Endosulfan Exposure Reduced Fertilization, Hatching, and Survival Rate of the Lemon Fin Barb Hybrid Eggs and Larvae | ||||
Journal of Applied Veterinary Sciences | ||||
Article 14, Volume 10, Issue 1, January 2025, Page 132-139 PDF (592.98 K) | ||||
Document Type: Original Article | ||||
DOI: 10.21608/javs.2025.340039.1473 | ||||
View on SCiNiTO | ||||
Authors | ||||
Muhammad Nur Fikri Mohd Nazri1; Mazlina Mazlan 2; Muhammad Fadhil Syukri Ismail 3; Rozaini Mohd Zohdi 4; Awang Hazmi Awang Junaidi 1 | ||||
1Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia | ||||
2Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia | ||||
3Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia. | ||||
4Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor Darul Ehsan, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia | ||||
Abstract | ||||
Endosulfan (ES) is an organochlorine insecticide that has been extensively used in agricultural production. Despite being banned globally, the production and illegal use of ES continue in certain countries, raising concerns about their impact on the environment and human health. The aim of this study was to examine the effect of ES on the fertilization, hatching, and survival rate of the lemon fin barb hybrid (LFBH; Hypsibarbus wetmorei × Barbonymus schwanenfeldii) eggs and larvae. A pair of LFBH was used as the broodstock. The sperm and eggs harvested via the stripping method were mixed and exposed to different concentrations of ES (0 ppm, or control; 0.01 ppm, 0.1 ppm, or 1 ppm). The fertilization and hatching rates were evaluated in vitro at 3 and 18 hours post-exposure, respectively. The survival rate of the larvae was assessed at 24, 48, and 72 hours post-hatching. The fertilization and hatching rates of the LFBH eggs treated with 1 ppm ES (44.24±4.6% and 18.54±2.8%, respectively) were significantly lower (p < /em><0.05) than the control (63.35±5.8% and 46.76±1.3%, respectively). The main effect of treatment and time on the survival rate of the larvae was significant (p < 0.019) within three days post-hatchlings, where the survival rate of larvae exposed to 1 ppm was significantly lower (p < 0.05) than the control at every time interval. Overall, ES exposures displayed a detrimental effect on the early development and survival of the LFBH eggs and larvae. | ||||
Keywords | ||||
Endosulfan; Hatching; Fertilization; Lemon fin barb hybrid; Survival | ||||
References | ||||
ABDULLAH, M. P., ABDUL AZIZ, Y. F., OTHMAN, M. R., and WAN MOHD KHALIK, W. M. A., 2015. Organochlorine Pesticides Residue Level in Surface Water of Cameron Highlands, Malaysia. Iranica Journal of Energy and Environment 6 (2): 141-146. https://doi.org/10.5829/idosi.ijee.2015.06.02.10
ALTINOK, I., and CAPKIN, E., 2007. Histopathology of rainbow trout exposed to sublethal concentrations of methiocarb or endosulfan. Toxicologic Pathology 35(3): 405–410. https://doi.org/10.1080/01926230701230353
AMINUDDIN, B. Y., SHARMA, M. L., and WILLETT, L. R., 1996. Agricultural impacts on ground water quality. ACIAR Proceedings 1996: 1–97
BALASUBRAMANI, A., and PANDIAN, T. J., 2008. Endosulfan suppresses growth and reproduction in zebrafish. Current Science 94(7): 883–890.
BHATTACHARYA, H., ZHANG, S. C., and WANG, Y. J., 2005. Embryonic development of the rosy barb Puntius conchonius Hamilton 1822 (Cyprinidae). Tropical Zoology 18(1): 25–37. https://doi.org/10.1080/03946975.2005.10531212
BHAVAN, P. S. 2000. Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcolmsonii exposed to endosulfan. Aquatic Toxicology 50(4): 331–339. https://doi.org/10.1016/s0166-445x(00)00096-5
BRUNELLI, E., BERNABÒ, I., SPERONE, E., and TRIPEPI, S., 2010. Gill alterations as biomarkers of chronic exposure to endosulfan in Bufo bufo tadpoles. Histology and Histopathology, 25(12), 1519–1529. https://doi.org/10.14670/hh-25.1519
CHAKRABARTY, S., RAJAKUMAR, A., RAGHUVEER, K., SRIDEVI, P., MOHANACHARY, A., PRATHIBHA, Y., BASHYAM, L., DUTTA-GUPTA, A., and SENTHILKUMARAN, B., 2012. Endosulfan and flutamide, alone and in combination, target ovarian growth in juvenile catfish, Clarias batrachus. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 155(3), 491–497. https://doi.org/10.1016/j.cbpc.2011.12.007
CHAKRAVORTY, S., LAL, B., and SINGH, T., 1992. Effect of endosulfan (thiodan) on vitellogenesis and its modulation by different hormones in the vitellogenic catfish Clarias batrachus. Toxicology, 75(3), 191–198. https://doi.org/10.1016/0300-483x(92)90001-u
CHOUDHARY, N., and JOSHI, S. C., 2003. Reproductive toxicity of endosulfan in male albino rats. Bulletin of Environmental Contamination and Toxicology, 70(2), 285–289. https://doi.org/10.1007/s00128-002-0189-0
CHUGH, S. N., DHAWAN, R., AGRAWAL, N., and MAHAJAN, S. K., 1998. Endosulfan poisoning in Northern India: a report of 18 cases. Int. Journal of Clinical Pharmacology and Therapeutics, 36(9):474-7.
DAGLIOGLU, N., AKCAN, R., GULMEN, M. K., YENER, F., and EFEOGLU, P., 2011. Pesticide intoxications in Cukurova, Turkey: three years analysis. Human & Experimental Toxicology, 30(12), 1892–1895. https://doi.org/10.1177/0960327111402241
DA CUÑA, R. H., VÁZQUEZ, G. R., DORELLE, L., RODRÍGUEZ, E. M., MOREIRA, R. G., and LO NOSTRO, F. L., 2016. Mechanism of action of endosulfan as disruptor of gonadal steroidogenesis in the cichlid fish Cichlasoma dimerus. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 187, 74–80. https://doi.org/10.1016/j.cbpc.2016.05.008
DE ROMA, A., ROSSINI, C., RIVERSO, C., GALIERO, G., and ESPOSITO, M., 2016. Endosulfan poisoning in canids and felids in the Calabria region of southern Italy. Journal of Veterinary Diagnostic Investigation, 29(1), 122–125. https://doi.org/10.1177/1040638716681389
DEWAN, A., BHATNAGAR, V. K., MATHUR, M. L., CHAKMA, T., KASHYAP, R., SADHU, H. G., SINHA, S. N., and SAIYED, H. N., 2004. Repeated episodes of endosulfan poisoning. Journal of Toxicology Clinical Toxicology, 42(4), 363–369. https://doi.org/10.1081/clt-120039542
HARON, S. H., and S, I. B., 2015. Comparison pesticide residue levels in the surface of Bertam River in Cameron Highlands, Pahang. AIP Conference Proceedings. https://doi.org/10.1063/1.4931200
HASNI, N. A. K., ANUAL, Z. F., RASHID, S. A., THAHIR, S. S. A., VELOO, Y., FANG, K. S., and MAZELI, M. I., 2023. Occurrence of endocrine disruptors in Malaysia’s water systems: A scoping review. Environmental Pollution, 324, 121095. https://doi.org/10.1016/j.envpol.2023.121095
HERRERO, A., THOMPSON, K., ASHBY, A., RODGER, H., and DAGLEISH, M., 2018. Complex Gill Disease: an Emerging Syndrome in Farmed Atlantic Salmon (Salmo salar L.). Journal of Comparative Pathology, 163, 23–28. https://doi.org/10.1016/j.jcpa.2018.07.004
HUSSEIN, M. M., ELSADAAWY, H. A., EL-MURR, A., AHMED, M. M., BEDAWY, A. M., TUKUR, H. A., SWELUM, A. A., and SAADELDIN, I. M., 2019. Endosulfan toxicity in Nile tilapia (Oreochromis niloticus) and the use of lycopene as an ameliorative agent. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 224, 108573. https://doi.org/10.1016/j.cbpc.2019.108573
IRSHAD, S. M., and JOSEPH, J., 2015. An Invisible Disaster: Endosulfan Tragedy of Kerala. Economic and Political Weekly, 50(11), 61–65.
JAMES, A., and EMMANUEL, D., 2021. An overview of endosulfan and the aftermath of its biohazardous administration in southern India. European Journal of Molecular & Clinical Medicine, 8(2), 212–218.
JANG, T., JANG, J., and LEE, K., 2016. Mechanism of acute endosulfan intoxication-induced neurotoxicity in Sprague-Dawley rats. Archives of Industrial Hygiene and Toxicology, 67(1), 9–17. https://doi.org/10.1515/aiht-2016-67-2702
JAYARAJ, R., MEGHA, P., and SREEDEV, P., 2016. Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9(3–4), 90–100. https://doi.org/10.1515/intox-2016-0012
KUCUKER, H., SAHIN, O., YAVUZ, Y., and YÜRÜMEZ, Y., 2008. Fatal Acute Endosulfan toxicity: a case report. Basic & Clinical Pharmacology & Toxicology, 104(1), 49–51. https://doi.org/10.1111/j.1742-7843.2008.00216.x
LEONG, K. H., TAN, L. B., and MUSTAFA, A. M., 2007. Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 66(6), 1153–1159. https://doi.org/10.1016/j.chemosphere.2006.06.009
MONDE, C., SYAMPUNGANI, S., and VAN DEN BRINK, P. J., 2016. Effects of endosulfan on Predator–Prey Interactions between catfish and schistosoma host snails. Archives of Environmental Contamination and Toxicology, 71(2), 257–266. https://doi.org/10.1007/s00244-016-0275-7
MOR, F., and OZMEN, O., 2003. Acute endosulfan poisoning in cattle. Veterinary and Human Toxicology, 45(6):323-4.
MYINT, S. S., and SOE, A. K., 2020. Morphological Embryonic Development Stages of Barbonymus gonionotus (Bleeker, 1850). IOP Conference Series Earth and Environmental Science, 416, 012003. https://doi.org/10.1088/1755-1315/416/1/012003
PEREIRA, V. M., BORTOLOTTO, J. W., KIST, L. W., DE AZEVEDO, M. B., FRITSCH, R. S., DA LUZ OLIVEIRA, R., PEREIRA, T. C. B., BONAN, C. D., VIANNA, M. R., and BOGO, M. R., 2012. Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). NeuroToxicology, 33(3), 469–475. https://doi.org/10.1016/j.neuro.2012.03.005
PIMENTEL, D. 1995. Amounts of pesticides reaching target pests: Environmental impacts and ethics. Journal of Agricultural and Environmental Ethics, 8(1), 17–29. https://link.springer.com/article/10.1007/BF02286399
PIMENTEL, D., and BURGESS, M., 2011. Small amounts of pesticides reaching target insects. Environment Development and Sustainability, 14(1), 1–2. https://doi.org/10.1007/s10668-011-9325-5
RADHAKRISHNAN, S. 2018. A note on wildlife poisoning cases from Kerala, South India. European Journal of Wildlife Research, 64(5). https://doi.org/10.1007/s10344-018-1218-6
RAHMAN, M. A, LEE, S-G., YUSOFF, F. M., and RAFIQUZZAMAN, S. M., 2018. Hybridization and its application in aquaculture. In: Sex control in aquaculture. New York, NY, USA. p163–78. https://doi.org/10.1002/9781119127291.ch7
RAMACHANDRA, R., and MOURIN, J., 2006. Overview of the POPs Pesticide Situation in Malaysia. Pesticide Action Network Asia and the Pacific (PAN AP).
RAJAKUMAR, A., SINGH, R., CHAKRABARTY, S., MURUGANANTHKUMAR, R., LALDINSANGI, C., PRATHIBHA, Y., SUDHAKUMARI, C., DUTTA-GUPTA, A., and SENTHILKUMARAN, B., 2012. Endosulfan and flutamide impair testicular development in the juvenile Asian catfish, Clarias batrachus. Aquatic Toxicology, 110–111, 123–132. https://doi.org/10.1016/j.aquatox.2011.12.018
SÁNCHEZ, M. C., SEDÓ, C. A., CHAUFAN, G. R., ROMANATO, M., DA CUÑA, R., LO NOSTRO, F., CALVO, J. C., and FONTANA, V., 2018. In vitro effects of endosulfan-based insecticides on mammalian sperm. Toxicology Research 7(1): 117–126. https://doi.org/10.1039/c7tx00251c
SASTRY, K., and SIDDIQUI, A. A., 1982. Effect of endosulfan and quinalphos on intestinal absorption of glucose in the freshwater murrel, Channa punctatus. Toxicology Letters 12(4): 289–293. https://doi.org/10.1016/0378-4274(82)90253-3
SATHISHKUMAR, P., MOHAN, K., GANESAN, A. R., GOVARTHANAN, M., YUSOFF, A. R. M., and GU, F. L., 2021. Persistence, toxicological effect and ecological issues of endosulfan – A review. Journal of Hazardous Materials 416: 125779. https://doi.org/10.1016/j.jhazmat.2021.125779
SHARMILA, N., and ABHIK, G., 2013. Acute toxicity of endosulfan, malathion and carbaryl, and their sublethal effects on growth of Channapunctatus bloch in Cachar district, Assam, India. International Journal of Environmental Science 2(10): 39-43.
SIDHU, G. K., SINGH, S., KUMAR, V., DHANJAL, D. S., DATTA, S., and SINGH, J., 2019. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Critical Reviews in Environmental Science and Technology 49(13): 1135–1187. https://doi.org/10.1080/10643389.2019.1565554
STANLEY, K. A., CURTIS, L. R., SIMONICH, S. L. M., and TANGUAY, R. L., 2009. Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development. Aquatic Toxicology 95(4): 355–361. https://doi.org/10.1016/j.aquatox.2009.10.008
SUHARMILI, R., KAMARUDIN, M., SAAD, C., INA-SALWANY, M., RAMEZANI-FARD, E., and MAHMUD, M., 2015. Effects of varying dietary protein level on the growth, feed efficiency and body composition of lemon fin barb hybrid fingerlings. Iranian Journal of Fisheries Science/Iranian Journal of Fisheries Science 14(2): 425–435.
SUKARDI, P., ROSITA, R. E., SIREGAR, A. S., JANUAR, C. S., HARISAM, M. T., HIDAYAT, F., BESSHO, Y., and PRAYOGO, N. A., 2019. The effect of endosulfan (insecticide) on expression of vitelogenin gene in female silver sharkminnow (Osteochilus hasseltii C. V.). IOP Conference Series Earth and Environmental Science, 406(1): 012032. https://doi.org/10.1088/1755-1315/406/1/012032
SULAIMAN, M. A., KAMARUDIN, M. S., ROMANO, N., and SYUKRI, F., 2020. Effects of increasing dietary carbohydrate level on feed utilisation, body composition, liver glycogen, and intestinal short chain fatty acids of hybrid lemon fin barb (Barbonymus gonionotus ♀ × Hypsibarbus wetmorei male ♂). Aquaculture Report 16: 100250. https://doi.org/10.1016/j.aqrep.2019.100250
WEE, S. Y., ARIS, A. Z., YUSOFF, F. M., and PRAVEENA, S. M., 2021. Tap water contamination: Multiclass endocrine disrupting compounds in different housing types in an urban settlement. Chemosphere 264:128488. https://doi.org/10.1016/j.chemosphere.2020.128488
WENG, T. K., and MOKHTAR, M., 2009. An appropriate institutional framework towards integrated water resources management in Pahang River Basin, Malaysia. European Journal of Scientific Research 27(4): 536- 547.
YAVUZ, Y., YURUMEZ, Y., KÜCÜKER, H., ELA, Y., and YÜKSEL, S., 2007. Two cases of acute endosulfan toxicity. Clinical Toxicology 45(5): 530–532. https://doi.org/10.1080/15563650701365909
Zakaria, M. H. 2015. Embryonic and early larval development of seven-line barb (Probarbus jullieni sauvage 1880) and lemon fin barb hybrid (Hypsibarbus wetmorei smith 1931 x Barbonymus gonionotus bleeker 1849). Master’s thesis, Universiti Putra Malaysia.
ZAKARIA, M. H., AMIN, S., ROMANO, N., ARSHAD, A., RAHMAN, M.A., and LEE, S., 2018. Embryonic and larval development of lemon fin barb hybrid (♂ Hypsibarbus wetmorei × ♀ Barbonymus gonionotus). Journal of Environmental Biology 39(5): 732–740. https://doi.org/10.22438/jeb/39/5(si)/19
ZAMAN, T., FAHAD, T. M., RANA, M., HOSSAIN, M. S., MAMUN, A., HAQUE, M. A., SARKER, A., ISLAM, M. S., HAQUE, M. M. L., NAZ, T., MANIK, M. I. N., ALI, H., YAMASU, K., and KHAN, A., 2023. Endosulfan affects embryonic development synergistically under elevated ambient temperature. Environmental Science and Pollution Research 30(29): 73393–73404. https://doi.org/10.1007/s11356-023-27665-z
ZHANG, S., DONG, Y., and CUI, P., 2015. Vitellogenin is an immunocompetent molecule for mother and offspring in fish. Fish and Shellfish Immunology 46(2): 710–715. https://doi.org/10.1016/j.fsi.2015.08.011 | ||||
Statistics Article View: 75 PDF Download: 47 |
||||