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ABSTRACT 
   
This study is devoted to the investigation of the effects of centripetal and Coriolis forces 
on the forced vibration of a simply supported beam with a single crack under moving 
mass load. As in the case of beams without a crack, it is shown that these forces must 
be considered in the analysis. The combined effects of these forces are especially 
important for the cracked long beams. The response of the system is obtained in terms 
of Duhamel integral. The differential equation which involves a non-linearity on its right 
hand side is solved via an iterative procedure. The results are exemplified for various 
values of the variables.            
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NOMENCLATURE 
 
E Modulus of elasticity (N/m2) 
I Second moment of area for the cross-section of the beam (m4) 
Y,y Vertical deflection of the beam (m), dimensionless vertical deflection of the beam  
X,x Horizontal location of the beam (m), dimensionless horizontal location of the beam 
T,t Time (sec), modified time 
L,l Length of the beam (m),  dimensionless length of the beam 
L0,l0 Position of the crack (m), dimensionless position of the crack 
V,v Velocity of the moving mass (m/sec), modified velocity of the moving mass 
g Gravity (m/sec2) 
ρA Density of the beam (kg/m3), Cross-section of the beam (m2) 
B,H,D Width of the beam (m), Height of the beam (m), Depth of the crack (m) 
γ Non-dimensional crack-depth ratio 
θ Non-dimensional crack sectional flexibility 
λ Eigen-values of free vibration  
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INTRODUCTION 
 
The dynamic response of beams under moving forces or masses has been investigated 
for more than a century. A wealthy of results, both analytical and experimental, were 
tabulated for a number of cases, different in loading and geometry. The reason for 
these studies is the observations that as a beam structure is subjected to moving loads, 
the dynamic transversal deflection as well as the stresses could become significantly 
higher than those for the static load could. After substantial works have been carried 
out in this field, researchers have tent to studying the dynamics of cracked structures in 
the last decade. Indeed, the existence of crack induces a local flexibility which is a 
function of the crack depth, thereby changing its dynamic behavior and its stability 
characteristic [1]. The dynamic behavior of cracked structures has been investigated by 
many analytical and computational methods [2,3,4,5,6]. While some of these 
researchers were dealt with the detection of crack, some others were based on 
investigating the effects of cracks on the frequencies of the beam. Dimarogonas gave a 
review of the dynamics of cracked structures [3]. The continuous cracked beam 
vibration theory was developed by Chondros et al. for the lateral vibration of cracked 
Euler-Bernoulli beams with single-edge or double-edge open cracks [7]. Ostachowitz 
and Krawezuk presented a method analysis of the effect of two open crack upon the 
frequencies of the natural flexural vibrations in a cantilever beam [8]. Rizos and 
Aspragathos  used a rotational spring to model the crack and detect the crack location 
through the measurement of the amplitudes of the component [9]. Liang et al. studied a 
similar problem by finite element method [10]. Lin et al. have studied beam vibrations 
with an arbitrary number of cracks using a hybrid analytical/numerical method that 
permits the efficient computations of the eigen-solutions for various boundary 
conditions [11]. Each crack was presented by a massless rotational spring with 
sectional flexibility in this work. Transfer matrix method has been efficiently used to 
reduce the number of constants of the eigen-functions which are solved through the 
satisfaction of boundary conditions. 
 
As for the dynamics response of cracked beams under moving forces or loads, not 
much work is available in the literature. Parhi and Behera [12] used the Runge-Kutta 
method to find the deflection of a cracked circular shaft subjected to a moving load. 
Mahmoud used an equivalent static load approach to determine the stress intensity 
factors for a cracked beam under moving load [13]. Mahmoud and Zaid [14] used an 
iterative modal analysis approach to determine the cracked beam’s response. Most of 
these works have analyzed the problem numerically or hybrid numerically. Lin et al. 
presented an extended method for the beam vibrations with an arbitrary number of 
cracks for obtaining the modes and frequencies of the system [6]. Lin et al. analyzed 
the forced response of a cracked cantilever beam under a concentrated moving load 
[15]. In this paper, the cracked beam system was modeled as a two-span beam, each 
of which obeys Euler-Bernoulli beam theory. Forced response was obtained by the 
modal expansion theory using the determined eigen-functions. However, as is proved in 
the following paragraphs, the method presented is deficient in many respects and must 
be reformulated. 
 
In analyzing the response of cracked beams under moving loads, centripetal and 
Coriolis forces were always neglected. However, as was proved by Michaltsos and 
Kounadis [16] for the case of un-cracked beams, these terms can appreciably affect the 
beam response and must be inserted into the theory depending upon the beam’s size 
and the velocity of the moving mass.   
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Therefore, the present work inserts the effects of centripetal and Coriolis forces into the 
dynamic analysis of simply supported beams with a crack under moving mass load. It 
should be expected that the existence of mass rather than a force and a crack in the 
analysis makes the formulation much complicated. The reason for this complexity is the 
existence of nonlinear terms on the right hand side of the differential equation in the 
case of mass loads. The analysis is performed for a single-side crack. Forced response 
is obtained in terms of Duhamel integrals. 
 
 
Eigen-Value Analysis 
 
Let us consider a hinged-hinged beam of length L with an open crack located at  x = L0.  
A body of mass M  is moving on the beam with a constant velocity  V.  The dimensions 
of the uniform cross-section of the beam are: width B, height H crack depth D (Fig. 1). 
The crack divides the beam into two parts. According to Euler-Bernoulli beam theory, 
the equation of motion for each part in the case of free vibration can be written as 
 

∂ ∂
+ ρ = < <

∂ ∂

4 2
1 1

04 2 0,                  0Y YEI A X L
X T

              (1) 

 
∂ ∂

+ ρ = < <
∂ ∂

4 2
2 2

04 2 0,                  Y YEI A L X L
X T

              (2) 

 
Here,  1Y   and  2Y   are the vertical displacements, ρA  is the mass per unit length. The 
boundary conditions for a simply supported beam are given by  
 

′′ ′′= = = =1 2 1 2(0, ) 0,    ( , ) 0,    (0, ) 0,    ( , ) 0,Y T Y L T Y T Y L T    (3) 
 

The compatibility requirements enforce continuities of the displacement, bending 
moment and shear force, respectively, across the crack and can be expressed as  

− +=1 0 2 0( , ) ( , ),Y L T Y L T                (4) 
− +′′ ′′=1 0 2 0( , ) ( , ),Y L T Y L T      (5) 
− +′′′ ′′′=1 0 2 0( , ) ( , ),Y L T Y L T      (6) 

 
Here, 0 0,L L+ −   denote the locations immediately above and below the crack position, 
respectively. Discontinuity condition at the crack can be written as   

 
+ − +′′′ ′− = θ2 0 1 0 1 2 0( , ) ( , ) ( , ),Y L T Y L T LY L T             (7) 

 
where  1θ  is the non-dimensional crack sectional flexibility, which is a function of the 
crack extent [4]. For a single sided open crack [8],  

 
 θ = πγ γ  
 

2
1 6 ( ) Hf

L
          (8) 

 
Here, D Hγ =  is the non-dimensional crack-depth ratio, and  
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γ = − γ + γ − γ + γ − γ + γ2 3 4 5 6( ) 0.6384 1.035 3.7201 5.177 7.553 7.332 2.4909f       (9) 
 
and, for a double sided crack [8] 

 
 θ = πγ γ  
 

2
1 6 ( ) Hf

L
       (10) 

 
γ = − γ + γ − γ + γ2 3 4( ) 0.5335 0.929 3.5 3.181 5.793f    (11) 

 
We introduce the following parameters:  

 
= = = = =1 2 1 2

1 2 1 2,   ,   ,   ,   Y Y L L Xy y l l x
L L L L L

                  (12) 

 
= = = =1 2

1 2,  ,  ,   ,X X V Tx x v t
L L L L

              (13) 

 
Thus, Eqs. (1) and (2) can be written as   

 
∂ ∂

+ ρ = < <
∂ ∂

4 2
1 1 0

3 4 2 0,                  0y y LEI A x
L x t L

     (14) 

∂ ∂
+ ρ = < <

∂ ∂

4 2
2 2 0

3 4 2 0,                1y y LEI A x
L x t L

   (15) 

 
The conditions imposed on the problem then become 

 
′′ ′′= = = =1 2 1 2(0, ) 0,    (1, ) 0,    (0, ) 0,    (1, ) 0y t y t y t y t  

   
− + − + − +           ′′ ′′ ′′′ ′′′= = =           

           
0 0 0 0 0 0

1 2 1 2 1 2, , ,        , , ,        , , ,L L L L L Ly t y t y t y t y t y t
L L L L L L

    (16) 

 
+ − +     ′′′ ′− = θ     

     
0 0 0

2 1 1 2, , ,L L Ly t y t y t
L L L

         (17) 

 
Using the separable solution  ω= φ =( ) i( , )  ( ) ,    1,2i t

iy x t x e i  in Eqs.(14) and (15) lead to  
 

φ − λ φ = < <4 0
1 1( ) ( ) 0,          0IV Lx x x

L
            (18) 

φ − λ φ = < <4 0
2 2( ) ( ) 0,          1IV Lx x x

L
            (19) 

 
where  

 
ρ ω

λ =
2 3

4 A L
EI

      (20) 

 
Using Eqs.(16) and (17) , the conditions on 1φ   and  2φ   are readily obtained as:  
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− + − + − +           ′′ ′′ ′′′ ′′′φ = φ φ = φ φ = φ           
           

0 0 0 0 0 0
1 2 1 2 1 2,    ,    L L L L L L
L L L L L L

  (21) 

 
− + +     ′′′ ′φ − φ = θ φ     

     
0 0 0

2 1 1 2
L L L
L L L

    (22) 

 
On the other hand, using the boundary conditions in Eqs.(16) , we obtain  

 
φ =1(0) 0,            φ =2 (1) 0,            ′′φ =1 (0) 0,            ′′φ =1 (1) 0                   (23) 

 
The solutions of Eq.(18) and Eq.(19) can be shown to be  

 
φ = λ + λ + λ + λ < < 0

1 1 1 1 1( ) sin ( ) cos ( ) sinh ( ) cosh ( ),      0 Lx A x B x C x D x x
L

      (24) 

 
       φ = λ − + λ − + λ − + λ − < <       
       

0 0 0 0 0
2 2 2 2 2( ) sin cos sinh cosh ,       1L L L L Lx A x B x C x D x x

L L L L L
    (25) 

 
where   A’s , B’s , C’s and D’s are constants to be determined . Using the conditions 
given by Eq.(23)  

 
= =1 1 0B D      (26) 

 
Second and fourth conditions on 2 ( )xφ   yield  

 
− − − −       = λ + λ + λ + λ       

       
0 0 0 0

2 2 2 20 sin cos sinh cosh  L L L L L L L LA B C D
L L L L

     (27) 

 
− − − −       = − λ − λ + λ + λ       

       
0 0 0 0

2 2 2 20 sin cos sinh cosh  L L L L L L L LA B C D
L L L L

    (28) 

 
Eqs.(27) and (28) can be written in matrix form as  

 
 − − − −        λ λ λ λ                      =   − − − −          − λ − λ λ λ                      

20 0 0 0

2

20 0 0 0

2

sin cos sinh cosh0
0

sin cos sinh cosh

AL L L L L L L L
BL L L L
CL L L L L L L L
DL L L L

     (29) 

 
or  

×

 
    =    
 
  

2

2
2 4

2

2

0
0

A
B

B
C
D

     (30) 
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Using the matching conditions at the crack where  0x L=  , we have  
 

− +   ′′′ ′′′φ = φ   
   

0 0
1 2 :L L

L L
 

       − + = − λ + λ + λ λ       
       

0 0 0 0
2 2 1 1 1 1os sin cosh + sinhL L L LA C A c B C D

L L L L
          (31) 

 
 ′′′ ′φ − φ = θ φ  
 

0
2 1 1 2 :L

L
 

       + − λ λ − λ − λ + θ λ − θ λ =       
       

0 0 0 0
2 2 1 1 1 1 1 2 1 2os + B sin cosh sinh 0L L L LA C A c C D B D

L L L L
   (32) 

 
   

φ = φ   
   

0 0
1 2 :L L
L L

 

       + = λ + λ + λ λ       
       

0 0 0 0
2 2 1 1 1 1sin s sinh + shL L L LB D A B co C D co

L L L L
           (33) 

 
   ′′ ′′φ = φ   
   

0 0
1 2 :L L

L L
 

       − = λ + λ − λ λ       
       

0 0 0 0
2 2 1 1 1 1sin s sinh - shL L L LB D A B co C D co

L L L L
   (34) 

 
Eqs.(31),(32),(33) and (34) can be written in matrix form as   

 
     
     
     =
     
     
          

2 11 12 13 14 1

2 21 22 23 24 1

2 31 32 33 34 1

2 41 42 43 44 1

A t t t t A
B t t t t B
C t t t t C
D t t t t D

   (35) 

 
or 

 

×

   
   
   =
   
   
      

2 1

2 1
4 4

2 1

2 1

A A
B B

T
C C
D D

    (36) 

 
where  
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θ λ θ λ       = λ − λ = − λ − λ       
       

θ λ θ λ   = − λ = λ   
   

 = λ 
 

0 0 0 01 1                          11 12

0 01 1
13 14

0
21

s sin , sin s ,
2 2

sin ,                                   cosh ,
2 2

sin ,    

L L L Lt co t co
L L L L

L Lt t
L L

Lt
L

 = λ = = 
 

θ λ θ λ   = − λ = − λ   
   

θ λ     = λ + λ = λ    
    

0
22 23 24

0 01 1
31 32

0 0 01
33 34

    cos ,          0,           0,

sin ,                                    cos ,
2 2

sh sin ,             sinh
2

Lt t t
L

L Lt t
L L

L L Lt co h t
L L L

θ λ  + λ  
  

   = = = λ = λ   
   

01

0 0
41 42 43 44

s ,
2

 0,      0,      sinh ,        cosh  

Lco h
L

L Lt t t t
L L      (37) 

 
Inserting Eq.(36) into Eq.(30) yields  

 

× × × ×

     
            = × = =        
     
          

1 1 1

1 1
2 4 4 4 2 4 2 4

1 1 1

1 1

0 0
0

0

A A A
B B

B T R R
C C C
D D

                        (38) 

where  
 

11 12 13 14
2 4

21 22 23 24

r r r r
R

r r r r×

 
=  
 

     (39) 

 
Here, the elements of  2 4R ×  are given by  

= + + +
= + + +
= + + +
= + + +
= + + +
= + + +
= +

11 11 11 12 21 13 31 14 41

12 11 12 12 22 13 32 24 42

13 11 13 12 23 13 33 14 43

14 11 14 12 24 13 34 14 44

21 21 11 22 21 23 31 24 41

22 21 12 22 22 23 32 24 42

23 21 13 22

r b t b t b t b t
r b t b t b t b t
r b t b t b t b t
r b t b t b t b t
r b t b t b t b t
r b t b t b t b t
r b t b + +

= + + +
23 23 33 24 43

24 21 14 22 24 23 34 24 44

t b t b t
r b t b t b t b t

    (40) 

 
The existence of non-trivial solutions requires  

 
11 13

21 23

det 0
r r
r r
 

= 
 

     (41) 

 
Using Eqs.(26), (27), (28), (31), (32), (33) and (34), the following relations among  A’s, 
B’s ,    C ’s  and  D ’s  can be found :  
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= λ = λ = λ = λ
= λ − = λ − = λ − = λ −

1 0 2 0 3 0 4 0

5 0 6 0 7 0 8 0

sin ,            s ,            sinh ,           s ,
sin (1 ),    s (1 ),    sinh (1 ),    s (1 )

n L n co L n L n co h L
n L n co L n L n co h L

     (42a) 

 
= − = = − =

θ λ
+

= = = =
+  

+ 
 

2 1 1 2 1 1 2 2 1 2 3 1

1
1

1 6 3 81 1
1 1 1 2 1

4 2 5 7 3 8
4

7

A ,              ,           ,           ,

2,        O ,          O ,             

O A B n A C O C D n C

nn n n nn OC A C
n O n n n n n

n

         (42b) 

 
Eliminating all the coefficients in Eqs.(42a and 42b) , the frequency equation can also 
be obtained as    

 
  θ λ θ λ θ λ  = + + − +    

    

2
8 3 6 11 1 1

3 1 4 3 1 2
7 52 2 2

n n n nn n n n n n
n n

      (43) 

 
Eq.(43) derived in an abbreviated way is another form of the frequency equation given 
by Eq.(41), and yields the same values for λ ’s .    
 
The equation of motion of the beam under a moving mass M can be written as [16] 

 

[ ] ( )
4 2

4 2 ,           1,2,...i i
M

Y YEI A M g a X VT i
X T

ρ δ
∂ ∂

+ = − − =
∂ ∂

    (44) 

 
Here,  ( )X VTδ −  is  Dirac’s delta function.  Since the transverse displacement Y is a 
function of  X  and time  T , we obtain the transverse acceleration MY a=&&  as 

 
2 2Ma Y V Y V Y′′ ′= + +&& &              (45) 

 
where 2Y Y X T′ = ∂ ∂ ∂& ,  2 2Y Y X′′ = ∂ ∂ ,  2 2Y Y T= ∂ ∂&& . The second and third terms on the 
right side of Eq.(45) correspond to the centrifugal and Coriolis accelerations. Inserting 
Eq.(45) into Eq.(44) yields 

 

( ) ( )
4 2

2
4 2 2i iY YEI A Mg X VT M Y V Y VY X VT

X T
ρ δ δ

∂ ∂  ′′ ′+ = − − + + − ∂ ∂
&& &         (46) 

 
We introduce the following quantities: 

 
0

0,      x ,      ,      ,      i i
i

Y L TX Vy t v
L L L L L

= = = = =l          (47) 

 
Thus, in each segment, Eq.(46) can then be expressed in a non-dimensional form as 

 

( ) ( )
4 23 2 2

2
4 2 2i i

i i i
y yAL MgL MLx vt y v y vy x vt

EI EI EIx t
ρ δ δ

∂ ∂  ′′ ′+ = − − + + − ∂ ∂
&& &          (48) 

 
A series solution of  Eq.(48) can be sought in the form  
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( ) ( ) ( )
0

,
N

n n
n

y x t x q tφ
=

=∑      (49) 

 
where normalized eigen-functions ( )n xφ  of the cracked system are given by Eq.(24) 

and (25), ( )nq t  are the generalized coordinates and  N  is the number of eigen-
functions used to approximate the solution. 
 
Substituting Eq.(49) into Eq.(48), multiplying by ( )j xφ  and integrating from 0 to 1 lead 
to 
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=
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N
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m

N
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m
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φ δ φ
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=

=

 ′′− − 
 
 ′− − 
 

∑ ∫

∑ ∫&

        (50) 

 
Using the ortogonality condition of eigen-functions, Eq.(50) can be written as  

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2

1 1 1
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&&

&& &

 

 
   (51) 

 
A very important point that must be recalled here is that ,although the eigen-functions 
are orthogonal, they are  not orthonormal in general. In other words, they result in 

1

2

0

m dx kφ =∫ . In order to make this term normalized, the constant A’s in the expressions 

for eigen-functions  must be chosen as 1/A k= . However, this value must also take 
place on the right hand side of Eq.(51).  
 
A closed form solution to Eq.(51) is not possible. However, we can seek approximate 
solution of Eq.(51). In order to solve Eq.(51), a technique developed by Michaltsos and 
Kounadis [16] will be used. This method has also been used by the writers in a different 
paper [17]. In fact, this method is a different version of Picard’s method applied to non-
linear ordinary differential equations in which the non-linearity takes place on the right 
side of the differential equation. According to this method, a first approximate solution of 
the differential equation is obtained by keeping only the first term on the right side of 
Eq.(51). This leads to 
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( )2
n n n n

Mgq q vt
AL

ω φ
ρ

+ =&&        (52) 

or  
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0
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n
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LMg f vt t
AL V Lq q

LMg f vt t
AL V L
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where  
 

= λ + λ + λ + λ1 1 1 1 1( ) sin ( ) cos ( ) sinh ( ) cosh ( ),      n n n n nf vt A vt B vt C vt D vt       (54) 
 

= λ + λ + λ + λ2 2 2 2 2( ) sin ( ) cos ( ) sinh ( ) cosh ( ),n n n n nf vt A vt B vt C vt D vt       (55) 
 

The solution of the homogenous part of Eq.(51) for  0Lt
V L

≤   is 

 
( )1 1 2sin cosn n nh
q d t d tω ω= +          (56) 

 
where 1 2,d d  are constants to be determined. Let us assume that the proper solution to 
Eq.(51) has the form 

 
( )1 1 1 1 1sin cos sinh coshn n n n n n n n np
q A t B t C t D t= Ω + Ω + Ω + Ω   (57) 

 
where Ω =n nvλ . Substituting Eq.(57) into Eq.(51) yields  

 
1 1

1 12 2 2 2

1 1
1 12 2 2 2

,           
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n n
n n

n n n n

n n
n n

n n n n

A BMg MgA B
AL AL

C DMg MgC D
AL AL

ρ ρω ω

ρ ρω ω

= =
−Ω −Ω

= =
+Ω +Ω

          (58) 

 
Thus, the general solution to Eq.(51) for 0 /x L L<   takes the form 

 
( ) ( )1 1 2sin cosn n n n p

q t d t d t qω ω= + +     (59) 
 
In order to determine 1d  and 2d  in Eq.(59), we use the initial conditions ( )1 0 0=nq  and 

( )1 0 0=&nq . After some operations, one readily finds 
 

( )1 1 1 2 1 1,           n
n n n n

n

d A C d B D
ω
Ω

= − + = − −     (60) 

 
The last form of ( )1nq t  in the first region can thus be written as 
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ω ω
ω

≤

Ω
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     (61) 

 

In the same manner, for 0Lt
V L

>  the solution of homogeneous part and the proper 

solution can be written as  
 

( )2 1 2sin cosn n nh
q d t d tω ω= +           (62) 

 
and  

 
( )2 2 2 2 2sin cos sinh coshn n n n n n n n np
q A t B t C t D t= Ω + Ω + Ω + Ω      (63) 

 
One can readily show that the coefficients in Eq.(63) are in the forms 
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Hence, the general solution of ( )2nq t  in the second region can be written as   
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 (65) 

 
In order to determine 1d  and 2d  in Eq.(65), we use the initial conditions ( )2 0 0nq =  and 

( )2 0 0nq =& . After some operations, one readily finds 
 

( )1 2 2 2 2 2,           n
n n n n

n

d A C d B D
ω
Ω

= − + = − −      (66) 

 
The last form of ( )2nq t  in the first region can thus be written as 
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Now, we insert Eq.(61) into Eq.(51) for the first part  0Lt
V L

≤ : 
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For the second part 0Lt
V L

> , we have  
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Here, 1 1 1 2 2 2, , , , ,m m m m m mq q q q q q& && & &&  are to be found from Eqs.(61) and (67). Writing Eq.(66) in 
Eq.(67) together, we have 
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Under zero initial conditions, the solution of Eq.(70) has the form 
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and 
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Ln n
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A very important point here is that if the time at which we wish to plot the curve is 
smaller than the time required for the load to arrive at the crack, one still must use 

1( )nq t  obtained for 1( )n aφ . When the load passes over the crack, then 2 ( )n aφ  must be 
used on the right hand side of Eq.(51).  
 
 
RESULTS AND DISCUSSION 
 
Using the results of the present paper, the dimensionless deflection y versus modified 
time  t  has been plotted for various values of the variables. As an example, we assume 
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L = 20 m, EI = 2.7265.107 Nm2, 37800  kg/mρ = , A=0.2 0.2 × m2. The number of terms 
in the series has been taken as  n = 4. It has been observed that the series rapidly 
converges. Since the right hand side of the differential equation is nonlinear and 
involves the unknown functions, as the number of terms in the series is increased, the 
solution time highly increases. Fig.(2) shows the deflection of the    mid-point (X = 10 
m) depicts the individual effects of centripetal and Coriolis forces for the crack location 
L0 = 5 m: V = 20 m/s, 0.3γ =  and M = 5000 kg. It is obviously observed that the effect of 
centripetal force is greater than that of Coriolis force. The comparison of deflection y at 
the mid-point (X = 10 m) for various values of crack position L0 = (1, 3, 5, 8, 10) for the 
values γ = 0.3, V = 20 m/s, M = 3000 kg is shown in Fig.(3). In order to determine the 
critical crack position, L0 was taken (1,3,5,8,10) m. Since the moments are zero at the 
boundaries and almost zero at the mid point, we can expect that the critical crack 
position would be between these two values. Indeed, for the crack position X = 3 m, 
deflection becomes maximum. Such a critical point is also available on the second part 
of the beam where 10<X<20. Depending upon the values of the variables in the 
problem, these critical points must be determined for each time. .Figs. (4a), (4b) and 
(4c) depict the effects of the crack depth-ratio at the point X = 5 m, X = 10 m and X = 15 
m, respectively. It is obviously seen that the dimensionless deflections increase with 
increasing values of γ . We see from these figures that the deflection is not strongly 
effected by the crack depth-ratio. In Figs. (5a), (5b) and (5c), taking L0 = 8, V =20 m/s, 
M = 3000 kg , the variation of dimensionless deflection with dimensionless x is plotted  
for various instants of modified time  t.  The crack depth-ratio were taken γ = 0.1, γ = 
0.3, γ = 0.6 in Figs. (5a), (5b) and (5c), respectively. The amplitude y slowly increases 
for increasing value of γ .  
 
One of the main purpose of the present work is to see the effects of centripetal and 
Coriolis forces. In Fig.(6a), the effects of the constant force corresponding to F = Mg , 
the mass load involving inertia force  ( Mg+Ma ) and the mass load with inertia force 
plus centripetal and Coriolis forces have been plotted  for the values  0.1γ = , V = 20 
m/s, L0 = 8 m,  M = 3000 kg. Solid line corresponds to constant force F.  Dashed line 
corresponds to the mass load with inertia effect while dotted line corresponds to the 
mass load involving the totality of the effects. It is obvious that the deflections for the 
mass load are greater than that corresponding to the constant force  F  while the 
deflections for the mass load with inertia force plus centripetal and Coriolis forces are 
greater than that corresponding to mass load. As seen in Fig.(6b) and (6c),  as γ  
increases,  deflections also increase.  Of course, these results are expected.  
Numerical calculations during this study have revealed that the centripetal forces are 
more effective on the vibration than Coriolis forces.  
  
It should be expected that as the mass increases the centripetal and Coriolis forces 
would become more influential. Indeed, As depicted in Figs.(7a), (7b) and (7c) 
compared to the response under a  constant force  F = Mg , beam’s behavior under 
mass loads with or without involving centripetal and Coriolis effects becomes quite 
different. It is clearly seen that the dynamic deflections increase with increasing values 
of the mass.     
 
While formulating the present study, we have also corrected many problems in the 
literature. For example, we have pointed out that the eigen-functions are in general not 
orthonormal. We have proposed a normalization procedure to normalize them. The 



76 DVProceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

present problem has been fully described and solved by giving all the details. Since 
some of the details was not given in some of the previous papers, it has been detected 
that the solution strategy has deficiency in many ways. It has been pointed out that the 
coefficients of the eigen-functions cannot be found explicitly, but they must be stated in 
terms of A’s , as in Eqs.(42). The coefficients A’s are obtained by means of fact that 
eigen-functions must also become orthonormal.              
 
As an extension of the present study, the effect of a vehicle suspension system on the 
forced vibration of a bridge with a single and double-sided crack can be studied by 
involving the centripetal and Coriolis forces into the analysis. 

 
 
CONCLUSION 
 
Forced vibration of a cracked beam under moving mass loads is investigated in the 
present paper. Euler-Bernoulli beam theory has been used. Centripetal and Coriolis 
forces which become important in the case of long beams and mass load with high 
velocity have been inserted into the theory.  The insertion of these terms into the theory 
makes the differential equation non-linear. Non-linear equation has been solved by 
iterative approach. The response of the system has been obtained in the form of 
Duhamel integral.  
 
In the present work, some erroneous results given in some previous papers have been 
corrected and reformulated. For example, eigen-functions are orthogonal, but not 
orthonormal in general. But, they have been assumed to be orthonormal, a result which 
is wrong. The present study involves the correct solution of this problem and adds 
novelty. 
 
In order to see the effects of centripetal force, Coriolis force and the crack, the results 
have been exemplified for various values of the parameters. It has been concluded that 
the response in the case of mass load appreciably differs from that of constant force F. 
Although regular curves for the response of the beam are obtained in the case of 
constant force, rather wavy curves are obtained in the case of mass loads due to the 
interaction between mass load and the beam. In addition, it has been observed that the 
response of the system is appreciably affected by the centripetal and Coriolis forces. 
Another important conclusion from the analysis is that the effect of centripetal force is 
greater than of the Coriolis force.         
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Fig.1. Simply supported cracked under a moving mass M  with a constant velocity V. 
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Fig 2. Comparison of centripetal and Coriolis effects: 
X= 10 m,  L0 = 5 m,  V = 20 m/s,  M = 5000 kg,  γ = 0,3. 

 
 

 
 

Fig 3.  The effect of crack position on the response of the beam: 
L0 = (1, 3, 5, 8, 10 ) m  γ = 0.3 m, V = 20 m/s, M = 3000 kg, X = 10 m. 
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Fig 4. The effect of crack depth on the beam response at the point   a.) X = 5 m,   

b.) X = 10 m,  c.) X = 15 m :    ( γ = 0.1, 0.3, 0.6,  L0 = 8m,  V = 10 m/s,  M = 2000 kg ) 
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Fig 5.  The shape of the beam during the passage of the moving load for:  L0=8, 

V=20 m/s,  M=3000 kg,  (t = 0.04, 0.0 8, 0.12, 0.16, 0.2).  a) γ=0.1  b) γ=0.3  c) γ=0.6 
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Fig 6. Comparison of the effects of constant force F, the mass load and the mass load 
involving centripetal and Coriolis forces:  V = 20m/s,  L0 = 8m,  M = 3000kg. Solid line 

corresponds to the constant force (F = Mg). Dashed line corresponds to the mass load 
without centripetal and Coriolis. Dotted line corresponds to the mass load with 

centripetal and Coriolis.  
a.) γ = 0.1,   b.) γ = 0.3,   c.) γ = 0.6 
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Fig 7.  Comparison of the effects of constant force F , the mass load and the mass load 

involving centripetal and Coriolis forces :  V = 10 m/s,  L0 = 8 m,  γ = 0.3. Solid line 
corresponds to the constant force (F=Mg). Dashed line corresponds to the mass load 

without centripetal and Coriolis. Dotted line corresponds to the mass load with 
centripetal and Coriolis. 

a.) M = 3000 kg,   b.) M = 5000 kg,   c.) M = 7000 kg 
 




