
242SM Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

13th International Conference 
on Applied Mechanics and 
Mechanical  Engineering. 

Military Technical College 
Kobry El-Kobbah, 

Cairo, Egypt. 

 
FINITE ELEMENT MODEL OF A SMART ISOTROPIC BEAM WITH 

DISTRIBUTED PIZOELECETRIC ACTUATORS 

BENDARY* I.M., El-SHAFEI* M. A. and RIAD* A.M. 
 
 
ABSTRACT 

 
In this paper, the static and dynamic loading of an intelligent beam structure with 
distributed piezoelectric actuators has been studied. The structure substrate, made of 
isotropic material, subjected to axial and transverse mechanical loads as well as 
electrical load. The actuators layers are made of piezoelectric material of PZT type. The 
one-dimensional isoperimetric Hermit cubic shape functions and the Lagrange 
interpolation function are used to formulate the finite element model for the distributed 
coupled electromechanical behavior. The equation of motion of the structure systems is 
obtained by using the principle of total potential energy considering the Euler-Bernoulli 
beam assumptions. The results of the proposed finite element model are compared to 
the available finite element and analytical results of other investigators, good 
agreement is generally obtained. 
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NOMENCLATURE 

 
Symbols  

me  Mass matrix of the beam element in stretching. 
q&&  Second derivative of the nodal displacement. 

ek  
Beam Element stiffness matrix. 

eF  Beam Element nodal forces. 

Π  Total potential energy. 
U Internal strain energy. 
V External potential energy. 
W Work due to external applied load. 

 
 ------------------------------------------------------------------------------------------------------------------ 
* Egyptian Armed Forces. 
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u, v, w  Displacements of any point in the x, y, and z-directions. 
ou , ov , ow  Reference surface displacements along x, y, and z-axes. 

xε , yε ,  zε  Linear strains in the x, y, and z-directions. 

x
oε , y

oε  Reference surface extensional strains in x, and y-directions. 

o
xyγ  Reference in-plane shear strains. 

xzγ  and yzγ  Out of plane Shear strains.  

o
xκ , o

yκ  Reference surface curvatures in the x and y directions. 

o
xyκ  Reference surface in-plane shear curvatures 

n Number of layer in the beam. 
N  Total number of beam layers 
A  Beam surface area. 

xσ  Stress in the x-direction 

E Young’s modulus 

1c , 2c , 3c , 4c  Constant values 

1u  , 2u  Axial displacements of the beam element. 

1w , 3w  , 2w , 4w  Transverse displacements and Slopes of the beam element. 

1F  , 2F  Element load vectors 

L, B, H Length, Width, and Height of the beam.  
l, x, h Length, Width, and Height of the beam element
K.E  Kinetic energy. 
ρ  Mass density of the structure material. 

iψ& , iφ  Axial and transverse displacements shape functions 

t Traction forces.  

tf , af  Transverse and axial forces. 

xN , xM  Force and moment per unit length. 

H  Electric enthalpy. 

kE   Electric field ( ϕ−∇=kE ). 

lijkc  Eُlastic constant.    

ijke    Dielectric permittivity coefficients. 

ϕ  Electric potential. 
s
ijε  Dielectric coefficients at constant mechanical strain. 

iD  Electric displacements. 

eW     Electric energy. 

σ  Surface charge. 
∗

1ξ  , ∗
2ξ  Electrical shape functions. 

ω  Circular frequency of the system. 
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INTRODUCTION 
 
The integration of the distributed actuators with the structure is currently used as an 
active control on its elastic deformation. The distributed actuators and sensors are mad 
of piezoelectric materials. These materials induce electric potential/charge when it is 
subjected to mechanical deformations by virtue of direct piezoelectric effect and 
deformed under the externally applied voltage by virtue of converse piezoelectric effect. 
 
Henno and Huges [1] used tetrahedral piezoelectric elements for vibration analysis. 
They introduced the concept of “static condensation of the electric potential degrees of 
freedom”, which presents the electric potential and loads written in terms of the 
mechanical properties of the structure. Their study was considered as a reference for 
electro-elastic finite element derivations for plates, shells, and axi-symmetric solids. 
Crawley and Lazarus [2] studied theoretically and experimentally the induced strain 
actuation of plate components of an intelligent structure. Their work leads to  
understand the system design parameters and to model the structure systems. Good 
agreement between their measured and predicted deformations was found and their 
results demonstrated that the induced strain actuation was effective for controlling the 
structure deformation.  
 
Hagood et al. [3] modeled the effect of dynamic coupling between a structure and an 
electrical network considering the piezoelectric effect. They developed three models, 
the first concerned with the direct voltage driven electrodes, the second was for direct 
charge driven electrodes, whereas the third was for the indirect driven case. Their 
measurements gave good agreement with the corresponding predicted results.  
Robbins and Reddy [4], and Reddy [5] studied the static and dynamic interaction 
between bonded piezoelectric actuators and an underlying beam substructure using 
four different displacement-based finite element models. Their four models, two for 
single-layer and two for multi-layer, were based on two-dimensional beam theory and 
did not include the strain energy of the piezoelectric materials in the potential energy 
integral. Therefore, they did not regard the piezoelectric materials as part of the 
structure. The predicted results of their models showed that: (i) similar transverse 
displacements, and (ii) similar static stress fields except near the end of the actuator. In 
addition, both multi-layer models gave large transverse stresses near the end of the 
actuator and smooth continuous functions of the thickness coordinate, despite abrupt 
changes in material properties from one layer to another. The predicted frequency 
amplitudes using the classical bending theory model were differed significantly from the 
corresponding amplitudes of other models; whereas the predicted amplitudes by the 
layer-wise models were differ significantly from those of the single-layer models.   
 
Yang and Ngoi [6] investigated analytically the shape control of beams with 
piezoelectric actuators. They derived the analytical solution of a beam deflection 
induced by both piezoelectric and external forces. Their predicted results showed that it 
was difficult to approach the desired shape of a beam locally with piezoelectric 
actuators. Strambi et al. [7] discussed the relationship between the pin-force and Euler-
Bernoulli models, especially for the case of one side actuation layer. Their obtained 
solution showed how the system was excited by a combined bending-compressive 
actuation, and how the actuator induced a combined flexural-extensional deformation. 
Bhattacharya et al. [8] found that the application of electrical voltages and boundary 
conditions produced significant changes in the free vibration frequencies. They also 
showed that: (i) the cantilever beam had frequencies significantly higher than simply 
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supported or clamped beams subjected to actuating voltages, and (ii) the effect of in-
plane stress on the overall stiffness was high compared to the bending stress with the 
application of electric loading.   
 
In the present work, a simple finite element model has been proposed to describe the 
behavior of an advanced smart beam when subjected to axial and transverse loads in 
addition to electrical load. A hermit cubic shape function is used to formulate the finite 
element model. The equation of motion is obtained based on the energy principle. The 
results of the present model are compared with the corresponding predictions of other 
investigators. 
 
 
FINITE ELEMENT MODEL 
 
Strain-Displacement Relations  
 
The displacement field equations for the cantilever beam can be represented by [9]: 
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The strain-displacement relationships can be obtained by differentiating the 
displacement-field equations as follow [9]: 
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For the case of the beam length is too long in comparison with the other two 
dimensions both yε and xyγ  are assumed equal to zero [10]. According to Kirchhoff's 

hypothesis, the strain components zε , xzγ , and yzγ are vanish. By applying these 
assumptions on Eqn. (4), the axial strain can be written as: 
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oo
xxx zzyx κεε +=),,( .                                                                                                (5)   

 
By using a Hooks’ law, the normal stress can be expressed as: 
 
 xxxx Eεσ = .                                    (6) 

 

Piezoelectric Constitutive Relations 
 
The amount of energy stored in the material can be described by the electric enthalpy, 
H , where the term H  is analogous to enthalpy in the thermodynamics. The electric 
enthalpy of the piezoelectric material is expressed by [11]: 
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The constitutive equations of the piezoelectric element are obtained by differentiating 
the enthalpy with respect to the strain. These equations are represented by [11, 19]: 
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The differentiation of the electric enthalpy with respect to the electric field Ek defines the 
piezoelectric electric displacement as: 
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Finally, the piezoelectric constitutive equations can be written in a matrix form 
as: 
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The electric field components are related to the electrostatic potential ϕ  by the 
equation: 
 

z
E kk ∂

∂
−=−=

ϕϕ ,  .                                                                                              (13) 
 
Variational Formulation 
 
The equation of motion of the structure system is derived herein using the principle of 
minimum potential energy.  The total energy of the structure system is represented by 
[3]: 



247SM Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 
 

                              WeWU +−=Π .                                                          (14) 
 
The internal strain energy is represented by [2]: 
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For an electromechanical medium, the internal strain energy for the structure system V  
is the sum of internal strain energy, Eqn. (15), and the electric energy, Eqn. (7), i.e.  
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The work done due to the external load is defined as [12]: 
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The work done due to external load represents the sum of the works done by surface 
tractions force t, transverse force tf , and axial forces af , respectively. After adding the 
flux of the electric energy, the resultant work done in the outward direction across the 
surface is represented by:   
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Applying the principle of minimum potential energy and equating the first variation of the 
total potential energyΠ  to zero results in: 
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Substituting by Eqns. (16) and (17)a into Eqn. (19) yields: 
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Substituting by Eqns. (4) and (13) into Eqn. (16), the total internal strain energy of the 
structure is represented by: 
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In order to minimize the total strain energy, the first variation is taken with respect to the 
axial and transverse displacements as well as the electric potentials. Thus, the first 
variations are represented by:  
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and 
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The mass matrix can be obtained using the kinetic energy which is given by: 
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FINITE ELEMENT FORMULATION  
 
The displacement of a beam subjected to axial stretching is given by [13]: 
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The solution of the above governing equation is: 
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Upon imposing the nodal boundary conditions in Eqn. (26) and determining the 
constants values 1c  and 2c , the displacement equation is rewritten as: 
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which can be expressed as; 
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where the shape functions are; 
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The shape functions can be expressed in a matrix form for the beam element as: 
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The governing equation for a beam under bending is [4]:              
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Solving the above equation and imposing the nodal boundary conditions yields:  
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The shape functions take the form: 
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The vector form of the shape functions is represented by: 
 
                               [ ] { }4321 ,,, φφφφ=bN  .                                                              (34) 
 
For the piezoelectric element, the electric field is treated as the electric degrees of 
freedom like a generalized displacement degrees of freedom. Thus, each node has four 
degrees of freedom, three mechanical degrees of freedom and one electric degree of 
freedom.  The governing equation for the electric potential is given by [14]: 
 

                                     02 =∇− ϕ .                                                                        (35) 
 

By solving Eqn. (35) and applying the boundary condition, the electric potential 
takes the form:   
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where the electric shape functions ∗
1ξ  and ∗

2ξ  are derived and represented by: 
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The electric potentials at the boundary are arbitrary unless specified or varied along the 
length of the beam. In the present work, the electric potential is considered to be a 
function of the thickness and the length of the beam. Therefore,  the electric shape 
function at the nodal element, represented by the product of the axial displacement 
shape function, Eqn. (29), into the thickness shape function, Eqn. (36), has the 
following form: 
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Homogenous boundary conditions for the electric potentials will be imposed on the 
bottom surface to eliminate rigid body modes. So, the shape functions are finally take 
the form [15]: 
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Substituting by the shape functions, Eqns. (29), (33), and (40) into Eqns. (22), (23), and 
(24), the first variation of strain energy and virtual work has the following form: 
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and 
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Equation (42) can be expressed as: 
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EQUATION OF MOTION   

From Eqn. (41), the element stiffness matrices are:                                                            
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and 
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Substituting by Eqns. (29), (33) and (40) into Eqns. (43)a to (43)c and (44)a to (44)i, 
and by Eqns. (29) and (33) into Eqn. (44), then and perform the integration for a beam 
element with length L, width b and height h, the element stiffness matrix, the element 
load vector and the element mass matrix can be expressed by: 
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The static equilibrium equation for the structure system can be obtained as: 
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Thus, the equation of motion of the whole structure systems is represented by: 
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where uuM  is the global mass matrix of the structure and { } { } { }{ }wuU ,=  is the global 
nodal generalized displacement coordinates, { }ϕ  is the global nodal generalized 
electric coordinates vector describing the applied voltage at the actuators [16], { }F   is 
the applied mechanical load vector, and { }Q  is the electric excitation vector. The global 
mass matrix, stiffness matrix and applied mechanical vector could be shown in 
Appendix A. 
 
The introduced model is converted to a computer program. The input data to the 
program are beam dimensions, adhesive layer and piezoelectric patch data, material 
properties of the structure system, numbers of elements and applied mechanical and/or 
electrical forces. The model predictions are concerned with axial and transverse 
displacements, respectively, and  free natural frequency of the structure system. A 
validation of model results will be presented. 
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VALIDATION OF MODEL RESULTS  
 
In the following, the behavior of a laminated aluminum beam with a piezoelectric 
actuator is investigated using the interactive MATLAB code. The properties for the 
aluminum beam, adhesive layer, and piezoelectric layer (PZT-4) are listed in Table 1 
[10].  Figure 1 shows the predicted transverse deflection of the aluminum beam 
subjected to a concentrated load of 10 (N) at its free end as function of beam length. 
The corresponding predictions obtained by Ref. [10] are depicted on the same figure. 
Good agreement is generally obtained between the results obtained from the present 
model with that of Ref. [10].  
  

Table. 1. Material data of aluminum Beam with piezoelectric actuator. 

Data Aluminum 
beam Adhesive PZT-4 

actuator 
11E , [MPa] 68.9 6.9 83 

33E , [MPa] 68.9 6.9 66 

13γ  0.25 0.4 0.31 

13G , [MPa] 27.6 2.46 31 

31d , [m/v] 0 0 1210*122 −−  

33d , [m/v] 0 0 1210*285 −  
s
31ε , [farad/m] 0 0 0 
s
33ε , [farad/m] 0 0 910*53.11 −  
ρ , [ mkg / 3] 2769 1662 7600 

L, [m] 0.1524 0.1524 0.1524 

H, [ m ] 0.01524 0.000254 0.001524 

B, [m] 0.0254 0.0254 0.0254 

 
 
For a beam with piezoelectric layer completely covered the surface, the electrical load 
described by a constant electric field of 12.5 kv was applied on the upper surface of the 
piezoelectric layer, while the lower surface was grounded (0 Volt). A concentrated 
mechanical load of 10 (N) was applied in some cases and had zero values for the other 
cases. The results obtained are compared with that of Refs. [17-18]. Figure 2 shows 
that the results of the proposed model are close to that obtained by Refs. [17-18].  
These results assess the predictive capabilities of the proposed model. 
 
The influence of number of elements and discrete layers on middle plane displacement 
has been predicted using the proposed model.  Table 2 lists the results obtained for the 
axial and transverse displacements for different number of elements compared to the 
results obtained by Ref. [17]. The current predicted transverse displacement of 
aluminum beam is better than that predicted for longitudinal displacement. 
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Fig. 1. The change of the transverse deflection along the aluminum beam length,  

     compared with Ref. [10].  
 
 
Table 3 lists the free dynamic predictions of the fundamental natural frequencies of the 
aluminum beam when the applied voltage on the upper surface of the PZT-4 is equal to 
zero. The predicted natural frequencies by the present model are compared with that 
obtained by Refs. [4,17]; a good agreement is generally obtained. The maximum 
difference between the predicted natural frequency by the present model and that 
predicted by Ref. [4] was found to be 1.4 %. 

 

Fig. 2. Predicted transverse deflection of Aluminum beam with piezoelectric  
actuators compared with Ref. [17,18]. 
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Table. 2. Effect of the number of elements and discrete layers on middle plane tip 

                       displacement of the beam. 
 

Normalized 
displacement 

No. of 
elements 

Discrete 
layers 

Hey[17] 
   Alum. 

Current 
Model  
Alum. 

Axial 
displacement u(10000)/h 

10 
20 
25 

6/2/2 
6/2/2 
6/2/2 

7.832 
7.812 
7.813 

9.184 
9.325 
9.348 

Transverse 
displacement W(100)/h 

10 
20 
25 

6/2/2 
6/2/2 
6/2/2 

-2.026 
-2.022 
-2.022 

-2.118 
-2.182 
-2.190 

 

Table. 3. Predicted natural frequencies of aluminum beam with single PZT-4 layer. 

No. of 
elements 

Natural 
Frequency [4] 

Natural 
Frequency [17]

Current 
model 

10 
20 
30 

539.3 
538.6 
538.5 

539.7 
539.3 
539.1 

530.9 
530.9 
530.8 

  
 
Figures (3) and (4) show the effect of applied voltages on transverse and axial 
displacements of aluminum beam with the piezoelectric actuator, respectively. It is seen 
from both figures that the transverse and axial displacements increases with increasing 
the applied voltage. 
 

 
Fig. 3. The influence of the applied voltage on the transverse displacement  

   of aluminum beam with piezoelectric actuator. 
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Fig. 4. The influence of the applied voltage on the axial displacement  
   of aluminum beam with piezoelectric actuator. 

 
 
CONCLUSIONS 
 
A finite element model has been proposed to predict the static and free dynamic 
characteristics of a laminated beam with distributed piezoelectric actuators.  The 
following conclusions have been drawn: 

1. The good agreement between the model predictions and the corresponding 
predicted results of other investigators proves the predictive capabilities of such 
model. 

2. The finite element model results were found to converge towards an asymptote 
at resizable number of elements. 

3. As the applied voltage increases, both the transverse and axial displacements 
increase, respectively. 

4. As the number of layers increases, the transverse deflection decreases.  
5. The inclusion of shear correction factor in the present model may improve its 

predictions. 
6. The model can be extended to characterize a fiber reinforced composite 

structures with smart materials.  
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