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ABSTRACT 
 
A new nonlinear finite element model is presented for the static aero-thermal deflection 
of a shape memory alloy (SMA) hybrid composite panel with initial geometric 
imperfection and under the combined effect of thermal and aerodynamic loads. The 
nonlinear governing equations are obtained using Marguerre curved plate theory and 
the principle of virtual work. The effect of large deflection is included in the formulation 
through the von Karman nonlinear strain-displacement relations. To account for the 
temperature dependence of material properties, the thermal strain is stated as an 
integral quantity of the thermal expansion coefficient with respect to temperature. The 
aerodynamic pressure is modeled using the quasi-steady first-order piston theory. The 
Newton-Raphson iteration method is employed to obtain the nonlinear aero-thermal 
deflections, while an Eigen value problem is solved at each temperature and static 
aerodynamic load to predict the free vibration frequencies about the deflected 
equilibrium position. Finally, the nonlinear deflection and free vibration characteristics of 
a SMA hybrid composite panel are presented, illustrating the effect of SMA fiber 
embeddings, temperature rise, dynamic pressure, boundary conditions and an initial 
geometric imperfection on the panel response. 
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INTRODUCTION 
 
The external skin of high speed flight vehicles experiences high temperatures due to 
aerodynamic heating, which can induce thermal buckling and may results in a dynamic 
instability. In general, thermal buckling does not indicate structural failure. However, 
large thermal deflections of the skin panels can change its aerodynamic shape affecting 
reduction in the flight performance. A comprehensive literature review on thermally 
induced flexure, buckling, and vibration of plates and shells was presented by Tauchart 
 [1] and Thornton  [2]. Gray and Mei  [3] investigated the thermal post-buckling behavior 
and free vibration of thermally buckled composite plates using the finite element 
method. Jones and Mazumdar  [4] investigated the linear and non-linear dynamic 
behavior of plates at elevated temperatures. They presented analytical solutions for the 
thermal buckling and post-buckling behavior of a plate strip. Shi et al.  [5] presented a 
finite element solution for the thermal buckling behavior of laminated composite plates 
under combined mechanical and thermal loads.  Ibrahim et al.  [6] investigated the 
thermal buckling and flutter boundaries of thin functionally graded material plates at 
elevated temperature. They adopted an incremental finite element technique to capture 
the effect of the temperature-dependence of material properties on the panel response. 
Ibrahim et al.  [7] presented a finite element solution for the thermal buckling and 
nonlinear flutter performance of thin functionally graded material panels under 
combined aerodynamic and thermal loads. To account for the temperature-dependence 
of material properties, the thermal strain was modeled as an integral quantity of thermal 
expansion coefficient with respect to temperature. Ibrahim et al.  [8] extended the 
formulation presented in  [7] by including the shear deformation effect to make it capable 
of handling thick functionally graded material plates. 
  
The initial geometric imperfections are inherent in many real structures. Therefore, 
many investigations are conducted on the stability analysis and free vibration of 
imperfect structures. Shi et al.  [9] adopted a finite element modal method to solve the 
problem of thermal post-buckling of composite plates with initial imperfections. Shen 
 [10] presented a thermal postbuckling analysis for simply supported imperfect shear 
deformable laminated plates subjected to a uniform temperature rise and resting on an 
elastic foundation. A perturbation technique and an iterative numerical procedure were 
employed to determine the buckling temperature and thermal postbuckling load-
deflection curves. Girish and Ramachandra  [11] investigated the thermal postbuckling 
deflection and free vibration behavior of thermally buckled laminated composite plates 
with initial geometric imperfections. The structural model was based on a higher-order 
shear deformation theory, von Karman nonlinear strain-displacement relations and a 
multi-term Galerkin's approximation. Shariat and Eslami  [12] presented a closed form 
solution for the critical buckling temperature change of an imperfect functionally graded 
plate using classical plate theory. Mirzavand and Eslami  [13] presented a closed form 
solution for the critical buckling temperature change of functionally graded cylindrical 
shells using the Wan-Donnell model for initial imperfections. They utilized the first-order 
classical shell theory along with the Sanders nonlinear kinematic relations. Shen  [14] 
employed a two-step perturbation technique to determine the buckling temperature and 
postbuckling equilibrium paths for an imperfect shear deformable FGM plate with 
temperature-dependent properties. 
 
Shape memory alloys (SMA) have a unique ability to completely recover large pre-
strains (up to 10% elongation) when heated above certain characteristic temperature. 
During the shape recovery process, a large tensile recovery stress occurs if the SMA is 
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restrained. Both the recovery stresses and Young's modules of SMA exhibit nonlinear 
temperature-dependent properties. The variation of the modulus of elasticity and 
recovery stress of a trained Nitinol are presented in Figure1  [15]. Birman  [16] presented 
a  comprehensive review on the literature concerning SMA up to 1997. Tawfik et al.  [17] 
proposed a novel concept in enhancing the thermal buckling and aeroelastic behavior 
of plates through embedding SMA fibers in it. Park et al.  [18] investigated the nonlinear 
vibration behavior of thermally buckled composite plates embedded with shape memory 
alloy fibers. An incremental method was adopted to account for the temperature 
dependent material properties. Ibrahim et al.  [19] investigated the thermal buckling and 
free vibration behavior of thick, shape memory alloy hybrid composite plates. Moreover, 
a frequency domain solution for predicting panel flutter boundaries at elevated 
temperatures was presented. Ibrahim et al.  [20] investigated the nonlinear random 
response of moderately thick composite plates impregnated with pre-strained shape 
memory alloy fibers under combined thermal and random acoustic loads. 
 
This paper is an extension of the work presented in  [19] and  [20] by including the 
influence of geometrical imperfections in the formulation. In this work, a new nonlinear 
finite element model is presented for the aero-thermal buckling and free vibration 
response of an imperfect shape memory alloy hybrid composite (SMAHC) panel under 
combined thermal and aerodynamic loads. The nonlinear governing equations for a 
thin, imperfect rectangular panel are obtained using Marguerre curved plate theory, von 
Karman strain-displacement relations, and the principle of virtual work. To account for 
the temperature-dependence of material properties, the thermal strain is modeled as an 
integral quantity of the thermal expansion coefficient with respect to temperature  [7]. 
Numerical results are provided to show the effect of the temperature rise, pre-strained 
SMA fiber embeddings, dynamic pressure and an initial geometric imperfection on the 
panel response. 
 
 
FINITE ELEMENT FORMULATION 
 
Nonlinear Strain-Displacement Relations 
 
The nodal degrees of freedom vector {θ} of a rectangular four-noded Bogner-Fox-
Schmidt (BFS) C1 conforming plate element can be written as: 
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where {wb} is the nodal transverse displacement and rotations vector and {wm} is the 
nodal membrane displacements vector. Consider the initial geometric imperfection wo 
and the lateral deflection w shown in Figure 2, the Marguerre curved plate strain-
displacement relation along with von Karman large deflection can be written as  [21]: 
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Or in a compact form as: 
 
{ } { } { } { } { }κεεεε οοο zwobm +++=  (3) 
 
{ }οε m , { }οε b , { }οε wo , and { }κz  are the membrane linear strain vector, the membrane 
nonlinear strain vector, inplane strain vector due to geometric imperfection and the 
bending strain vector, respectively. In addition, the initial geometric imperfection is 
assumed to have the form: 
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where a, b are the plate dimensions along x and y directions, respectively.  
 
 
Constitutive Equations 
 
For the kth composite lamina impregnated with SMA fibers, the stress-strain relations 
can be expressed as  [19]: 
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where {σ} and {σr} are the in-plane and the SMA recovery stress vectors at a given 
temperature T. Vm and Vs are the volume fractions of the composite matrix and SMA 
fibers, respectively. In addition, {α}m, [ Q ] and [ Q ]m are the thermal expansion 
coefficient vector of the composite matrix, the transformed reduced stiffness matrix of 
the SMA embedded lamina, and the transformed reduced stiffness matrix of the 
composite matrix, respectively. Note that the SMA fibres are embedded in same 
direction of the composite matrix fibers, and assumed uniformly distributed within each 
layer.  Integrating Equation (5) over the plate thickness h, the constitutive equation is 
obtained as: 
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where  
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Aerodynamic Pressure Loading 

The first-order quasi-steady piston theory for supersonic flow states that  [17]: 
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where Pa is the aerodynamic pressure loading, ν is the airflow velocity on one side of 
the panel, M∞ is the Mach number, q is the dynamic pressure, ρa is the air mass density, 
ga is the non-dimensional aerodynamic damping, Ca is the aerodynamic damping 
coefficient, λ is the non-dimensional dynamic pressure, D110 is the first entry in the 
flexural stiffness matrix D (1, 1) when all the fibers of the composite layers are aligned in 
the airflow x-direction, and a is the stream wise panel length. 
 
Governing Equations 
 
The principal of virtual work states that 
 

0int =−= extWorkWorkWork δδδ  (8) 
 
where the virtual work done by internal stresses can be written as:  
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where [k], [kT] and [kr] are the linear, thermal and recovery stress stiffness matrices; 
[kwo] is a linear stiffness matrix due to geometric imperfection; [n1] and [n2] are the first- 
and second-order nonlinear stiffness matrices, respectively; [n1wo] is a first-order 
stiffness matrix due to geometric imperfection. In addition, {pT} and {pr} are thermal 
and recovery stress load vectors, and {pTwo} and {prwo} are thermal and recovery stress 
load vectors due to initial geometric imperfection.  
 
On the other hand, the external virtual work δWorkext is given as  [18]: 
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where [m], [g] and [a] are mass, aerodynamic damping, and aerodynamic influence 
(stiffness) matrices, respectively. {psal} is a static aerodynamic load vector which is 
function of the initial geometric imperfection wo. 
 
By substituting equations (9) and (10) into (8), the governing equations for an imperfect 
shape memory alloy hybrid composite plate under the combined action of thermal and 
aerodynamic loads, can be written as: 
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SOLUTION PROCEDURES 

 
Static Aero-Thermal Deflection 

 
For the static aero-thermal buckling problem, equation (11) reduces to: 
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where the subscript "s" stands for static. The solution procedure using Newton-
Raphson method is presented in the following. 
 
Introducing the function {Ψ (W)} to equation (12), gives 
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Equation (13) can be written in the form of a truncated Taylor series expansion as: 
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where  
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Thus, the Newton-Raphson iteration procedure for the determination of the post-
buckling deflection can be expressed as follows: 
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Convergence occurs in the above procedure when the maximum value of {δW }i+1 
becomes less than a given tolerance εtol , i.e. max | {δW }i+1 | ≤ εtol . 
 
Free Vibration of Thermally buckled SMAHC Panels 
 

From equation (11), the equation of free vibration about a thermally buckled SMAHC 
plate can be stated as  [8]: 
 
 [ ]{ } [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ){ } 0211 =++++−+++ tswosrTwoat WNNNKKKKAWM λ&&   (16) 
 
This can be written as: 
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where the subscript "t" stands for time-dependent or dynamic. Assuming the solution of 
the above differential equation to take the following form: 
 
{ } { } t

t ecW ΩΦ=  (18) 
 
Therefore, a generalized eigenvalue problem can be stated as: 
 

[ ] [ ]( ){ } 02 =Φ+Ω tanKM  (19) 
 
Thus, the solution procedure comprises the evaluation of the static thermal deflection 
and the associated stiffness matrices by following the Newton-Raphson iteration 
procedure outlined in the preceding section, and then, solving the eigenvalue problem 
of equation (19) for the natural frequencies Ω of a thermally buckled SMA hybrid 
composite plate with initial geometric imperfection. 
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NUMERICAL RESULTS AND DISCUSSIONS 
 
Aero-thermal post-buckling and natural vibration behavior of an imperfect laminated 
composite plate with and without SMA is studied. Convergence is found to occur at a 6 
x 6 finite element mesh and thus used. Table (1) presents the material properties of the 
composite matrix and SMA fiber  [19]. Uniform temperature change was applied to the 
plate, and the reference temperature is assumed to be 21ºC in this study. 

  
Figure 3 shows the thermal postbuckling equilibrium paths for simply supported, eight-
layered symmetric cross ply [0/90/90/0]s graphite-epoxy laminate with three different 
aspect ratios and subjected to a uniform temperature distribution. The curves are 
shown for perfect plate (wo = 0) and also for a plate with an initial geometric 
imperfection of 0.1 times the plate thickness h. The length of the plate a is kept constant 
and a/h = 250. The temperatures have been normalized by Tcr , the buckling 
temperature of a square laminate. It is seen that increasing the plate aspect ratio, 
results in increasing the critical buckling temperatures, and may also results in a more 
pronounced difference between the perfect plate response and the imperfect one. 
Moreover, due to the presence of the initial imperfection, bifurcation buckling does not 
take place. Because any small temperature rise results in a prompt transverse 
deflection of the imperfect panel. To validate the present formulation, the results 
presented in Figure 3 were compared to those of Figure 6 in Ref.  [11] and were found 
to be in a good agreement. 
 
The plate dimensions and stacking sequence adopted hereinafter are 0.381 x 0.305 x 
0.0013 (m) and [0/-45/45/90]s. Figures 4 and 5 demonstrate the effectiveness of using 
Nitinol SMA fibers at certain pre-strain value and different volume fractions in delaying 
the bucking temperature, and suppressing the postbuckling deflection for both clamped 
and simply supported SMAHC plates. Generally speaking, increasing the volume 
fraction of SMA improves the thermal stability of SMAHC plates of different boundary 
conditions. It is also seen that, an initial imperfection 0.1 times the plate thickness h has 
no noticeable effect on the panel response.  
 
Figure 6 shows the gradual evolution of the aerostatic deflection shape of a buckled, 
simply supported SMAHC plate panel with 5% SMA volume fraction, 1% pre-strain and 
a temperature rise of 34 °C. It is seen that the maximum panel's peak amplitude is 
gradually swept back in the flow direction with less static deflection as the non-
dimensional dynamic pressure λ is increased. It is also seen that the difference 
between the perfect and imperfect plate responses increases with increasing λ, i.e. the 
initial imperfection decreases the aerodynamic stiffening effect added to the panel as 
λ increases.   
 
Figure 7 presents the fundamental frequency behavior of a SMAHC plate with SMA 
volume fraction 5% and different pre-strain values. It is seen that the fundamental 
frequencies decrease between room temperature (Tref) and the critical buckling 
temperature (Tcr) due to the thermal expansion effect. At Tcr, the fundamental frequency 
drops to zero as the plate stiffness drops to zero at the buckling point. The frequencies 
increase after passing Tcr because geometrical nonlinearity adds stiffness to the plate. 
For the 1% pre-strain curve, it is seen that there are three null frequencies at three 
temperature values at which the three deflection bifurcations occur, see Figure 5. In the 
postbuckling region, the fundamental frequencies of the SMAHC panels have shown a 
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decrease in value, which is due to the increase in mass offered by SMA fibers as well 
as the decrease in the stiffness compared with the highly deflected plate without SMA. 
For the clamped panel presented in Figure 8, the frequencies related to 5% volume 
fraction show a non-monotonic decrease in the pre-buckling region, due to the non-
monotonic rate of increase of the recovery stresses in this temperature range. For the 
10% and 15% volume fractions curves, it is seen that the fundamental frequency starts 
first to increase as the recovery stresses dominate thermal expansion effect. After 
certain temperature rise, the SMA recovery stresses ceases to fully compensate the 
reduced stiffness due to thermal expansion resulting in a decrease in the natural 
frequencies until reaching null values at the buckling bifurcation point. From these 
curves it may be observed that the presence of a small imperfection in the plate may be 
favorable from the dynamic point view through preventing the plate from having very 
low or null fundamental frequencies at the vicinity of the critical buckling temperature.       
 
        
CONCLUSIONS 
 
In this work, a new nonlinear finite element model is presented for the aero-thermal 
buckling and free vibration response of an imperfect shape memory alloy hybrid 
composite panels under combined thermal and aerodynamic loads. The nonlinear 
governing equations for a thin, imperfect rectangular plate are obtained using 
Marguerre curved plate theory, von Karman strain-displacement relations, and the 
principle of virtual work. The nonlinear temperature dependence of material properties 
for the composite matrix and SMA fibers is considered in the formulation. The Newton-
Raphson iteration method is employed to obtain the nonlinear deflections, while an 
Eigen value problem is solved at each temperature rise to predict the free vibration 
frequencies about the deflected equilibrium position. Results showed that SMA fiber 
embeddings can be very useful in thermal buckling through increasing the buckling 
temperature and decreasing or suppressing the thermal postbuckling deflections. 
Moreover, it is found that increasing the plate aspect ratio may results in a more 
pronounced effect of the initial geometric imperfection. From the free vibration results it 
may be observed that the presence of a small geometric imperfection may be favorable 
from the dynamic point view through preventing the plate from having very low or null 
fundamental frequencies at the vicinity of the critical buckling temperatures. 
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Table 1 Material properties of composite matrix and SMA fiber  
 

Nitinol Graphite-epoxy 
See Figs. 1 and 2 for Young's 
modulus and recovery stresses. 
G  25.6 GPa 
ρ   6450 kg/m3 
ν   0.3 
α   10.26 x 10-6 / ºC 

E1    155 (1-6.35x10-4 ∆T) GPa 
E2    8.07 (1-7.69x10-4 ∆T) GPa 
G12  4.55(1-1.09x10-3∆T)GPa 
ρ       1550 Kg/m3 
ν        0.22 
α1    -0.07x10-6(1-0.69x10-3∆T) / ºC 
α2    30.6x10-6(1+0.28x10-4∆T) / ºC 

 
 
 
 
 
 
 

 

 
Fig. 1. Variation of modulus of elasticity recovery stresses with temperature 

 
 
 
 
 

 
 

Fig. 2. Displacement distribution sketch 
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Fig. 3. Postbuckling deflection curves for different aspect ratios (a/b) of the laminated 
plate (0/90/90/0)s 

 
 
 
 

 

Fig. 4. Postbuckling deflection curves for a clamped SMAHC plate with 3% pre-strain 
and different volume fractions 
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Fig. 5. Post buckling deflection curves for a simply supported SMAHC plate with 5% 
volume fraction and different pre-strains 

 
 

 
 

Fig. 6. Central line deflection curves for a simply supported SMAHC plate at different 
non-dimensional dynamic pressure λ and temperature rise 34 °C   
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Fig. 7. Fundamental frequencies of simply supported SMAHC plates with 5% volume 
fraction and different pre-strain values  

 
 
 
  

 
 

Fig. 8. Fundamental frequencies of clamped SMAHC plates with 3% pre-strain and 
different volume fraction values 

 




