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ABSTRACT 
 
In this work, a numerical modeling to study the vibro-acoustic behavior of a double plate 
system (such as double glazing system) taking into account of viscosity and the thermal 
conductivity of the fluid between the two plates in the acoustic equations, is presented. 
The dynamic equations of the coupled system are established. To solve these 
equations, a variational formulation for the fluid and the two plates is developed. The 
discretization by the finite element method of this variational formulation gives after 
minimization a symmetrical coupled matrix system with nonlinear aspect. An iterative 
procedure is derived to determine the eigenmodes of the coupled system. The modal 
approach is adopted to determine the vibro-acoustic system’s response which 
numerical results show the importance of the viscothermal effects in the case of thin 
fluid layers.  
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INTRODUCTION 
 
This paper deals with the vibro-acoustic interaction between a thin fluid layer and two 
vibrating plates. In  the case of thin fluid layer, the effects of viscosity and thermal 
conductivity of the fluid must be taken into account in the acoustic equations : Bruneau 
[1] and Morse [2]. Many applications have been considered. In the same context, 
Cummings [3] and Dockumaci [4] have studied the propagation of acoustic waves in 
narrow tubes. Moreover, Onsay [5] and Beltman [6, 7] have investigated the dynamic 
interaction between bending vibrations of a plate and a thin fluid layer. To overcome the 
acousto-elastic problems, Bruneau [8, 9], Karra [10] and Henriquez [11] have analyzed 
the vibro-acoustic behavior of a membrane coupled to a micro-cavity which can be 
used in miniaturized transducers. Bossart [12] has developed an hybrid numerical and 
analytical method, to analyse the acoustic boundary problems in viscothermal fluids. 
Moreover, Mottelet [13] has developed a new model for double glazing integrating 
absorption due to viscothermal air effects in a glass spacer. 
 
This paper deals with numerical investigation on two plates vibro-acoustic behaviour 
enclosing a viscothermal fluid cavity. The acoustic equation is established in two 
dimensional form including the effects of the fluid’s viscosity and thermal conductivity. 
In the same way, dynamic equations of plates vibrations are established in 
dimensionless form. To solve the equations, a total variational formulation of the 
coupled system is established. Its discretization gives after minimisation a nonlinear 
symmetrical coupled matrix system which is solved numerically using an iterative  
approach. The numerical results are compared to those corresponding to a perfect fluid 
model. 
 
 
ACOUSTO-ELASTIC MODEL 
 
The double panels system is composed of a viscothermal fluid layer of  thickness 

0h  
enclosed between two clamped plates as sketched in Fig 1. In this case, ( )1 2w , w% % , 

( )1 2nn ,
r r

 and xl  are respectively the plates deflections, the outward normal of plates, and 

the half length of plates. sp% is the external imposed pressure applied on plate 1 and p%  is 
the pressure in the fluid layer. The dynamic behavior of the double panels system is 
governed by both equations of fluid and plates. 
 
Dynamic Equations of the Fluid Layer 
 
The dynamic equation of the fluid layer is established by considering the following 
hypothesis : 

- The fluid layer thickness is small compared to both plates dimensions and 
acoustic wavelength, 

- The viscous and thermal boundary layer thickness are small compared to plates 
dimensions, 

- The velocity in the z direction is small compared to the in-plane velocities.  
 
In fact, the dynamic equation of the fluid, in the case of harmonic problem ( i

t
∂
= − ω

∂
, ω  

is the angular frequency ) is derived by substitution Navier-Stokes equation, energy 
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equation and the state equation of fluid supposed to be an ideal gas into continuity 
equation [1].   
 
According to the hypothesis defined above, taking account for the coupling conditions, 
the dynamic equation of fluid cavity can be derived. In fact, the dimensionless fluid 
pressure is solution of the following bidimensional differential equation which is written 
for a viscothermal fluid area ( Σ ) as:  
 

V
V

2 22 2
2 0
eff 1 22 2 2

0 1

p p K (k ).p ( w w )
x y c B (k )

   
   
   
   

ω γ∂ ∂+ + = −
∂ ∂

−l           (1) 

 
with : 1 2

1 2
0 0

w ww and wh h= =% %  are dimensionless deflections of the plates. 

0

xx =
%

l
, 

0

yy =
%

l
, 

0

zz
h

=
%  are dimensionless coordinates and 0l  is a characteristic length of 

plates. 
a

0

p
p

p
=  where a 0p, p and p are respectively the dimensionless pressure in the fluid cavity, 

the acoustic pressure and the physical pressure at rest. 

V
0

0k h
ρ ω

=
µ

 is the dimensionless shear wave number. 

0ρ is the physical density of the fluid and µ  is the coefficient of the viscosity.  

V
V

0
eff

eff

K (k )
C (k )
ω= l  is a dimensionless wave number affected by viscothermal effects.  

V V
V

1 2
eff 0

B (k ) B ( k )
C (k ) c

ψ
=

γ
 is the sound speed affected by viscothermal effects.  

0
0

0

p
c = γ

ρ
 is the sound speed in the fluid and p

V

C
Cγ =  is the specific heats ratio. 

V
V

V V

1
1 cosh(k i)B (k ) 2 1

k i sinh(k i)

 
 
  

− −= +
− −

 characterize the viscous effects in the fluid layer. 

V V

1

2 1
1B ( k ) 1 B ( k )

−
  
  
    

γ −ψ = − ψ
γ

characterize the thermal effects in the fluid layer. 

p2 Cµ
ψ =

λ
 is the Prandtl number and λ  is the fluid thermal conductivity. 

 
Plates Dynamic Equations 
 
The dynamic equations of plates are governed by both Kirchhoff equations and the 
coupling conditions which can be derived respectively, for two area ( Σ1 ) and  ( Σ2 ), in 
dimensionless form as follow :  

1 1 1p 0 p p 02
1 1 s2 4 2

0 0 0 0 0

D h e h
w w p p

c c
γ γρ

∆∆ −ω = −
ρ ρl

           (2) 

p 0 p p 022 2 2
2 22 4 2

0 0 0 0 0

D h e h
w w p

c c
γ γ ρ

∆∆ −ω = −
ρ ρl

           (3) 
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where 1 1

1
1

3
p p

p 2
p

E e
D

12(1 )
=

−ν
 and 

3
p p2 2

p 22
p2

E e
D

12(1 )
=

−ν
 represent respectively the bending stiffness 

of  plate1 and plate 2. ( )p p1 2
E , E , ( )p p1 2

,ν ν  and ( )p p1 2
,ρ ρ are respectively the Young’s 

modulus, the Poisson’s ratio and the densities of plates. p p1 2
e and e are respectively the 

thickness of plate1 and plate 2. sp  is the dimensionless external pressure applied on 

plate 1 defined by : s
s

0

p
p

p
=
%   

Equations (2) and (3) represent the dynamic of plates where the coupling with fluid is 
realised in the seconds terms. 
 
 
VARIATIONAL FORMULATION 
 
To solve the system of equations (1), (2) and (3), a total variational formulation is 
established. It is obtained by a linear appropriate combination of the variational 
formulation of the fluid associate to the equation (1) and the two variational formulations 
of the plates associate to the equations (2) and (3). These variational formulations are 
obtained by multiplying the different equations by sufficiently regular test functions and 
integrating over the fluid or structure domain. The discretization of this variational 
formulation by finite element method, gives after minimisation the following symmetrical 
coupled matrix system : 
 

( )

{ }

{ }

{ }

{ }

{ }

{ }V V

S 2 S 11 1 1

S 2 S
2 2 2 2

t t
21 2

2
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−ω −

−ω =

− −ω
ω

        (4) 

 
where ( )S S

1 2[K ], [K ]  and ( )S S
1 2[M ], [M ]  are respectively the stiffness matrices and mass 

matrices of plates. 
VH(k )    and 

VQ(k )    are respectively the matrix of the inertial effects 
and the matrix of the acoustic effects of fluid. 1 2C and C        are the coupling matrices. 

{ } { }( )1 2U , U , { }P and{ }extF  are respectively nodal displacements vectors of plates,  nodal 
pressure vector in the fluid cavity and nodal external force vector. 
 
 
DYNAMIC ANALYSIS OF THE COUPLED SYSTEM 
 
The modal approach is adopted in order to reduce the size of the coupled matrix 
system. This approach needs to determine the acousto-elastic modes [14,15] and 
modal projection of dynamic equations. Then, dynamic responses are determined by 
modal recombination. It is noted that the associate eigenmodes system  has a 
nonlinear aspect due the two matrices  

VH(k )    and 
VQ(k )    which depend on 
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frequency, so that an iterative procedure [16] is derived to determine the acousto-
elastic modes. 
 
This procedure consists of resolving the following iterative system : 
 

( )
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
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

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         (5) 

 
r, jω  is the eigenfrequency of eigenmode number r calculated at iteration j. This 

procedure starts with a first estimate value for the expected eigenfrequency. In fact, the 
starting values for all eigenmodes correspond to the eigenfrequencies of the inviscid 
and adiabatic fluid with the following parameters: V1B (k ) 1=  , V2B ( k )ψ = γ  and 

Veff 0C (k ) c= . 
 
The convergence test needs to verify the following condition: 
 

r, j r , j 1

r, j

−ω − ω
≤ ε

ω
  (ε<<1)            (6) 

 
If the eigenmodes [ ]S1Φ  and [ ]S2Φ  of each plate alone and the eigenmodes [ ]fΦ  of the 
fluid cavity in vacuum are used, the size of the matrix system (5) can be much reduced 
for calculation of the eigenmodes of the coupled system. In fact, the modal matrices of 
each plate alone and fluid cavity in vacuum can be written as follow :  
 

[ ] [ ]t S0 2
Si i Si r SiKS

iK •

 
    = Φ Φ = ω     
  

O

O
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=

 =
          (7) 

[ ] [ ]t S0
Si i SiM 1S

iM
 
    = Φ Φ =     
  

O

O

, i = 1, 2             (8) 
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f 0 f r fH k0H •

 
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  

O

O

           (9) 

[ ] [ ] [ ][ ]t
f 0 fQ 10Q

 
 = Φ Φ =  
  

O

O

          (10) 
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where r Si•ω  are the eigenfrequencies of a clamped plate ( i ) in vacuum. S0
i[K ]  is the 

classical finite element stiffness matrix of plates ( 0S S0
i i2

0 0

h[K ] [K ]
c

γ=
ρ

). S0
i[M ]  is the classical 

finite element mass matrix of plates ( 0S S0
i i2

0 0

h[M ] [M ]
c

γ=
ρ

). r f•ω  is the eigenfrequency 

number r of the air layer. r fk •  is the modal wave number index r(
V

2
2 2r f
r f 02

eff r f

k
C (k ( ))

•
•

•

ω
=

ω
l ). 

0[H ]  is the fluid inertial effect classical finite element matrix which is related to the 
inertial fluid effects matrix V r, j 1[H(k ( ))]−ω  :   
 

V
V

2
0 1 r, j 1

r, j 1 02
0

c B (k ( ))
[H(k ( ))] [H ]−

−

ω
ω =

γl
          (11) 

 

0[Q ]  is the fluid compressibility classical finite element matrix  which is related to the 
fluid compressibility effects matrix V r, j 1[Q(k ( ))]−ω  : 
 

V
V

V

2
0 1 r, j 1

r, j 1 02
eff r, j 1

c B (k ( ))
[Q(k ( ))] [Q ]

C (k ( ))
−

−
−

ω
ω =

γ ω
          (12) 

 
According to the use of eigenmodes of each plate alone and fluid cavity in vacuum, the 
reduced eigenvalues matrix system becomes :  

{ }

{ }
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V

0 2 2
r S1 r, j2

0 0

0 2 2
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0 0

t t 2 2 2
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  
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      (13) 

 
where { }P , { }1U  and { }2U  are respectively pressure in the fluid cavity and 
displacements of plates 1 and 2 which are expressed in the modal basis of fluid in 
vacuum [ ]fΦ  and in the modal basis of each plate alone [ ]S1Φ  and [ ]S2Φ  : 
 

{ } [ ] { }t
f PP = Φ , { } [ ] { }t

S1 1U1U = Φ , { } [ ] { }t
S2 2U2U = Φ . 

 
Hence, the coupling matrices between fluid cavity and plates index 1 and 2 become : 
[ ] [ ] [ ][ ]t

Si i fCiC = Φ Φ ,  i = 1, 2 
 
Moreover, due to the fact that the first eigenfrequency of the fluid cavity is equal to zero, 
the B.IRONS transformation [17] is used in order to isolate the first eigenmodes of the 
fluid cavity  and write a classical eigenvalue system. 
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NUMERICAL RESULTS 
 
In this part, the vibro-acoustic behaviour of a double plates system enclosing a 
viscothermal fluid cavity in which the effects of viscosity and thermal conductivity of fluid 
and acousto-elastic interaction are taking into account is investigated. The geometrical 
and physical features of the studied system are: 
 

0 1m=l , x y 125 mm= =l l , p1 p2e e 1 mm= = , 0h 1mm= , 3
p1 p2 2710 Kg / mρ = ρ = ,  p1 p2 0.3ν = ν = , 

4
p1 p2E E 7 10 MPa= = , 3

0 1.2 Kg / mρ = , 0c 340 m / s= , 0T 298 K= , 22.56 10 W / m K−λ = , 
5 21.82 10 Ns / m−µ = , pC 1004 J / Kg K=  , VC 716 J / Kg K= . 

 
Acousto-Elastic Modes 
 
The eigenfrequencies of the fluid cavity in vacuum, of each plate alone and of the 
coupled system are calculated with the same plane geometry for fluid cavity, plates and 
coupled system with a mesh of 15 15×  linear quadrilateral elements. Table 1 regroups 
the eigenfrequencies of a clamped plate in vacuum. The numerical eigenfrequencies of 
the fluid cavity in vacuum are presented in Table 2 and compared to the analytical 
values calculated by the following equation [9] :  
   

V

22

eff
m n

x y

C (k ) m nf .
2 2 2

  
= +        l l

 

 
where (m, n) are the fluid cavity indices modes. 
 
The eigenfrequencies of the coupled system are presented in Table 3. The real 
eigenfrequencies represent those of each plate alone. The imaginary part of the 
complex eigenfrequencies traduce the viscothermal damping of the coupled system.    
 
Figure 2 shows the deformed shape of the first plate, the modal pressure distribution in 
the fluid layer and the deformed shape of the second plate corresponding to the first 
acousto-elastic mode of the coupled system. All the deformed shapes present a 
maximum value in the centre. The deformed shapes of the two plates are different 
compared to the modal pressure distribution in the fluid layer. 
 
Vibro-Acoustic Response 
 
The vibro-acoustic responses are determined by modal recombination in the case of 
double plates system excited by an harmonic uniform normal external pressure on the 
first plate. In order to identify the vibro-acoustic behaviour of the double plates system, 
it is presented respectively in Fig. 3 the non-dimensional modulus of the displacement 
in the first plate centre, the non-dimensional modulus of the displacement of the second 
plate centre and the non-dimensional modulus of the pressure in the fluid cavity centre, 
versus frequency. Fig 3 shows clearly the viscothermal effects which are traduced by a 
considerable damping of the modulus displacements and pressure and a decrease of 
resonance frequencies as compared to the perfect fluid model. Moreover, in Fig. 4 is 
presented the non-dimensional pressure in the fluid cavity centre versus frequency for 
different fluid layer thickness. It is observed that, for thick fluid layer thickness (h0 = 10 
mm), the two graphics corresponding to a viscothermal fluid model and a perfect fluid 
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model are almost similar. So, the viscothermal effects decrease with the increase of the 
fluid layer thickness. Furthermore, the effects of viscosity and thermal conductivity 
should be taken into account in the case of thin fluid layers. 
 
 
CONCLUSION 
 
In this paper, the analysis of a double plates system enclosing a thin fluid layer is 
presented. The acousto-elastic model is established in dimensionless form including 
viscothermal effects of the fluid. To solve the equations, a total variational formulation is 
derived. Its dicretization by finite element method gives after minimisation a nonlinear 
symmetrical matrix system which is resolved using an iterative procedure. The modal 
approach is adopted to determine the vibro-acoustic responses of the coupled system. 
Numerical results of a viscothermal fluid model are compared to those corresponding to 
a perfect fluid model. They show the importance of the viscothermal effects on both the 
coupled eigenmodes and dynamic responses. Indeed the viscothermal effects generate 
a more important damping and a shift to left of dynamic responses in the domain 
frequency in the case of a thin fluid layer. 
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Table 2. Eigenfrequencies of a viscothermal fluid cavity enclosed between  
two rigid panels 

 

Eigenfrequencies (Hz) 
Mode Analytical Numerical Mode Analytical Numerical 
0 0 0.00 0.00 2 2 1852.40 – 73.10 i 1860.09 –73.30 i 
1 0 637.99 – 44.37 i 638.64 – 44.41 i 3 0 1966.90 – 75.20 i 1985.44 –75.61 i  
1 1 911.60 – 52.34 i 912.53 – 52.39 i 3 1 2075.30 – 77.20 i 2093.11 – 77.54 i 

2 0 1300.40 – 61.80 i 1305.82 – 61.97 i 3 2 2371.60 – 82.30 i 2390.11 – 82.63 i 

2 1 1457.50 – 65.20 i 1462.63 – 65.39 i    

Table 1. Eigenfrequencies of  
a clamped  plate in vacuum 

 
Mode Eigenfrequencies 

1 1 140.05 
2 1 285.06 
1 2 285.06 
2 2 415.75 
3 1 511.00 
1 3 513.79 
3 2 630.72 
2 3 630.72 
4 1 818.35 
1 4 818.35 
3 3 830.04 
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Table 3. Eigenfrequencies of the coupled system 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.1. Double plates system (In plane (x, z) representation). 
 
 

 
 
 
 
 
 
 

Mode Eigenfrequencies (Hz) Mode Eigenfrequencies (Hz) 
1 139.42 – 0.076 i 18 630.73 
2 140.05 19 806.91 + 1.60 i 
3 281.72 + 0.87 i 20 816.71 + 7.60 i 
4 282.72 + 0.93 i 21 818.36 
5 285.07 22 829.84 + 0.094 i 
6 285.07 23 830.05 
7 413.49 + 0.15 i 24 906.91 + 73.85 i 
8 415.75 25 917.32 – 19.82 i 
9 510.68 – 1.08 i 26 923.80 
10 510.66 – 1.10 i 27 923.80 
11 510.69 – 1.11 i 28 928.76 
12 511.00 29 1108.29 + 0.31 i 
13 513.36 – 0.013 i 30 1109.38 + 0.79 i 
14 513.79 31 1109.42 + 0.97 
15 626.77 – 8.01 i 32 1109.44 
16 629.73 – 9.56 i 33 1109.44 
17 630.73 34 1297.09 – 61.61 i 

 
 
 
Thin fluid layer                                
    Pressure p%                                  

1nr

2nr

sp%

x%  y%
z%

Plate 1 

Plate 2 

xl xl

h0 



78 ANProceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

 
 
 

0
0.05

0.1
0.15

0.2
0.25

0
0.05

0.1
0.15

0.2
0.25

0

0.1

0.2

0.3

0.4
W 

x 

y 

0
0.05

0.1
0.15

0.2
0.25

0
0.05

0.1
0.15

0.2
0.25

0

0.05

0.1

0.15

0.2

0.25

W 

x 
y 

Fig.2. First eigenmode shape 

First plate deformed shape 
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Fig.3. Vibro-acoustic response versus frequency 

Displacement modulus in the  
first plate centre (h0 = 1 mm) 

 

Displacement modulus in the  
Second plate centre (h0 = 1 mm) 

 

Pressure modulus in the fluid cavity centre 
(h0 = 1 mm) 
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Fig.4. Vibro-acoustic response versus frequency 
for different fluid layer thickness 

 

 

h0= 2.5 mm 

h0= 5 mm 
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