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ABSTRACT 
 
It is shown that the five parameters governing the propagation of sound waves in a fluid 
contained in rigid cylindrical tubes filled with a saturated porous media are the shear 
wave number µωρ /Rs = , ratio of specific heats γ  , the Prandtl number σ , porosityε  
and the Darcy number KRDa 2= . A variational solution of the problem with non-
isentropic wave’s propagation in a cylindrical tube in the presence and absence of a 
convective steady flow is presented. The manner in which the flow influences the 
attenuation and the phase velocity of the forward and backward propagating acoustic 
waves is deduced. It is found that the inclusion of the solid matrix or the increasing of 
Darcy number increases the attenuation and decreases the phase velocities of the 
forward, backward and hydrodynamic sound wave’s; this is due to favorable retarding 
effect of the solid matrix. The increasing of porosity is found to decrease attenuation 
and increases phase velocities of the forward, backward and hydrodynamic sound 
waves; this is due to absent role of solid matrix in damping sound waves. The effect of 
increasing Mach numbers is found to increase attenuation and decrease phase 
velocities for the backward sound waves; this is due favorable retarding steady flow 
velocities and decrease attenuation and increase phase velocities of the forward and 
hydrodynamic sound waves; this is due to favorable steady flow velocities in driving 
these two sound waves. 
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NOMENCLATURE 
 
a   Mean speed of sound of steady flow  
C   Constant defined in equation (19) 
Da  Darcy number, KR 2  
i  Imaginary number, 1−  
K  Permeability  
k  Reduced frequency number, aRk /*ω=  

effk   Effective thermal conductivity of the porous media 

0M   Steady flow Mach number 

M   Mean Mach number of steady flow, )1(
8

20
2

0 η
ξγ

−=
d
dpsM  

p  Acoustic pressure 
0p   Steady flow pressure 

R  Radius of capillary duct 
0R   Gas constant 

s  Shear wave number 
*t  Time 

T   Temperature  
** ,vu  The velocity components in x-and y-directions  

u,v  Acoustic velocity components in x-and y-directions  
**,rx   Axial and normal coordinates  

W  Phase velocities 
w  dimensionless phase velocity 
 
Greek symbols: 
 
α   Perturbation parameter 
ρ  Acoustic density  
ρ   Mean steady flow density 

*ρ   Fluid density 
σ   Prandtl number 
ξ   Dimensionless axial coordinate  
η   Dimensionless normal coordinate 
γ   Ratio of specific heats 
ω   Harmonic disturbance frequency 
ε   Porosity 
µ   Dynamic viscosity  
Γ   Propagation constant 
Γ ′   Attenuation 
Γ ′′   Phase shift angle 
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INTRODUCTION 
 
In porous materials such as fibrous and granular, the absorption process of the acoustic 
wave takes place through viscosity and thermal losses of the acoustic energy inside the 
micro tubes forming the material. This kind of material is widely used in room acoustics, 
in order to control reverberation time, to avoid undesired reflections, and to fill double 
wall cavities, floors and ceilings, etc. If the acoustic improvements are restricted to 
interior spaces (buildings halls, theaters, dwellings, factories, vehicle cabins, etc.), 
usually mineral wools or open pore foams can be used. On the other hand, for outdoor 
problems for instant acoustic noise barriers against traffic noise, the absorption 
provided by granular materials such as porous concrete should be employed.  
 
The problem of a propagation of sound waves in fluids contained in a plain medium is a 
classical one, to which famous names are connected like Helmholtz [1], Kirchhoff [2] 
and Rayleigh [3]. Numerical solutions of the problem were published by Tsao [4], 
Gerlasch and Parker [5], Scarton and Rouleau [6] and by Shields et al. [7]. It is shown 
that the two-main parameters governing the propagation of sound waves in gases 
contained in rigid cylindrical tubes are the shear wave number and the reduced 
frequency. It is demonstrated that most of the analytical solution are dependent only on 
the shear wave number and that they are covered completely by the solution for the 
first time by Zwikker and Kosten [8]. The full solution of the problem has been obtained 
by Tijdeman [9] in the form of a complicated, complex transcendental equation, then 
this equation is solved numerically by using Newton-Raphson procedure and results 
are presented for a wide range of shear wave number and reduced frequency. A first 
approximation to the effects of mean flow on sound propagation through cylindrical 
capillary tubes is achieved by Peat [10]. The problem of sound waves propagation in a 
stationary fluid or flowing fluid in a porous medium is a new one. Wang et al., [11] 
studied the effects of compression on the sound absorption of porous materials with an 
elastic frame. Sato and Kanki [12] formulates for compression waves and oscillating 
flow in circular pipe.  
 
In this manuscript the sound waves propagation in a stationary or flowing fluid in a 
porous medium is studied. The governing equations are going to be written then the 
flow is assumed to has a small acoustic disturbance of frequency and the governing 
equations are transformed using a set of variables in suitable dimensionless form then 
a solution of the propagation constant is sought for the governing equations for both 
attenuation and phase shift angle. In this study, a first approximation is sought for the 
effect of the porous matrix on sound waves propagation in cylindrical tubes. Analytical 
expressions for the propagation constant of axial wave motion are obtained from 
variational solutions by using parabolic forms of the velocity profiles. Comparison with 
previous works available in the limit of plain medium is achieved and shows an 
excellent agreement.  
 
 
MATHEMATICAL FORMULATION  

 
The thermo-viscous effects in the fluid filling interstices among the fibers or the particles 
are responsible for the energy loss of the propagation acoustic wave. Generally, 
thermal losses are much lower than viscous losses in this kind of material. For mean 
flow through a capillary porous duct it is reasonable to apply the conventional boundary 
layer approximation that the axial velocity is much greater than he radial velocity, 
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** vu >> , and the changes in the radial direction occur much rapidly than those in the 
axial direction. The basic equations which govern acoustic wave propagation in a rigid 
tube filled with a porous media are the continuity, momentum and energy equations: 
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where *u is the velocity component in the axial direction. *** and, Tpρ are the fluid 
density, pressure and temperature, µ  is the absolute viscosity and K is the permeability 
and ε  is the porosity of the porous medium, effp kc and are the specific heat and 
effective thermal conductivity of the porous media. The fluid is assumed to be a perfect 
gas governed by the equation of state: 
 

*
0

** TRp ρ=            (4) 
 
where 0R is the gas constant.  Next, it is assumed that the flow through the circular duct 
is a superposition of a fully developed laminar, incompressible, axial steady flow and a 
small harmonic acoustic disturbance of frequencyω . The steady flow is taken to have 
constant density ρ and a speed of sound a such that the fluid variables can be 
expanded in the form: 
 

( )*

)(1* tiee ωξΓηαρρρ += ,         (5) 

( )*

)()(0
* tieeuMau ωξΓηαη += ,         (6) 

( )*

)()()( 0
2* tieeppap ωξΓηαξγρ +=        (7) 

and 
 ( )*

)(1)( 0
2* tieeTRaT ωξΓηαγ +=          (8) 

 
where 1<<α  and γ  is the ratio of specific heats. It is seen that the steady flow 
variables 0p  and Mach number 0M  together with acoustic variables Tpu  and,,ρ are 
dimensionless. Introduce the following variables in the transformations: 
 

ax /*ωξ =      Rr /*=η                      (9) 
 
R is the radius of the capillary duct. The axial acoustic wave motion has been assumed 
to have complex propagation constant Γ which can be expanded as: 
 

ΓΓΓ ′′+′= i                                (10) 
 
where Γ ′ represents the wave attenuation per unit distance and Γ ′′ represents the 
phase shift over the same distance. The assume forms of the variables, equations (5-8) 
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are substituted into the governing equations (1)-(3) and terms of similar order in α  
equated. It is found that for zeroth order, the steady flow solution, the equations of 
continuity and radial momentum are identically satisfied, while the axial momentum 
equation (1) becomes:  
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Here µωρ /Rs = is the shear wave number, KRDa 2= . This equation is similar to 
the classical equation of Hagen-Poiseuilli flow, the solution of which, with no-slip 
boundary conditions, gives a parabolic velocity profile:  
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The M  is the mean Mach number of the steady flow. The linearized acoustic equations 
follow from equating terms of first order in α in the governing equations: 
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Tp += ρ                       (16) 
 
where p is constant, Furthermore, effp kcµσ = , the square root of the Prandtl 
number, and aRk /ω= is the reduced frequency. Note that the Daandε will reflect the 
effect of the porous matrix size on the acoustic problem under consideration. The case 
of 0or1 == Daε corresponds to the plain medium without the presence of the solid 
matrix and any values of 0or10 ><< Daε  represent a porous medium with different 
pore spaces. For the case of 0and1 == Daε , the governing equations (13-15) reduces 
to those obtained by Peat [10] for the case of a pure plain medium. The no-slip 
boundary condition of the fluid velocity at wall: 
 

1at0,0 === ηTu                       (17) 
 
Since the steady flow profile is also parabolic, variational solutions with the following 
form of axial acoustic velocity variation is sought: 
 

constantiswhere)1( 2 CCu η−=                                        (18)
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VARIATIONAL SOLUTIONS 
 

A variational solution of the momentum equation results in expression for constant C: 
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The best approximation to equation (20) corresponds to the minimum of the functional: 
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Thus, the assumed form of trial solution for u, equation (18), is substituted into this 
expression and the minimum is found by setting: 
 

0=∂∂ CF                                                      (22) 
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It is necessary here to consider the equations of energy and state to relate the pressure 
to the density whilst eliminating the temperature, the energy equation corresponds to 
the minimum of the functional: 
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If one assumes a trial solution of the temperature of the form: 
 

constantis),1( 2 DDT η−=                  (25) 
 
Which identically satisfies the boundary conditions on the temperature, then the 
minimum of the functional is found by setting: 
 

0=∂∂ DH                      (26) 
 
An expression for the constant results; namely: 
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Now from equations (16) and (27), 
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And hence the integral form of the continuity equation (23) becomes: 
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Evaluating the integral and substituting from equation (23) and equation (27) for C and 
D leads to an equation for the propagation constant: 
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This is a cubic equation in Γ for which no single analytical solution can be fund, in the 
two limiting cases of either zero steady flow 0=M , or fluid of unit Prandtl number, 1=σ , 
the equation becomes quadratic in Γ  and an analytical solution results.  
 
 
RESULTS AND DISCUSSION 
 
In the limit of steady flow 0.0=M , comparison of variational solution with Peat [10] and 
Zwicker and Kosten [8] in the limits of plain medium 0and1 == Daε  is shown in table. 
1. Large value of µωρ /Rs = can be obtained not only for large tube radii but also for 
high frequencies, large mean densities or pressure and small viscosity. Attention is 
given now to the imaginary part of propagation constant Γ ′′ , the greatest physical 
insight follows from a study of phase velocity W, which when written in non-dimensional 
form is simply the inverse of Γ ′′ , or 
 

Γ ′′== /1/ aWw                                    (31) 
 
Figure1 is a plot of the modulus of wave attenuation per unit distance, Γ ′ and phase 
velocity Γ ′′/1  for varying shear wave number and Mach numbers. It is clear that as the 
Mach number is increased the attenuation for the forward and hydrodynamic sound 
waves is decreased and consequently the phase velocities are increased; thi is due to 
unfavorable collision effect at higher velocities of the forward and hydrodynamic sound 
waves, while the attenuation is decreased for the backward sound wave and 
consequently the phase velocities are decreased; this is due to favorable mean flow of 
retarding the backward sound waves.  
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Figure 2 is a plot of the modulus of wave attenuation per unit distance, Γ ′ and phase 
velocities Γ ′′/1 for varying shear wave number and porosity, it is found that as the 
porosity is increased the attenuation is decreased and the phase velocities are 
increased for all forward, backward and hydrodynamic sound waves; this is due to 
neglecting porous medium effects in damping sound waves, as we move toward the 
plain media limit.  
 
Figure 3 shows the effect of Darcy number on both attenuation and phase velocities. It 
is clear that as the Darcy number is increased the attenuation is increased for forward, 
backward and hydrodynamic sound waves; this is due favorable damping effect of the 
solid matrix of the three types of sound waves. It is also found that as the Darcy number 
is increased the phase velocities are increased for the forward, backward and 
hydrodynamic sound waves; this is due to favorable effect of the porous matrix in 
increasing phase shift of the three sound waves. 
 
 
CONCLUSIONS 
 
It is found that the inclusion of the solid matrix increases attenuation and decreases 
phase velocities for all the forward, backward and hydrodynamic sound waves; this is 
due to favorable retarding effect of the solid matrix on the propagating sound waves. 
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Table 1  
Attenuation , |Γ'|, for the case M = 0 

 

Shear wave 
number, s 

Peat 
[10] 

Zwikker 
and 

Kosten [8] 
Present 

Shear 
wave 

number, s 
Peat 
[10] 

Zwikker 
and 

Kosten [8] 
Present 

0.2 11.797 11.797 11.797 3.0 0.494 0.521 0.494 
0.4 5.846 5.846 5.846 3.2 0.447 0.477 0.447 
0.6 3.840 3.840 3.840 3.4 0.406 0.440 0.406 
0.8 2.821 2.822 2.822 3.6 0.370 0.408 0.370 
1.0 2.199 2.200 2.200 3.8 0.339 0.380 0.339 
1.2 1.776 1.779 1.777 4.0 0.312 0.356 0.311 
1.4 1.469 1.473 1.470 4.2 0.287 0.334 0.286 
1.6 1.236 1.242 1.237 4.4 0.265 0.315 0.264 
1.8 1.054 1.062 1.055 4.6 0.246 0.298 0.245 
2.0 0.909 0.919 0.909 4.8 0.228 0.283  0.227 
2.2 0.791 0.804 0.792 5.0 0.212 0.269 0.211 
2.4 0.695 0.712 0.696 6.0 0.152 0.216 0.151 
2.6 0.616 0.636 0.616 7.0 0.113 0.181 0.112 
2.8 0.550 0.573 0.550 8.0 0.087 0.156 0.087 
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Fig. 1 The attenuation and phase velocities for forward, backward and hydrodynamic sound waves for different values of Mach numbers. 
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Fig. 2 The attenuation and phase velocities for forward, backward and hydrodynamic sound waves for different values of porosity and For M=0.3 and Da = 
0.1, except for Da = 0, ε = 1.0 
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Fig. 3 The attenuation and phase velocities for forward, backward and hydrodynamic sound waves for different values of Darcy numbers and for M=0.3 and ε 
= 0.8, except for Da = 0, ε = 1.0  
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