

M

MdM γγγ
 

 
( )
( ) ( )29

2
44

wy
wy

Perimeter
areaDH +

×
==  

 

( )30

Re
74.5log

0625.0
2

9.0 















=f  

 

( )31












+=
+=
+=
+=
+=

ρρρ d
dPpp

dVVV
dTTT

dMMM

inout

inout

inout

inout

inout

 

 
The 1-D solution provides preliminary values for the 2-D solution at each node in the 
domain. 
 
2-D internal flow solution  
 
The procedure for the calculation of the 2-D flow field is based on the "SIMPLE 
algorithm" described earlier. 
 
The solution of the momentum equation will go to diverge unless some under-relaxation 
is used. In other words, instead of using equation (25a,b), employing: 
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with αv = 0.5, in the same manner, Eq. (24) replaced by: 
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( )34ppp pc ′+= α  
 
with αP is set equal to 0.8 
 The sequence of operations is: 
4.1 Generate the two-dimensional control volumes and the grid points. 
4.2 Calculate the coefficients of discretization equation for each grid point using 

equations (13) to (18).  
4.3 Solve equations (19a,b) and (20a,b), to find u * and v * for all neighbor points. 
4.4 Solve Eq. (22) and Eq. (23) to find P′ at each main grid point.  
4.5 Calculate the corrected pressure from equation (34). 
4.6 Calculate the corrected velocities from equations (32 and 33)  
4.7 Go back to Eq. (19a,b) and find new u′, v′ at neighbors points. 
4.8 Determine the corrected value of density using the state equation. 
4.9 Treat the corrected values as new guessed values, return to step (4.3) and repeat 

the whole procedure until a converged solution is obtained. 
 
The criterion to determine the convergence is ζ = 0.22. 
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At each node, ζ is evaluated. When ζ reaches 0.22, the program considers the solution 
of that point is stable. The final node (19,19) would be the alarm node to terminate the 
iteration when its ζ reaches 0.22. 
 
 
RESULTS AND DISCUSSION 
 
Analysis of various operational conditions at different AOA and the interference effects 
of the free stream Mach value and wedge angle is the subject of the present work. The 
total pressure recovery ratio, (Po/Po∞) is the dominated parameter for comparison at 
different operational conditions. For confidence of understanding, Fig.4 shows the 
location of the windward side, leeside and cowl lip. 
 
Discussion of the behavior of the total pressure recovery due to the changes of the 
AOA being more convenient by defining the effective deflection angle as: 
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Before presenting the results, the numerical method adopted in the present analysis is 
verified by comparing with experimental analysis. The data taken from NACA Research 
Memorandum are the results of experimental investigation on conical spike supersonic 
intake at free stream Mach number from 1.5 to 2.2 and AOA from 0o to 10o. The spikes 
at 

 
 

 
 

 
 

 
 
 

 
Fig.4. Outline of Supersonic Intakes 

 
 
several deflection angles are investigated in the NACA Lewis 8-by-6 foot supersonic 
wind tunnel. Fig.5-a, indicates comparison at various Mach number at zero AOA. The 
trend of the present numerical and the experimental results of ref. [7] is the same. For 
Mach of 1.9, identical results are obtained for TPR. As Mach number increases, the 
numerical results of TPR are slightly higher than the experimental results. 
 
 

 

 
                                     (a)                                                                (b) 

Fig.5. Comparison between present numerical results and previous experimental 
results of TPR, (a) At various Mach numbers, (b) At different forebody angles 

 
 
As depicted in Fig.5-b, a very good agreement is claimed between the numerical and 
the experimental results of ref [6] within the entire tested spike forebody angles ranging 
from 10o to 25o. The comparison is carried out at 2 Mach and zero AOA. Both analysis 
show same trend of increment in the TPR values until the deflection angle reaches its 
maximum value, then decreases. 
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At positive effective deflection angle (greater than 0), the TPR in the leeside increases 
by increasing AOA as shown in Fig.6-a for Mach number (1.8) and Fig.6-b for Mach 
number (2.2). It means that there is a loosing in body compression, because the 
increase in AOA in the leeside reduces the effective deflection angle and that leads to 
reduce the Oblique shock angle becoming weaker shock. However, at negative 
effective deflection angle (less than 0) the total pressure recovery decreases by 
increasing AOA.  
 
In the windward side, the TPR decreases by increasing angle of attack, because the 
increment in the effective deflection angle will lead to a stronger shock. See Fig.7-a for 
Mach number (1.8) and Fig.7-b for Mach number (2.2). 
 
For free stream Mach number of 1.8, the change in the TPR becomes gradual, while in 
the high Mach number (2.2) the change in the TPR becomes precipitous.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                     

Fig.6. The effect of AOA on the TPR in the leeside, (a) at M = 1.8, (b) at M =2.2. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                       (a)                                                            (b) 
Fig.7. The effect of AOA on the TPR in the wind ward side, (a) at M = 1.8, (b) at M =2.2. 
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Generally speaking, to produce high TPR in the leeside, the effective deflection angle 
must be increased when the angle of attack increases. In the windward side, the 
inverse is the correct. 
 
Results presented in Fig.8 represent a comparison between the experimental results 
from NACA, ref.[19], and the numerical results from the present analysis at Mach 
number (2.0) for 20o wedge angle at leeside.  
 
When the deflection angle increases the total pressure recovery increases also, 
because of increasing shock angle leads to increase the sequence of reflection shocks. 
This increasing is not continuous because of limitation of deflection angle, which leads 
to detached shock wave which stops the sequence of compression shocks. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8. The effect of deflection angle on the total pressure recovery at the cowl lip in the 

leeside at M = 2 and wedge angle = 20o 

 
 
 
CONCLUSIONS 
 
The flow through single deflected spiked supersonic intake is modeled by dividing the 
flow field into two regions. The external region which consists of the system of waves is 
modeled and analyzed analytically. The internal region which represents the expansion 
of the flow inside the diffuser is modeled and analyzed numerically. The “SIMPLE 
algorithm” is adopted for the grid generation and equations discretization under 2-D, 
viscous, compressible and steady flow assumption. The analysis has been proven to be 
able to characterize the supersonic intake and the TPR at the face of the compressor is 
predicted with good accuracy. The results show that the TPR increases at the windward 
side as the AOA increased, while it decreases in the leeside.  
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