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ABSTRACT
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INTRODUCTION

Composite materials have been used in the industry for over Six decades. One
important application of composite materials is in the production of pressure vessels
and fluid containers. These structures are characterized by geometries in which the
vessels have one (or more) axes of symmetry and the thickness of the composite shell
can be considered small in comparison to other dimensions. In general, these
composite vessels are produced by a filament winding process. In this process filament
bundles saturated with a matrix resin or pre-impregnated filament tapes are wound
around a mandrel that defines the finished shape. The filament bundles or tapes must
be held in tension during this process to ensure the finished quality. This tension is
maintained throughout the winding process and the subsequent cure cycle. As a result,
the finished part is preloaded. Many analysis techniques for flament wound systems
neglect this preload.

The objective of this paper is to develop a better understanding of the response of
filament wound pressure vessels and the effect of preload on the response. The
pressure vessels to be considered are thin walled circular cylinders made of laminated
composite materials.

THEORITICAL ANALYSIS

The shell considered in the present work is shown in Fig.1. It is assumed to have an
average radius r, length L, and wall thickness h. The coordinate system used in the
analysis is also shown in the figure. The displacements of the shell are u, v, and w in
the x, ¢, and z directions, respectively, as shown in the figure.

Strain-Displacement Relationships

The following assumptions are made based on small deflection theory and the

application of the Kirchoff-Love hypothesis:

1. The thickness of the shell, h, is very small in comparison with other dimensions, i.e.:
h<<r,and h<<lL.

2. The normal to the reference middle surface before deformation remains normal after
deformation.

3. The normal stress through the thickness is zero.

As a consequence of assumption 2 and for a constant z, the in plane shear strains are

negligible, i.e.. y_=y,.=0. From this result and assumption 3, the normal strain

through the thickness is zero, i.e.. ¢ =0. Based on these assumptions, the
displacements can be expressed as:
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where u,, v,, w, are the displacements of the middle surface in the x, ¢, and z
directions, respectively.

Therefore, from the assumed displacement field and the definition of strain, the strain-
displacement relations for any point in the shell are found to be:
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Which can rewritten in the form:
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where ¢! &, v, are the mid-plane strains and «) ,x, ,

k., , are the mid-plane

curvatures. Note that; 7, is engineering shear strain, not tensorial shear strain.

Stress-Strain Relationships

In the present work, it is assumed that the shell is in a state of plane stress. Therefore,
c. =1, =1, =0. This assumption is compatible with the previous assumptions.

z

Further, the shell is considered t to be made of orthotropic lamina. Therefore, each
lamina of the shell has a set of principal material directions. These directions form a
local coordinate system in the lamina, i.e.: 1-, 2-, z directions. Under the plane stress
state, the stress-strain relationships for the kth lamina in the local lamina coordinate
directions are:

G, O, 0On 0 €,
G, =10,y Oy 0 €, > (4)
T, 0 0 O

; V2 )y

where Q, are the principal stiffnesses of the kth lamina, o, and t,, are the normal and

shear stresses in the principal material directions, respectively, and ¢, and vy,, the

normal and shear strains in the principal material directions, respectively. The notation
used in this paper is taken from that used by Jones [1]. These stiffness terms are
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directly related to the engineering properties (moduli and Poisson's ratio) of the lamina.
Expressions for these terms can be found in various text books [1, 2, and 3].

Through a coordinate transformation, the stress-strain relationships for the kth lamina in
the global coordinate system of the shell can be expressed as:

chl rgl gz gﬁ—Ijsxl
Gy [ = 08 gzz gzs| €y [ » (5)

L’cxd)Jk |_§61 O stJk LY;@J,{

where sz are the stiffnesses of the kth lamina in the global coordinate system.

Expressions for these terms in terms of 0,, the angle between the first principal

material direction and the x direction, the winding angle, can be found in various text
books [1, 2, and 3]. The stress in the kth lamina may then be expressed in terms of the
mid-plane strains and curvatures by substituting equation (2) into equation (5). Thus
producing the lamina stress-strain/curvature relationships:

J;L =[0] Ji; Lz[é]kjl;, L (6)
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Force and Moment Resultants

Consider the laminated cylindrical shell to have n laminae. Further, let a typical lamina,
k, be bounded by the surfaces z=#4,,andz=#,_. As a consequence of the assumption

that ﬁ << 1, the force and moment resultants can be written as:
r

el [,

Ny =kZ=;hJ- c, ¢ dz, (7)
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where N7 and N; are defined as the normal in-plane forces per unit length in the x,

and ¢ directions respectively, N |, is defined as the in-plane shear force per unit length
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in the x-¢ plane, M; and M ; are defined as the bending moments per unit length in

the x, and ¢ directions respectively, and M |, is defined as the twisting moment per unit
length in the x-¢ plane.

Finally, the relationships between the force and moment resultants and the strains and
curvatures of the mid-plane are obtained by substituting the results found in equation

(6) into equations (7) and (8). Noting that the mid-plane strains and curvatures, {50}
and {KO} are independent of the variable of integration and the stiffnesses, [Q]k, are
constant for each lamina, this relation becomes:

e st

=

A, =>20,(h_ —h )i, j =126, (10)

which is as found in classical lamination theory.

PRESTRESS AND THE FORCE AND MOMENT RESULTANTS

During the winding process, the filaments that make up the lamina are wrapped or
wound around a mandrel. This process requires a tension be maintained on the
filament bundle or tow throughout the winding process. The result is a preload or
prestress in each lamina of the shell. The prestress or residual stress remaining in the
part after all processing is dependent on a number of factors which include: shell
geometry, fiber tension, wrap angle, relative speed between the mandrel and feeder,
resin viscosity, cure method, and cure process or cycle. For the purposes of this
analysis it is assumed that the post-processing tension in a fiber bundle or tow is
constant along the length of the bundle within a given lamina. This tension is denoted
by T. Therefore, the resulting prestress in the lamina in the local coordinate system is:
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. T
(O o, Af
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T, 0 0

where c,, o,, and t,, are the components of the prestress in the principal material
directions, o, is the stress on the fiber bundle, and 4, is the cross-sectional area of the
fiber bundle.

Given the wrap angle, defined as 6,, is constant for the kth lamina, the prestress can be
transformed into the global coordinate system. The result of this transform is:

Q
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where o, is the prestress in the kth lamina. The force and bending moment resultants
k

due to the prestress can be found by substituting equation (12) into equations (7) and
(8). The resultis:

N y o ) cos’ 0

N, t=[10} tdz=Yo, 1 sin’6 ¢ (k. —h) (13)
N, s o, 1k | cosOsin O

M: |, | o, ) cos’ 0

M, :j G, zdz:lZcT sin? 0 (h,f,1 —h; ) (14)
M, s e, 2k k| cosOsin 0 .

where * designate the resultants due to the prestress terms. These prestress terms
exist in the shell in the undeformed or reference configuration. Therefore, the laminate
constitutive relation as given in equation (9) now takes the form:

{%Hz gHi_}+{z } (15)
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EQUILIBRIUM EQUATIONS FOR LAMINATED CYLINDERICAL SHELL

Consider an infinitesimal element from a laminated cylindrical shell. This element is cut
from the shell by two adjacent axial sections and two adjacent sections perpendicular to
the axis of the cylinder, as shown in Fig.1. The corresponding element of the middle
surface of the shell is shown in Fig.2 in its deformed configuration. In Fig.3, the force
and bending moment resultants are designated as N,, N;, M,, and M, differentiating

them from the resultants in the undeformed configuration.
From Timeoshenko and Woinowsky-Krieger [4], Timoshenko and Gere [5], and the

assumption that " <1, then N,#N,,, M,#M,  and the force equilibrium equations
r

are:
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Further, the moment equilibrium equations are:
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Static Response of Laminated Cylinderical Shells Under Uniform Pressure

The set of differential equations (16) through (21) represent the equilibrium of cylindrical
shells in terms of the internal resultant forces and moments in the deformed
configuration, and the displacements of the middle surface. To obtain the displacement
field; equations (16) through (21) must be solved simultaneously. Alternatively, the
force / moment -- displacement / curvature relations may be substituted into equations
(16) through (21) to obtain a set of simultaneous partial differential equations in the
displacements of the mid-plane.

Consider at this point the case of static response to uniform lateral pressure (internal or
external pressure on the shell in the radial, i.e.: z-direction). The lateral compressive
pressure is p. = p . This load is constant, therefore, the resultant shear forces are very
small compared to the other forces. Consequently, the products of these forces with
displacement terms and derivatives of displacement are negligible. Hence, the force
balance equations (16) through (18), take the following form:
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By substituting the moment equilibrium equations, equations (19) and (20) into the ¢-

and z- direction force equilibrium equations, equations (23) and (24) the governing
equations for this case reduce to:
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Equations (25) through (28) are the complete equilibrium equations for the static
response of a laminated cylindrical shell under uniform lateral pressure.

Applying Timoshenko approach [5], the stretching of the middle surface of the shell can
be taken into account by defining the following relations:

N, =N (1+8%),

N, :(N¢ —pr)(l—i—ag ),
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where:
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N _=N’+N_,
N,=N,+N,,
N,=Ni +N,,

M_=M°+M_,
M,=M;+M,,
M, =M +M .

Recall that N7 and M are the resultant forces and moments in the undeformed
geometry, respectively, and N, and M, are the prestress resultant forces and moments
in the undeformed geometry, respectively. The governing equations for equilibrium of
the shell in terms of the variables in the undeformed configuration are found by
substituting the definitions from equation (29) into equations (25) through (28). After
rearranging these equations and noting the assumptions on laminate configuration are
such that the resultant forces and moments due to the prestress are independent of x
and ¢, the following equations are obtained:
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To further reduce these equations to a system of partial differential equations to
expressions involving only the displacements of the middle surface, it is necessary to
substitute the results from equations (2) and (9). This results in a set of simultaneous
partial differential equations for the mid-surface deflections for a laminated cylindrical
shell under constant uniform lateral pressure. These equations are further simplified by
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assuming that the deformation is axisymmetric. This assumption is based on the facts
that:

(1) the load and boundary conditions are independent of ¢,

(2) the material used is uniform and homogeneous in the ¢-direction, and

(3) the material stiffnesses, 4;, B;, and D,, are independent of x, ¢, and z.
Consequently, the circumferential displacement, v,, is zero or constant, and that », and
w, are functions of x alone (i.e.: independent of ¢). Thus, all partial derivatives of u,
and w, with respect to ¢ vanish. Then equations (30) through (33) using equations (2)
and (9) reduce to a set of four simultaneous nonlinear ordinary differential equations in
the mid-surface displacements, u, and w,. These equations are:
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where ( ) indicates ordinary derivative with respect to the x-coordinate.

As discussed, equations (34) through (37) form a system of four simultaneous nonlinear
ordinary differential equations in two unknowns. This system of equations can be
further reduced to a system of two simultaneous ordinary linear differential equations,
through the following procedure: (i) eliminate the w,w; term from equation (35) by

substituting from equation (34); (ii) differentiate the new equation with respect to x; (iii)
eliminate the wyw;” term from equation (37) by substituting from the new equation; and
linearize the system by application of the following assumptions: (a) the in-plane
normal strains, ¢’ and ag, are very small compared to unity, and (b) the out of plane

rotations, wy, are small. The final system of equations can be written as:

) ) 38)
B +M . . D . B M, (
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where &, are constants that involve the material properties, shell radius, prestresses,
and the shell loads. They are:
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Thus, the deflection of the shell is determined by solving equations (38) and (39).

SOLUTION OF THE GOVERNING EQUATIONS

The solution of the governing equations of a laminated cylindrical shell under constant
uniform lateral pressure is obtained. Equation (38) can be rearranged such that all
terms involving the radial displacement are grouped on one side of the equality while
the axial displacement terms are on the other side.

B, .+ M . D . . M:
Pt Moo Nt = [ Bs e o+ Y B e 2 41
x¢ (70 x¢ 0 x¢ 0
r

r r r r

Next, define the constants a, B, and y as:
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Then, equation (41), its derivative and anti-derivative become:
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where C; is the constant of integration. Substituting the results given in equation (43)

into equation (39) yields a single fourth order ordinary differential equation to be solved
for the radial displacement, w,. After collecting terms, this equation becomes:

((a1+ 2D, j“* 26,0, _[%Jwg
(§4 +§5)’” (&4 +§5)I’
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1 ((:4 +§5)r r ((:4 +§5)r r

1 A12 Nx - A12 -
+;(T—pj(l+8r)w0 +—2 ( pr)y =0. (44)

r

To simplify the notation in the solution of the governing differential equation for the
radial displacement, introduce the following constants:

1

a, = ,
(311 + 2D11§1 Ja—f- 2§2Dll _D11
E+&r) (E+dhr
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r
a, —%(i—pj(l+ﬂr)ao,
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a, = . a,. (45)
Then, equation (44) can be rewritten as:
d*w, d’w,
dic” +a a2 +a,w, +a; =0. (46)

This, then, is the equation to be solved for the radial displacement of a cylindrical
laminated shell under constant uniform lateral and axial compression. This is a non-
homogeneous linear ordinary differential equation with constant coefficients. At this
point in the solution no comments can be made on the relative magnitude of the
coefficients, a,. Therefore, the solution is:
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b-a, b-a,
w, (x)=C, exp x |[+C, exp| — X
2 2
-b—-a, -b—-a, a,
+C, exp| ,|—x |+ C, exp| — { X |- , (47)
2 2 a,

where q, are defined in equation (45), b=./a’ —4a,, and C, are the constants to be

determined from the boundary conditions. With w,(x) known from equation (43), the
axial displacement can be written as:

wtn-{o %5 2 fll 52 conl 554
+{oc\/ b 2_‘“ +B\/ _bz_al HQO@(W xj— C4e<p[— _bz_“l xj}

{Y+B% +G. (48)

2

The boundary conditions for the shell may be defined in general by a system of springs
that define the stiffness of the boundary. Figure 4 represents a schematic drawing of
the proposed elastic foundation for the shell. Note that the foundation shown includes
linear and torsional springs. The constants k., k,, k,., and k, represent the linear
stiffness of the boundaries in the z- and x-directions, at x=0 and x=L, respectively.
Further, the constants R, and R, represent the rotational stiffness of the boundaries at
x=0 and x=L, respectively. The boundary conditions are:
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oM v
(1) kOZWO (O)ZNXZ - * :>]\_/'xz :de
o o =0 dx -0
s [ W, (0)}_1\45 M (o)
dx x=0 r r 0
I ()
dx x=0 r x=0
(2) rowi )0, | = (w2 +ur7 ) o[l‘wo (O)J
x= x= r
=>M’ 0+M:(1_Wo (0)]’
B r
— dM M*
(3)  kuws (L)=N LT S wi (L)
dx x=L r L

(6)  kuuo(0)=N

where

M; (x): (Bua _Dll)w(,)’(x)"'(Buﬂ_&jWo(x)_Bn]/a

1
r

r

N (x): (Ana _Bll)Wg(x)+(A11ﬂ_ﬁjwo(x)_An?/-

These equations may now be expressed in matrix form such that:
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ki kyo ks kg ks |G /i
ky ky kyo ky o ks ||C /3
kyy ky, ky ky ks NCip=9q05p (49)
ky kp kg kyo ks || C Ja
_k51 ks, ksy kg ks i Cs s

where k, and f; are constants, which are complex expressions involving the material

constants, radius of the shell, applied loads, and preloads, and C, are the constants to
be determined. The expressions for &, and f,; are given in the appendix.

Special Cases of the Solution Obtained

Special construction techniques

If the laminated cylindrical shell is constructed such that the laminate is:

(1) symmetric, then the coupling stiffnesses are zero, i.e.. B;=0,/,j=1, 2, 6;
and

(2) balanced, then the 1-6 and 2-6 axial stiffnesses are zero, i.e.: A4,, = 4,, =0.
For this specific design the constants &, in equation (40), a, B, and vy in
equation (42), and a, in equation (45) are greatly simplified. For this case
they become:

$, =0,
£, __D16,
14 * * *
. M_-M,+N._r
2N, a, _1 4
&, = > 3 D, r
r
§4 =Y, (A12 _pr)(Dl() M‘):ﬂjr) 4N;¢
55:_52’ N D11F<M:¢+N,:¢V) D
7
D16 g = MW (P”_Alz)
o= —-ry, 27 . )
M, +N 4 3D, (Mx¢+Nx¢r)
-N° 1 M:¢ (A12 —pl’) .
ﬂ: x¢ , a = . . - @
M., +N.,r 3D r (Mx¢+Nx¢r)
M,
7/: * * ?
Mx¢+Nx¢r (50)

The solution then follows the previous pattern.
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NUMERICAL CASE STUDIES

The solution obtained was evaluated for various materials, stacking sequences, pre-
stresses, and boundary and loading conditions. A sample of the problems addressed
are shown in this section. Material property values for the solutions presented here are
listed in Table 1.

Table 1. Material Property Values Used in Examples.

: E, E, Viz G,
Material Mpsi Mpsi Mpsi
E-glass/Epoxy 5.6 1.2 0.26 0.6
IM6/Epoxy 29.46 1.63 0.32 1.22
Kevlar-49/Epoxy 11.03 0.8 0.34 0.33

Effect of Pre-stress

The effect of pre-stress is shown in the analysis of a symmetric laminated composite
shell of length 30 inches and diameter 10 inches. The shell in this example has twelve

ply of IM6/Epoxy with a stacking sequence of [2[145]/2[90]]25. The shell is simply

supported with lateral pressure of 3000 psi. A plot of the deformed midplane location for
two different pre-stress values is shown in Fig. 5. Note that in this figure the maximum
radial displacement for a pre-stress of 1.78 Ib./tow is of the order of magnitude of 107,
while the maximum radial displacement for the pre-stress of 0.178 Ib./tow is of the order
of magnitude of 107. In neither case was the internal pressure sufficient to overcome
the drawing in of the shell due to the pre-stress.

Effect of Lateral Pressure with Constant Pre-stress

The solution obtained was evaluated for a simply-supported 33 ply hybrid composite
shells of length 10 and 5 inches and diameter 10 inches. The stacking sequence used
for the hybrid laminate is asymmetric and is

A5 g oy /|4 00/£45/0/£45]/90] 2L+ASTy 1 sy - The position of the

deformed shell midplane is shown in Figs. 6 and 7. Fig. 6 shows the effect of lateral
pressure for constant pre-stress. The pre-stress for all examples in Figs. 6 and 7 is
0.375 Ibs./tow; the width per tow is 1 inch and the tow diameter is 0.005 inches. The
effect of the length on the deformed geometry is shown in Fig. 7 for a lateral pressure of
3000 psi.

The results shown in Fig. 6 are consistent with those shown by Chaudhuri, Balaraman,
and Kunukkasseril' for an anisotropic cylindrical shell under internal pressure. Note
that the deflection increases (for the coordinate system used, negative deflection is
away from the centerline of the shell) as lateral pressure increases. The plot shows
that the deformed length decreases as lateral pressure increase, as expected with
simple supports.
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CONCLUSION

A new closed form solution for cylindrical shells has been developed. Features of the
solution address nonlinear effects due to large deformations, material orthotropy, and
effects of pre-stress due to a winding process. Equations are presented to evaluate the
solution with flexible or elastic boundary conditions. The solution allows analysis of
shells with stacking sequences that are not symmetric.

Results from the numerical examples presented indicate that: an order of magnitude
increase in the winding pre-stress can result in an order of magnitude increase in the
shell deformation; and the deformed shape of the shell changes dramatically as the
length to diameter ratio changes. Results are presented for symmetric and asymmetric
laminates.
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Fig. 2. Force Resultants on the Midplane of an Infinitesmal Shell Element

in the Deformed Configuration.

Fig. 3. Moment Resultants on the Midplane of an Infinitesmal Shell Element

in the Deformed Configuration.
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Fig. 4. Shell Boundary Conditions
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Fig. 5. Plot of Deformed Midplane Location Showing Effect of Pre-Stress
With Constant Loading Conditions.
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Fig. 6. Deformed Midplane of Hybrid Laminated Cylindrical Shell for Various Loading
Conditions with Simple Supports and a Constant Pre-Stress of 0.375 Ibs./tow.
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Fig. 7. Deformed Midplane of Hybrid Laminated Cylindrical Shell for Length of 5
Inches, Simply Supported, and Lateral Pressure of 3000 psi.
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APPENDIX

The coefficients of the matrix equation (50)

M, [b

—-a
k. .=k, —-Q +—=*,—L
11 0z 1 2 2 ’
M. [b-a
k,=k, +Q ——= L
12 0z 1 2 2
M —(b—i-al)
k.=k, —Q +—=4——,
13 0z 2 7 2
M —(b+a1)
k,=k, +Q,——y——,
14 0z 2 7’ 2
b—a .
ky =R, Tl_Qs+ P
b—
k=~ Ry ) 4
_(b+a1) x
ky =R, 7 +Q, + ol
_(b+a1) x
k24__R0 2 +Q4+ 7 )
M, [b-a b-a
ey =| e =+ \/ 5 1}9@[\/ 5 ILJ,
M, [b-a b-a
ky,=|k,_+Q - . A 5 1}9@(— 5 ILJ,
. A
M. |-\b+a —b+a
k33_ kLZ_Qz X ( 1) ( I)L ,
2 2
M. [Hbra)| [ [Hb+a)
k34_ kLz+QZ_ - B - 9
b-a, M, b—a,
k, =| R, 5 —Q3+r ep 2L,

k,

U‘ )

fj will take the form :
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7

M — B, pr+B
f4—( - lzj(a j"‘M - By,
2

r

M +4,—A Br | a
f5 =( X 12 IIB J{ 3}+N A”'Y,
r a,

where,
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B, pr-B,

2

3
Q, =(Blloc—D11)(_b2_al) ’ +(

3

Q :(Bna_Dn)(b_al)Z

Cok

Q, :(Blla_Dll)( 2

b—aljJr(B”Br—Bu\

,=(5,0-0, "5 H{

: _(Ana_Bn )

: +(A11(x_311 )

BIIBF_BIZJ(_b_aI
2
r
B pr-B,
r
b-a, A, Br—A4,
2 r
b+a, A,Br-4,,
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