- Hachour, O.: The proposed genetic FPGA implementation for path planning of autonomous mobile robot. Int. J. Circ. Syst. Sig. Process. 2(2), 151–167 (2008)
- Jinyu Dai, Jin Qiu, Haocheng Yu, Chunyang Zhang, Zhengtian Wu and Qing GAO: Robot Static Path Planning Method Based on Deterministic Annealing. Machines, Machines 2022, 10(8), 600; www.doi.org/10.3390/machines10080600. (2022)
- Ferguson, D., Likhachev, M., Stentz, A.: A guide to heuristic-based path planning. School of Computer Science, Carnegie Mellon University Pittsburgh, PA, USA. American Association for Artificial Intelligence (2005). www.aaai.org.
- B.K. Patle a, Ganesh Babu L b, Anish Pandey c, D.R.K. Parhi d, A. Jagadeesh: A review: On path planning strategies for navigation of mobile robot. Production and hosting by Elsevier B.V. on behalf of China Ordnance Society, 2214-9147, (2019). https://doi.org/10.1016/j.dt.2019.04.011.
- Sariff, N., Buniyamin, N.: An overview of autonomous mobile robot path planning algorithms. In: Proceedings of 4th Student Conference on Research and Development, pp. 183–188 (2006).
- Chao Liu , Lei Wu , Guangxin Li, Hao Zhang, Wensheng Xiao, Dengpan Xu, Jingjing Guo, Wentao Li " Improved multi-search strategy A* algorithm to solve three-dimensional pipe routing design" Expert Systems with Applications Volume 240, 15 April 2024.
- Reddy, H.: Path Finding - Dijkstra’s and A* Algorithm’s, 13 December (2013).
- David Ball,Ben Upcroft, Gordon Wyeth, Peter Corke, Andrew English, Patrick Ross, Tim Patten, Robert Fitch, Salah Sukkarieh, Andrew Bate: Vision-based Obstacle Detection and Navigation for an Agricultural Robot. Journal of Field Robotics 33(8), 1107–1130, DOI: 10.1002/rob.21644. Australia, (2016).
- Y. Wang, B. Du, Y. Shen, K. Wu, G. Zhao, J. Sun, and H. When: “EV-gait: Event-based robust gait recognition using dynamic vision sensors,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2019, pp. 6351– 6360. Doi: 10.1109/CVPR.2019.00652.
- Yuncheng Lu, Zhucun Xue, Gui-Song Xia & Liangpei Zhang,” A survey on vision-based UAV navigation”, Geo-spatial Information Science, 21:1, 21-32, DOI: 10.1080/10095020.2017.1420509, (2018).
- Chandak, A., Gosavi, K., Giri, S., Agrawal, S., Kulkarni, P.: Path planning for mobile robot navigation using image processing. Int. J. Sci. Eng. Res. 4(6), 1490–1495 (2013).
- S. Aggarwal and N. Kumar: “Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges”, Computer Communications, S0140-3664(19)30853-9, (2019), Doi: https://doi.org/10.1016/j.comcom.2019.10.014.
- Fernando Perez-Sanz, Pedro J. Navarro and Marcos Egea-Cortines,” Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms”, Giga Science, Volume 6, Issue 11, November 2017, gix092, Doi: 10.1093/gigascience/gix092.
- Shojaeipour, S., et al.: Vision-based mobile robot navigation using image processing and cell decomposition. In: IVIC 2009. LNCS, vol. 5857, pp. 90–96 (2009).
- Campbell, J., Sukthankar, R., Nourbakhsh, I., Pahwa, A.: A robust visual odometry and precipice detection system using consumer-grade monocular vision. In: Proceedings of ICRA 2005, Barcelona, Spain (2005).
- Fábio Celestino Pereira, Carlos Eduardo Pereira,” Embedded Image Processing Systems for Automatic Recognition of Cracks using UAVs”, IFAC-Papers Online, Volume 48, Issue 10, 2015, Pages 16-21, https://doi.org/10.1016/j.ifacol.2015.08.101.
- ChenSunaChenTangaXinjunZhuaXiaoyuLiaLinlinWangb, “An efficient method for salt-and-pepper noise removal based on shearlet transform and noise detection”, AEU - International Journal of Electronics and Communications, 1434-8411, Volume 69, Issue 12, December 2015, Pages 1823-1832, http://dx.doi.org/10.1016/j.aeue.2015.09.007.
- Wenzhou GAO, Lei Yang, Xiaoguang Zhang, Huizhong Liu, “An Improved Sobel Edge Detection”, 978-1-4244-5540-IEEE, 3rd International Conference on Computer Science and Information Technology, Chenddu, China, pp. 67-71, 2010.
- Akshay Kumar Guruji, Himansh Agarwal, D. K. Parsediya,” Time-Efficient A* Algorithm for Robot Path Planning”, 3rd International Conference on Innovations in Automation and Mechatronics Engineering, Ahmedabad, India, Published by Elsevier Journal, pp.144-149, ICIAME 2016.
- Basem M. ElHalawany, HalaM. Abdel-Kader, AdlyTagEldeen, AlaaEldeenElsayed, ZakiB. Nossair,” Modified A* Algorithm for Safer Mobile Robot Navigation”, U2013 Proceedings of International Conference on Modelling, Identification & Control (ICMIC) Cairo, Egypt, 31st Aug- 2ndSept,pp.74-78,2013.
- FrantišekDucho, Andrej Babineca, Martin Kajana, Peter Beoa, Martin Floreka, TomášFicoa, LadislavJurišicaa, “Path planning with modified A star algorithm for a mobile robot”, Published by Elsevier Journal, Procedia Engineering 96, pp. 59-69, 2014.
- C.Wang, L.Wang, and J.Qin, X.Su, W.Li, Z. Lu, and M.Li, Z.Wu, L.Duan, Z.Li, M.Cao and XicuiOu, Y.Wang, J.Long, M.Huang, Y.Li and Q.Wang, “Path Planning of Automated Guided Vehicles Based on Improved A-Star Algorithm”, Proceeding of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, pp.2071-2076, August 2015.
- Haifeng Wang, Jiawei Zhou, GuifengZheng, Yun Liang, “HAS: Hierarchical A-Star Algorithm for Big Map Navigation in Special Areas”, International Conference on Digital Home, pp.222-225, Guangzhou, China, 2014.
- Abdel-Nasser Sharkawy "Task Location to Improve Human–Robot Cooperation: A Condition Number-Based Approach" Automation, Vol. 4, pp. 263–290, 2023.
- Martin Psotka, František Ducho , Mykhailyshyn Roman, Tölgyessy Michal and Dobiš Michal " Global Path Planning Method Based on a Modification of the Wavefront Algorithm for Ground Mobile Robots " Robotics, Vol. 25,pp.1-16 2023.
- Zhang, B.; Li, G.; Zheng, Q.; Bai, X.; Ding, Y.; Khan, A. Path planning for wheeled mobile robot in partially known uneven terrain. Sensors 2022, 22, 5217.
- Looi, C.Z.; Ng, D.W.K. A Study on the Effect of Parameters for ROS Motion Planer and Navigation System for Indoor Robot. Int. J. Electr. Comput. Eng. Res. 2021, 1, 29–36.
- Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 2020, 149, 270–299.
|