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ABSTRACT 
 
Based on both molecular mechanics and computational structural mechanics, a three-
dimensional (3D) equivalent beam element is developed to model a C-C covalent bond 
on carbon nanotubes (CNTs) whereas the van der Waals forces between atoms in the 
different walls of multi-walled CNTs are described using a rod element. The buckling 
characteristics of CNTs are conveniently analyzed by using the traditional finite element 
method (FEM) of a 3D beam and rod model, termed as molecular structural mechanics 
approach (MSMA). Moreover, to model the CNTs with large length or large diameter, 
the validity of Euler’s beam buckling theory and a shell model with proper properties 
defined from the results of MSMA is investigated. The predicted results by this simple 
continuum mechanics approach agree well with the reported experimental data. 
 
 
KEY WORDS 
 
Carbon nanotube, Buckling analysis, Molecular mechanics, Finite element analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Associate professor, Dpt. of Aerospace Engineering, Tohoku University, Sendai, Japan. 
**Graduate student, Dpt. of Aerospace Engineering, Tohoku University, Sendai, Japan.  
***Professor, Aerospace Engineering, Tohoku University, Sendai, Japan. 
 



197SMProceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

 
INTRODUCTION 
 
The unique geometry (small diameter and high aspect ratio) and exceptional 
mechanical properties (high stiffness, high strength and resilience) of CNTs make them 
ideal for applications such as probe tips of scanning probe microscope (SPM) and tips 
of nano-indenter [1-3]. Thus, it is imperative to understand the buckling behaviors of 
CNTs under axial compression for those applications. A fundamental challenge to 
achieve this, however, is to develop a proper mechanistic model at nanoscale. Although 
there have been some studies in this field [3-6], to the best of authors’ knowledge, there 
have been almost no reliable experimental verifications for the published analytical 
results. In this paper, based on both molecular mechanics and computational structural 
mechanics, we propose a novel numerical model termed as molecular structural 
mechanics approach (MSMA), to study the buckling characteristics of CNTs. 
Additionally, based on the Euler’s beam buckling theory and Timoshenko’s shell 
buckling theory, a simple continuum mechanics approach is established with 
experimental validations. An important finding from the results is that some 
representative properties of CNTs in the buckling analysis of the above continuum 
mechanics model are size dependent. 
 
 
THEORY 
 
Based on the second-generation molecular-force field and computational structural 
mechanics, we have proposed a 3D structural beam element to model the covalent C-C 
bond, as shown in Fig. 1 [7]. The stiffness parameters of this equivalent beam element, 
e.g. extensional stiffness EAB, bending rigidity EIB and torsion rigidity GJB, are 
expressed as follows [7]: 
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where R0 is the equilibrium bond distance, which is 0.142 nm for C-C bonds, Ks the 
force constant of bond stretching, Kθ the angle bending force constant and Vω is the 
torsional barrier. As shown in [7], we take Ks=805.5 nN/nm, Kθ =1.438 nN●nm/rad2 and 
Vω=0.101 nN●nm. This results in the following Young’s modulus and Poisson’s ratio of 
CNTs: E=1.06 TPa and ν=0.225 [7]. 
 
A finite element (FE) beam model consisting of the above beam elements is used in 
this study for the buckling analysis of single-walled CNTs. For the multi-walled CNTs, 
besides the above beam element, a rod element has been newly developed here as 
follows to account for the van der Waals forces between C atoms on the different walls. 
As shown in Fig. 2,  for one carbon atom on the inner wall, there are some rod 
elements, which connect it with  some  carbon  atoms  on the outer wall. The stiffness 
of the rod element will be modeled with a Lennard-Jones potential with the cutoff 
distance of 1.2 nm. Here, Lennard-Jones 6-12 potential is used to describe the 
interactions of atoms locating on two neighboring walls  
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where R is the interatomic distance, and the Lennard-J ones parameters, ε and σ , are 
3.8655×10-4 nN●nm and 0.34 nm [5], respectively. 
 
Taking R1 as the initial distance between two carbon atoms located on two different 
walls, which is usually set to be 0.34 nm, due to the infinite small change of distance by 
∆R, by neglecting the terms beyond the 3rd order, the variation of potential can be 
obtained as 
 
                                                                                                                            (5) 
 
For a rod element, the change of strain energy can be described by 
 
                                                                                                                            (6) 
 
By comparing Eqs. (5) and (6), we can obtain the extensional stiffness of rod element 
as 
 
                                                                                                                            (7) 
 
The initial van der Waals force at the equilibrium state can be evaluated as 
 
                                                                                                                            (8) 
 

Fig.1 Schematic view of construction of 
beam element for C-C bond 

Fig.2 Modeling of van der Waals force 
between C atoms located on different 
walls
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Fig. 3 Comparison of buckling load,    MD, 
zigzag (7,0) [4];  MD, zigzag (16,0) [4];
       MD, zigzag (25,0) [4];   MD, zigzag 
(7,0)& (16,0) [4]

Thus, the final equation for the FEM buckling analysis can be written as 
 
                                                                                                                            (9) 
 
where Ks is the stiffness matrix of beam elements, and Kvs is the stiffness matrix of rod 
elements, KG is the geometric stiffness matrix of beam elements, KVG is the geometric 
stiffness matrix of rod elements, and KG0 is the initial geometric stiffness matrix of rod 
elements due to the initial van der Waals forces. Finally, the final buckling load is 
determined as Fcr=λmin for (λmin >0). Here, an efficient 3-noded strain beam element 
proposed by authors [8] is adopted, and the rod element is modeled by using the same 
beam element with very small bending stiffness. 
 
 
VERIFICATION AND INVESTIGATION 
 
To validate our MSMA for single- and double-walled CNTs with the fixed-fixed boundary 
condition, the critical compressive strain obtained by MSMA has been compared with 
that obtained by classical MD computations [4]. In Fig. 3, the present results exhibit 
excellent agreement with the results by MD computations in [4]. Also, it is found that the 
buckling of CNTs can be divided into two categories. The one is the shell buckling 
mode when the length of CNT is very small or the aspect ratio is very low. With the 
increase of aspect ratio of CNT, the buckling mode was observed to change into a 
beam or Euler buckling mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With the validation of the MSMA, we calculated the buckling loads of single-walled 
CNTs with and without end caps as shown in Fig. 4, under the pin-fixed and free-fixed 
boundary conditions. From the results, it is found that for Euler buckling, both kinds of 
results are identical. However, for shell buckling, the buckling loads of CNT with cap are 
around 50% higher than those of CNT without cap. Therefore, for the case of shell 
buckling mode, the consideration of effect of cap on the buckling load is crucial. Also, 
for shell buckling, the buckling behavior of the capped CNTs with the free-fixed 
boundary condition is equivalent to those of the capped or uncapped CNTs with the pin-
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Fig. 4 Buckling loads of single-walled
CNT
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fixed boundary condition. For multi-walled CNTs, we got the following conclusion: The 
buckling loads of multi-walled CNTs in the shell buckling mode can be simply obtained 
from the product of the wall number and the buckling loads of single-walled CNTs. 
 
As a CNT typically is composed of millions of carbon atoms, further simplification is 
needed. First, we deal with CNTs with high aspect ratios, where the Euler buckling 
theory can be applied, 
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where k is a constant determined by boundary conditions, EI and L are the bending 
rigidity and the length of a CNT. 
 
First, we investigate the effectiveness of Euler’s beam buckling theory by comparing 
with the present MSMA results as shown in Fig. 5. The results are normalized by the 
moment of inertia of the cross-sectional area of the beam. For multi-walled CNTs, the 
total thickness of several walls is used for calculating the moment of inertia. From this 
figure, it can be found that the results of Euler’s bema buckling theory agree with those 
of MSMA very well. For multi-walled CNTs, we can get the conclusion that the increase 
of wall number is equivalent to increase of the moment of inertia of the cross-section in 
the case of Euler buckling. 
 
To further verify the effectiveness of Euler’s beam buckling theory, the experimental 
results [3] for CNTs with high aspect ratios are used in this study. For the experimental 
setup [3], at the top of CNTs, the boundary condition can be considered to be a fixed 
one. At the bottom of CNTs, the boundary condition can be considered to be a pin 
connection. Under this boundary condition, in Eq. (10), k is equal to 0.7. However, this 
pin connection is usually not perfect, and then, k=0.8 in [9], is also used. For specimens 
A and B in Table 1, the calculated results with the experimental ones are listed in Table 
2, which shows the effectiveness of the Euler buckling theory. One can find that the 
calculated buckling loads based on the recommended value, k=0.8, are more close to 
the experimental ones than those of k=0.7. 
 
Second, Waters et al. [6] performed the shell buckling experiments of 15-walled CNTs 
with the outer diameter of 50.0 nm and the inner diameter of 40.0 nm. The lengths of 
CNTs are 50.0 nm and 100.0 nm, respectively. First, a single-wall (length: 50.0 nm, 
diameter: 45.0 nm) in this 15-walled CNT [6] was analyzed by FEM using a shell 
element in ANSYSTM. The properties of this shell are adjusted to make its results match 
the ones of present MSMA, which leads to: E=920 GPa, ν=0.225, and thickness 
h=0.218 nm. However, for Euler beam buckling, we use: E=1.06 TPa and thickness 
h=0.34 nm. This difference emanates from the different deformation behaviors in two 
buckling modes, which shows that some important properties of CNTs are size 
dependent or deformation dependent in a strict sense. The Timoshinko’s shell buckling 
theory is also employed as: 
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We note that the above material properties of the stretch stiffness of a graphite sheet is 
201 N/m calculated from Eh. This value is approximately 40% lower than that obtained 
by atomistic calculations, which is around 360 N/m. One way to avoid this discrepancy 
is to employ the Young’s modulus and thickness of nanotube as 2.964 TPa and 0.1213 
nm, respectively. In this case, the stretch stiffness of the graphite sheet matches the 
previous result of atomistic calculations. Moreover, we have checked the buckling load 
of FEM shell model using these material properties, which yields the almost same result 
with that by the above material properties. 1he reason is that the shell buckling load is 
dominated by Eh2 which is identical for both kinds of material properties. 
 
A comparison of buckling loads by three approaches is shown in Fig. 6, revealing that 
in the stage of shell buckling all three methods yield the same result and the buckling 
loads are virtually independent on the length and diameter of CNT. For a single wall in 
the 15-walled CNT [6], the buckling load predicted by the Timoshinko’s shell buckling 
theory of Eq. (11) is 162.7 nN. After timed by 15, i.e. the number of walls, the buckling 
load of the CNTs used by Waters et al. [6] is calculated to be 2.44 µN, which agrees 
well with the reported experimental results, i.e., between 2.0 µN and 2.5 µN. 
 
 
SUMMARY 
 
We have developed a numerical model based on molecular mechanics and 
computational structural mechanics, i.e., MSMA. The buckling characteristics of CNTs 

Table 1. Parameters of carbon 
nanotube specimens [3]

Fig. 5 Buckling loads of MSMA and Euler’s 
beam buckling theory for single-walled and 
two-walled CNTs                    Euler’s result 

Table 2. Comparison of results of 
Euler’s theory and experiments [3]

Fig. 6 Comparison of results of MSMA, 
FEM shell model and Timoshenko’s theory
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are analyzed by MSMA. Also, a continuum mechanics approach based on the Euler’s 
beam buckling theory and a shell model is studied. The obtained results by this simple 
model agree well with the reported experimental data. 
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