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ABSTRACT

In the present paper, the delamination behaviour of nano-reinforced composite double
cantilever beam is numerically studied. Specifically, it evaluates the influence of
nanofillers on the reinforcement of adhesively bonded layer under mode-| fracture
toughness using multiscale modelling. In this novel approach, we couple coarse-grain
molecular dynamics with continuum mechanics. The molecular dynamics domain and
the finite element domain are overlapped in a handshaking subdomain, The
implementation of coarse-grain molecular dynamics radically reduces the size of the
problem. An explicit algorithm coupling the two methodologies was developed and used
to determine the energy release rates of cohesive cracks in adhesively bonded
composite joints with varying amount of nano-reinforcement in the adhesive layer. Both
the quality of the prediction of the multiscale model and the influence of the nanofillers
are evaluated and discussed.
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INTRODUCTION

Recent advances in airframe design led to the increasing use of advanced composites.
In these composites, high strength adhesives are typically used to form the laminate
structures using special processes such as autoclaving or sandwich bonding. The use
of adhesive bonding as a joining method connecting different aerospace components
has been shown to attain high structural efficiency, integrity and improved fatigue life.
For example, in aircraft construction and repair, many structural components such as
wing stiffeners, fuselage longerons and skin panels are adhesively bonded. The Boeing
747 has more than 60% of its wetted area constructed by means of adhesive bonding,
while the Lockheed C-5A aircraft contains 35,000ft* of bonded structures [1]. However,
the mechanical properties and the stress concentration at the adhesive layers and their
interfaces with the adherends have been one of the prime concerns in adhesive joints.
Various techniques have been adapted to reduce this stress concentration and hence
improve the loading bearing capacity. These include selection of the high-strength and
high-toughness adhesive materials, dispersing fillers throughout the adhesives, altering
and the adhesive and adherend geometry [2]. Reinforcing the epoxy adhesive by
adding nanofillers is a new technique, which is receiving a great deal of attention [3-4].
The exceptional and superior physical and chemical properties of nanomaterials have
significantly influenced materials design technology [5-6]. The study of the behaviour of
these materials generally requires investigation at the atomic or molecular levels.
Furthermore, in most applications, nanoscale materials are used in conjunction other
components which are geometrically many orders larger, having different response
times, and thus operating at very different length- and time- scales [7-9]. It is therefore
our intention to develop a multiscale modelling technique to simulate fracture and
delamination behaviour for nano-reinforced composite structures.

FORMULATION OF PROBLEM

Fig. 1 shows that the two substrates are joined together by the nano-reinforced epoxy
adhesive layer and the computational domain is divided into two regions; namely, the
molecular dynamics (MD) region and finite element region as show in Fig. 2. In the MD
region, molecules or particles may be distributed either randomly or regularly. The
kinetic energy T and potential energy V for the system with N atoms are respectively
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where the first term in V is for the non-bonded interactions and the second for bonded
interactions, while the last term represents the work done by external forces. The non-
bonded interactions between atoms consist of repulsive and attractive forces, and are
computed using the Lennard-Jones (LJ) potential on the basis of the neighbour list [10-
11].

Here we define the lower case subscripts (i and j) to denote atomic particles, and r; is
the position vector of particle i, and using this notation: r; = r; - r.. The Hamiltonian
energy of a system of molecules with n particles is given by:
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If the surface tensor and interaction in the system is harmonic, applying the Hamiltonian
equations result in this following compact form
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where [m] is the mass matrix, [Fns] and [Fp;] are the non-bonded and bonded interaction
forces respectively, and {F} is the external load vector. Given the initial positions and
external forces of the system, integration of the above equations yields the total
trajectory of the system. These results will be introduced to the finite element analysis
as boundary conditions. The initial conditions are estimated using a Monte Carlo
technique, while the initial velocity components v;, where i=1...3N, are generated based
on the Maxwellian distribution at a given absolute temperature T [12].

Based on statistical mechanics, the local stress tensor o, can be obtained by imposing
conservation of linear momentum p(r) [13]:
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where the momentum is defined in terms of the individual particle’s («) momenta and
position, p“ and r, . Using Newton’s second law, one obtains the stress tensor
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Here we define a coarse-grained average stress by integrating the local stress over an
appropriate averaging volume Q around particle «., taking the continuum limit of the
above, i.e., k > 0, we obtain
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In terms of finite element modelling, it straight forward to obtain the total potential
energy of the system, which wouId lead us to
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where I1 is system potential energy and d is displacement, [K®], {F} and {®} are the
element stiffness matrix, body force vector and surface traction vector, respectively.
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The FE mesh is composed of 8 noded solid elements with uniform thickness. The left
edge in the FE regime is subjected to hinge forces in opposite directions, and the right
edge in FE regime is constrained in the length and thickness directions. Near the crack
region, the adhesive and handshaking substrate areas are modelled using molecular
dynamics. Further details can be found in our published work.

RESULTS AND DISCUSSIONS

Simulations for the mode | opening of a double cantilever beam were carried out to
obtain relations between load and crack opening displacement, load and crack length,
and also between interfacial strain energy release rate G. The cantilever beam model
consists of two rectangular, uniform thickness, unidirectional carbon fibre laminated
composites pieces bonded together by epoxy adhesive. A pre-crack in the adhesive
layer, with a length of 50mm, is used in the model to serve as a delamination initiator.
Opening forces are applied to the DCB at the upper left or lower left side. Opening
displacements and delamination length were then computed and compared with
experimental results. The solution procedure involves application of incremental loads
with iterative loads. The system energy is simulated and shown in Fig. 3. The epoxy
adhesive with dispersed 5% nanopowder presents the highest energy as a function of
time, while the epoxy adhesive with dispersed 5% nanotubes shows moderately high
energy as a function of time, and the pure epoxy shows the lowest energy as function
of time. The difference in the energy is a measure of the elastic and plastic energy
stored by the system. The stored energy tends to be lower for the pure epoxy which
has less cohesive energy and therefore lower resistance to fracture. In contrast, the
system with a suitable amount of nanoparticles reinforcement tends to show higher
cohesive energy and therefore higher resistance to fracture. Reported experimental
data [4, 14] suggests that approximately 5wt% provides the greatest reinforcement for
the systems considered.

The relations between loading and delamination (or crack) length are shown in Figs. 4
(left column) for CF-CF double composite cantilever beams. Simulations are carried out
by using pure epoxy adhesive, epoxy adhesive with dispersed nanotubes (5%) and
epoxy adhesive with dispersed nanopowder (5%). When the load increases, the
delamination length also increases. Simulation results show excellent agreement with
the experimental results. The nano-reinforced adhesives display better adhesion
properties compared with pure epoxy, and the epoxy adhesive with nanopowder
reinforcement performs better than that with nanotube reinforcement.

The relation between energy release rates of DCB specimens and crack-length were
computed. The results are presented in Fig. 4. Results are corresponding to pure epoxy
adhesive, epoxy adhesive with nanotubes (5%) and epoxy adhesive with nanopowder
(5%). They show that the predicted energy release rates are dependent on the range of
crack lengths. The nano-reinforced adhesives display better adhesion properties
compared with pure epoxy, and the epoxy adhesive with nanopowder reinforcement
performs better than that with nanotube reinforcement. These can be shown by
comparing the energy release rates at a typical crack length. For example, when total
crack length is 70 mm, pure epoxy bonded DCB gives G = 400 J/m?, the nanotube
reinforced DCB has 467 J/m?, the nanopowder reinforced DCB has G = 627 Jim?. As
expected, the simulation results generally predict slight higher values as compared to
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the experimental results. This over prediction may be primarily attributed to the ideal
nature of the material in the MD simulation. Additionally, the calculation method of G
differs for the simulation and the experiment.

CONCLUSIONS

In this paper, we have presented a novel efficient multiscale modelling scheme for the
fracture analysis of a nano-reinforced epoxy adhesive layer, and applied it to the
delamination of double cantilever beams with macroscopic dimensions. The model is
based on a hybrid strategy and couples the macroscale-nanoscale fracture processes
in which the continuum based finite element computations of the stress and
displacement fields are integrated with the local nanoscale atomistic dynamics. The
nanoscale molecular dynamics computations employed coarse-grained beads which
significantly reduced computational time and made the simulation viable. The transition
from the macroscale to the nanoscale was achieved via the introduction of an
intermediate handshaking mesoscale zone with continuum-based stress and
displacement fields. The nanoscale computations then provided the critical crack
increments and the energy release rate of the crack propagation. The model has
predicted the relations of loading as a function of delamination increments, and energy
release rates as a function of crack length and nanoparticle weight percentage
dispersed in the epoxy adhesive.
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Fig. 1. Schematic of the DCB specimen consists of substrates and an adhesive layer.
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Fig. 2 Regions of finite element (FE) region and molecular dynamics (MD)
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