
177 SM Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

13th International Conference 
on Applied Mechanics and 
Mechanical  Engineering. 

Military Technical College 
Kobry El-Kobbah, 

Cairo, Egypt. 

 
FINITE ELEMENT ANALYSIS OF COMPRESSOR BLADES UNDER 

EXTENSION, BENDING, AND TORSION LOADS 
 

Part II: Anisotropic Materials 
 
 

FARID*A.M.,  ELSHAFEI* M.A. and  KOUSA* S. 
 
 
ABSTRACT 
 
The objective of this research is to develop a finite element model for the analysis of the 
dynamic as well as the static response of a compressor blade made of composite 
materials subjected to extension, transverse, and torsion loads. The equation of motion 
is derived based on the variation technique with the principle of the total potential 
energy of a laminated fiber reinforced structures with different fiber orientation angles. 
The formulation is based on the classical laminate theory and the warping effect is 
taken into consideration. A one dimensional linear isoperimetric element with Lagrange 
and hermit cubic shape function are used to model the axial and transverse 
deformation. A two end nodes and one intermediate node as well is implemented for 
modeling the torsion deformation. The bending – torsion and axial coupling are 
introduced in the stiffness and mass matrices. The obtained results of the present 
model are compared to the available finite element and analytical results of others 
investigators, a good agreement is generally obtained. 
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NOMENCALUTRE 
 
ε   Axial strain. 
γ   shear strain. 
ϕ(x)    The twist angle at each section. 
θ    The bending angle (slope). 
ρ   Density. 
ω    Natural frequency of the vibration. 
ν   Poisson’s ratio. 
λ   The Warping function. 
φ1, φ2, and φ3.  Torsion nodal displacements. 
∆(λ)    polynomial of degree n in λ.  
Ω(x)    Constant distributed load acting on beam element. 
a    Height of cross section of the beam. 
b    Width of cross section of the beam. 
c1, c2, c3, c4.      Constants of integration. 
faxial(x)   Axial shape functions. 
fbending(x)   Bending shape functions. 
ftorsion(x)   Torsion shape functions. 
fAxial-Warping  The effect of warping on torsion shape functions. 
h   Single Element length. 
m(x)    Mass per unit length. 
maxial   Axial mass matrix. 
mbending  Bending mass matrix. 
mtorsion  Torsion mass matrix. 
n   Number of elements. 
u1, and u2.   Axial nodal displacements. 
w1, θ1, w2, θ2  Bending nodal displacements. 
V   Volume. 
A    Cross sectional area (A = a.b). 
A, B, and D   Extension, coupling, and bending matrices. 
E   Modulus of Elasticity. 
F    Total mechanical Loads on single beam element. 
Fxwarping  The effect of torsional warping on torsional stiffness. 
G   Shear modulus. 
Im(x)    Mass polar moment of inertia per unit length. 
I    Second area moment of inertia. 
J.    Area Polar moment of inertia. 
[K]    Stiffness matrix. 
Kaxial.   Axial stiffness matrix. 
Kbending.  Bending stiffness matrix. 
Ktorsion. . Torsion stiffness matrix. 
Kwarping.   Cross-sectional warping coefficient. 
L   Length of the Cantilever beam. 
P(x).    Constant axial force acting on beam element. 
T(x).    Constant Torque moment acting on beam element. 
Ui.    Internal strain energy of the total system. 
We.   External work done on the system. 
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INTRODUCTION 
 
The critical structural element of a typical gas turbine engine is the compressor or 
turbine disk carrying several blades around its circumference. These units operate in 
severe environments characterized by high speeds of rotation and temperature. Most of 
the failures reported have been due to vibration-induced fatigue of bladed disk units. 
The failure of even a single blade in an engine can adversely affect the performance. 
The impact of composite materials use on jet engine performance is very substantial. 
The higher order of the thrust-to-weight ratio is achieved with the advanced graphite 
fiber composite. A classical structural analysis is performed to improve the static and 
dynamic performance of these critical unites under extension, transverse, and torsion 
loads.  
 
Several researches have studied the analysis of laminated composite beams. Kapania 
R. K. et. al [1] proposed an exact solutions for a free vibration analysis of simply 
supported composite beams based on the classical theory. Vinson J. et. al [2] studied a 
structures made of composite materias at which the effect of the transverse shear 
deformation and rotary inertia are neglected. A finite element analysis of symmetrically-
laminated beam based on the first-order shear deformation theory was reported by 
Chen and Yang [3]. The exact solution for a beam with various boundary conditions is 
presented by Chandrasekhar et. al [4]. It is noted that the references [2, 4] neglect the 
Poisson effect.  
 
The calculation of the uncoupled modes of arbitrarily shaped cantilever beams under 
bending load was investigated [5-8], but little work has been done on calculating the 
coupled modes of such beams. Modelling of beam structures with coupled behaviour is 
discussed in [9–14]. Sakawa et.al [9] used a shear-in deformable theory to model a 
mass coupled beam. The internal beam damping was included in their model. The 
beam was mounted on a rotating shaft, and an actuation torque was provided by a 
motor. Banks and Smith [10] studied a coupling problem similar to that of Sakawa et.al. 
However, in their model the warping effects and the internal shear damping were 
considered. Shen [11] also employed a shear-in deformable theory in which the 
warping effect was not included in composite beams. Banerjee and Williams [12] 
studied the vibration of a beam with geometrical coupling. Although they used the 
shear-deformable theory, warping effect was ignored.  
 
A shear deformable theory was simplified by Sankar [13] to be applicable for one-
dimensional beam analysis. St. Venant torsion and warping effects are explicitly 
included in his model. Sankar’s theory shows some identical results to those obtained 
by Boresi et al [14]. Quite good agreement for a laminate beam is obtained between 
Sankar results and those reported by Tsai et al [15]. It has been shown by Suresh et al 
[16] that warping effects can significantly influence the natural frequencies of a 
composite beam, and hence, warping should not be neglected. Whitney [17] has shown 
that the shear-indeformable theory is not capable of studying the behavior of a laminate 
in pure torsion. He has also indicated that the effect of shear-deformation on the 
torsional stiffness for a variety of laminates with (b/h < 15) can be important. 
 
In the present work a finite element formulation is developed to study the static and 
dynamic response for a composite compressor blade made from a fibre reinforced 
composite material with different stacking sequence subjected to a multi acting loads.  
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The warping effect is taken into consideration during the study. A MATLAB code is 
developed to perform the analysis for different examples. 
 
 
THEORITICAL FORMULATION 
 
The compressor blade is model as an advanced beam under the assumptions of Euler-
Bernoulli theory of beam as shown in Fig.1 and Fig 2. The structure is subjected to 
axial, transverse, and torsion loads [18]. The torsion deformation of the beam cross 
section subjected to a torque moment is shown in Fig.3 and Fig 4, and the following 
formulations are obtained [19]. 
  
                   )cos()cos( βϕβ ⋅−+⋅=∆ rrY                                               (1)  
 
where ϕ is the twist angle for each section “x”. For small angleϕ , cos ( ϕ ) ≅ 1, sin ( ϕ ) ≅ 
ϕ , therefore,  
 
                  )sin(βϕ ⋅⋅−=∆ rY                                                (2) 
 
Since  θϕ ⋅⋅−=⋅−=∆ XZZY                                  
 
                   )sin(β⋅= rZ                                                                         (3)                         
Where, θ twist is the twist angle per unit length.    Similarly,  
 
                     )sin()sin( βϕβ ⋅−+⋅=∆ rrZ                                              (4) 
                     )cos(βϕ ⋅⋅=∆ rZ                                       (5) 
                     θ⋅⋅=ϕ⋅=∆ XYYZ               (6) 
 
Thus the assumed displacements field equations based on the classical beam theory at 
any point in the x, y, and z directions are: 
 

                            

( )

).......()(.)()(
)......()(.)(

).......()(..)()(

cxyxwxW
bxzxV

a
x
xyz

x
xwzxUxU S

φ
φ

φ

+=
−=

∂
∂

−
∂

∂
⋅−=

               (7) 
 
where, Us(x), w(x), and ϕ(x) are the axial displacement, the bending displacement, and 
the torsion twist angle, respectively. The warping deformation of a bar with non circular 
cross section is shown in Fig.4. The warping function must satisfy following two 
conditions: 
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From these conditions, the warping function can be written as; 
 
                                zyKwarping ⋅⋅=λ                  (10) 
 
where, K warping is the cross-sectional warping coefficient. For rectangular cross section 
beam K warping = 1 
  
STRAIN-DISPLACEMENT RELATIONS 
 
The strain displacement relations can be given as; 
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THE LAMINA STRESS STRAIN RELATIONS 
 
The lamina stress-strain relations in the principle material axes is given as [20], 
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where, the reduced stiffness constants in the principal material directions are: 
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And the elastic compliances constants of a lamina are given as; 
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The transformed stress-strain relation of a lamina in the structure geometric axes x, y is 
given by; 
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Where, ijQ  is transformed stiffness coefficient [20]: 
 
 
VARIATIONAL FORMULATION  
 
The equations of motion can be detected by means of variational approach by equating 
the internal strain energy and the Virtual work expressions such as [8];  
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The element mass matrix is obtained using the kinetic energy term as;  
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where ρ is the density of the material, v is the velocity (displacement differentiation), 
and m(x) is the mass per unit length of the beam. 
 
By substituting equations (15) into equation (17) the strain energy expression can be 
written as; 
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The laminates extension, coupling, and bending matrices are given as; 
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FINITE ELEMENT MODELING  
 
A Lagrange shape functions for the axial deformation Us(x) is used [21]; 
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The transverse deformation w(x) is expressed in terms of a hermit cubic shape function 
[21]   
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For the three nodal displacements on beam element as shown in Fig 5., the shape 
function of the Torsion displacements φ(x) can be expressed as [19,21],   
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The Nodal displacements for axial, bending and torsion displacements are termed as; 
"u1, u3", "w1, θ1, w3, θ3" and “φ1, φ2, φ3” respectively, which are illustrated in the 
Fig.5 and Fig.6. By inserting the shape functions into the displacement equations (7), 
the displacement equation can be written as, 
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where fx, fy and fz are the combined shape function of the axial, bending and torsion 
displacement equations, and the parameter s = x/h 
 
  
EQUATION OF MOTIOIN 
 
By differentiating the displacement field equations (26), and substituting into equations 
(17), (18), and (21) the element force vector one can obtain; 
 

                                [ ] [ ]    ee

..

e FqKqM =⋅+



⋅                                          (27) 

 
where [ ] [ ]  eee Fand,K,M  are the element mass matrix, the element stiffness matrix and 
the element force vector given in the Appendix.  
 
Assembling the mass, stiffness matrices and the load vector for the whole structure.  
The global equation of motion is expressed as; 
     

    [ ] [ ]    FqKqM
..

=⋅+



⋅                                         (28) 

 
For free vibration analysis the right hand side of equation (28) is equal to zero [15]. 

 
A MATLAB code is developed to check the present model for a certain structure with 
different boundary condition and different geometry and materials properties. 
 
 
VALIDATION EXAMPLE 
 
A static and dynamic response of a graphite epoxy composite beam subjected to a 
transverse load with the following properties is proposed to validate the model. The 
dimensionless material properties of a laminated composite beam; 
 E1/E2 = 25, G12 = 0.5(E2), and ν12 = 0.25. 
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The composite beam dimensionless geometry (length/thickness), are L/a = 5, 10, 50. It 
is subjected to uniformly distributed transverse load = 10000 N/m. The beam is solved 
for a case of symmetric cross-ply (0°/90°/0°) and the case of anti-symmetric cross-ply 
(0°/90°). All laminas are assumed to be made of the same material and with the same 
thickness. The bending deflections are calculated in non-dimensional form as follows: 
 

                                     
4

22
2

L
10aEAWw
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⋅⋅⋅⋅

=
         (29) 

 
where W is the tip transverse deflection of the beam, A is the beam cross-section area, 
Ω is the uniformly distributed transverse load.  
 

 
Table (1): Non-dimensional central tip deflection for symmetric cross-ply laminated 

composite cantilever beam (0°/90°/0°) 
 

L/a 
Non-dimensional central tip deflection 

HOBT SOBT FOBT CBT Present 
Model 

5 6.824 5.948 6.698 2.198 2.19783 
10 3.455 3.315 3.323 2.198 2.19783 
50 2.251 2.235 2.243 2.198 2.19783 

 
 
Table (2): Non-dimensional central tip deflection for anti-symmetric cross-ply laminated 

composite cantilever beam (0°/90°) 
 

L/a 
Non-dimensional central tip deflection 

HOBT SOBT FOBT CBT Present 
Model 

5 15.279 15.695 16.436 11.293 11.28776 
10 12.343 12.400 12.579 11.293 11.28776 
50 11.337 11.338 11.345 11.293 11.28776 

 
 
Tables (1) and (2) show the model non-dimensional deflections to be very close to the 
values reported in reference [22], where HOBT, SOBT, FOBT, and CBT stand for high 
order beam theory, second order beam theory, first order beam theory, and classical 
beam theory respectively. 
 
To test the dynamic response for graphite-epoxy composite cantilever beam. The 
material properties are as follows [23]; 
E1 = 144.8 GPa.,             E2 = 9.65 GPa.,      G12 = 4.14 GPa., 
 ν12 = 0.3,  ρcomp = 1389.23 kg/m3. 
The composite beam with a geometry such as L/a = 15 and symmetric cross-ply lamina 
with stacking sequence (0°/90°/90°/0°) and (45°/-45°/-45°/45°). The fundamental 
natural frequencies are given in non-dimensional form as follows: 
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2

1
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aE
L

⋅

ρ
⋅ω=ω

                   (30) 
where ω is the free vibration natural frequency, ρcomp is the composite material 
density. 
 
 

Table (3): Non-dimensional natural frequencies of different symmetric cross-ply 
laminated composite cantilever beam. 

 

Composite beam layer 
orientation FSDT HSDT Present Model 

(0°/90°/90°/0°)  0.9231 0.9241 0.95527 
(45°/-45°/-45°/45°) 0.5551 0.5965 0.56187 

 
 
Table (3) shows the model non-dimensional natural frequencies compared by results 
introduced reference [23]. 
 
The obtained results in both static and dynamic cases are accepted such that the 
difference in static deflection of classical beam theory (CBT) of symmetric cross-ply 
(0°/90°/0°) cantilever beam for different L/a ratios is found to be 0.0076 % while for anti-
symmetric cross-ply (0°/90°) cantilever beam, the difference between the static 
deflection calculated and the CBT is found to be 0.046 %. In dynamic free vibration, the 
non-dimensional natural frequency for symmetric cross-ply (0°/90°/90°/0°) compared 
with FSBT and the difference was 3.48 %, and for symmetric cross-ply (45°/-45°/-
45°/45°) compared with FSBT, the difference was 1.219 %.  In spit of that the present 
model is taking the warping effect into consideration. 
 
To validate the static and dynamic responses for the model under a multi-acting loads 
(axial – transverse – torsion), a graphite/epoxy T300/934 composite beam [45 /-45 /-45 
/45] with the following properties are examined. 
ν = 0.3;         ρ =1389.23 kg/m3;       G12 = 4.14 X 109 N/m2, 
 E1 =144.8 X 109 N/m2;                    E2 = 9.65 X 106 N/m2;       
L = 0.1524 m   ; b =0.06096 m   a = 0.03048 m  
 P(x) = 100 N/m   ; Ω(x) =-10000 N/m   T =1000 N.m/m 
 
The coupled natural frequencies and tip deflection for a composite beam for a different 
beam lengths are shown in Table (4). 
 
Table (4): The natural frequencies of T300/934 symmetric cross-ply laminated composite 

cantilever beam [45 /-45 /-45 /45] 
 

L in 
mm b/a Tip deflection in 

mm modes ωcoupling 
(rad/sec) fcoupling (Hz) 

100 1 -0.003375 
1 56330.8 8965.32527 
2 355118.29 56518.8312 
3 975434.6 155245.238 
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L in 
mm b/a Tip deflection in 

mm modes ωcoupling 
(rad/sec) fcoupling (Hz) 

2 -0.001687 
1 57565.37 9161.81319 
2 354715.16 56454.6711 
3 977232.07 155531.314 

3 -0.00112506 
1 56810 9041.59232 
2 356089.05 56673.3325 
3 975953.82 155327.875 

200 

1 -0.0033752 
1 28784.4 4581.17954 
2 177371.92 28229.6178 
3 488331.24 77720.3307 

2 -0.0016876 
1 28706.57 4568.79251 
2 177437.91 28240.1205 
3 488390.2 77729.7145 

3 -0.001125 
1 28662.2 4561.73081 
2 177462.28 28243.9991 
3 488353.67 77723.9006 

300 

1 -0.0033752 
1 19114.034 3042.09299 
2 118327.05 18832.3349 
3 325486.82 51802.8363 

2 -0.0016876 
1 19109.76 3041.41277 
2 118311.47 18829.8553 
3 325563.34 51815.0149 

3 -0.001125 
1 19100.0 3039.85941 
2 118343.93 18835.0214 
3 325531.16 51809.8932 

 
  
Fig.7 shows the axial, transverse and torsion deformation on 3-D drawing. The bending 
mode shapes from 1st to 5th are shown in Fig.8 up to Fig.12. The bending torsion 
coupling mode shapes is illustrated from Fig.13 up to Fig.17. The coupled natural 
frequencies are shown for different beam lengths 
 
 
CONCLUSION 
 
A finite element model for solving a compressor blade made of fiber reinforced 
composite materials was investigated. The structure was subjected to a multi acting 
loads. The warping deformation was taken into consideration. The torsion-bending and 
axial coupling was shown in mass and stiffness matrices. The obtained results were 
found much closed to other theories FOSD and HOSD etc. The coupled torsion, 
bending, and axial deformation for static deflection as well as the modes of the free 
vibration analysis was computed.  A higher order shear deformation theories for the 
assumed displacement field equations is proposed to be a future work.    
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  Fig.6. Degrees freedoms of Fixed-Free 

beam 
 

 
 
 
 
 

 
Fig.7. The static coupled bending-torsion 

deflection 
 

 
Fig.8. The First bending mode shape 

 

 
Fig.9. The Second bending mode shape 

 

 
Fig.10. The Third bending mode shape 
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Fig.11. The Fourth bending mode shape 

 

 
Fig.12. The Fifth bending mode shape 

 
Fig.13. The first bending-torsion coupling mode 

shape 

 
Fig.14. The second bending-torsion coupling 

mode shape 
 

 
Fig.15. The third bending-torsion coupling mode 

shape 

 
Fig.16. The fourth bending-torsion coupling 

mode shape  



192 SM Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

 

Fig.17. The fifth bending-torsion coupling mode 
shape 

 
 
 
 
 
Appendix: 
The element stiffness matrix [ ]eK ;  
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The element stiffness matrix [ ]eK =  
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The element mass matrix [ ]eM = 
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The element load vector  eF ; 
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