- Al Ka’bi, A. H. (2020). Comparison of energy simulation applications used in green building. Annals of Telecommunications, 75(7), 271–290. https://doi.org/10.1007/s12243-020-00771-6
- Claburn, T. (2022). Holz, founder of AI art service Midjourney, on future images. https://www.theregister.com/2022/08/01/david_holz_midjourney/
- Curry, D. (2024). Discord Revenue and Usage Statistics (2024). Business of Apps. https://www.businessofapps.com/data/discord-statistics/
- Czepiel, M., Bańkosz, M., & Sobczak-Kupiec, A. (2023). Advanced Injection Molding Methods: Review. Materials, 16(17), Article 17. https://doi.org/10.3390/ma16175802
- Du, H., Zhang, R., Liu, Y., Wang, J., Lin, Y., Li, Z., Niyato, D., Kang, J., Xiong, Z., Cui, S., Ai, B., Zhou, H., & Kim, D. I. (2024). Enhancing Deep Reinforcement Learning: A Tutorial on Generative Diffusion Models in Network Optimization. IEEE Communications Surveys & Tutorials, 26(4), 2611–2646. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2024.3400011
- El-fayoumy, A. H. (2022). The Role of BIM in Achieving Sustainable and Environmental Aspects for Interior Spaces. 2022 Engineering and Technology for Sustainable Architectural and Interior Design Environments (ETSAIDE), 1–7. https://doi.org/10.1109/ETSAIDE53569.2022.9906343
- Feng, W., Lin, D., & Cao, D. (2024). Multimodal Causal Relations Enhanced CLIP for Image-to-Text Retrieval. In Q. Liu, H. Wang, Z. Ma, W. Zheng, H. Zha, X. Chen, L. Wang, & R. Ji (Eds.), Pattern Recognition and Computer Vision (pp. 210–221). Springer Nature. https://doi.org/10.1007/978-981-99-8429-9_17
- Hao, Z. (2019). Deep learning review and discussion of its future development. MATEC Web of Conferences, 277, 02035. https://doi.org/10.1051/matecconf/201927702035
- IKEA. (2022). IKEA launches new AI-powered, digital experience. https://www.ikea.com/us/en/newsroom/corporate-news/ikea-launches-new-ai-powered-digital-experience-empowering-customers-to-create-lifelike-room-designs-pub58c94890/
- Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study. Journal of Industrial Integration and Management, 07(01), 83–111. https://doi.org/10.1142/S2424862221300040
- Liu, Q., Pinto, J. D., & Paquette, L. (2024). Applications of Explainable AI (XAI) in Education. In D. Kourkoulou, A.-O. (Olnancy) Tzirides, B. Cope, & M. Kalantzis (Eds.), Trust and Inclusion in AI-Mediated Education: Where Human Learning Meets Learning Machines (pp. 93–109). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64487-0_5
- Marcus, G., Davis, E., & Aaronson, S. (2022). A very preliminary analysis of DALL-E 2 (arXiv:2204.13807). arXiv. https://doi.org/10.48550/arXiv.2204.13807
- McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), Article 4. https://doi.org/10.1609/aimag.v27i4.1904
- Mhlanga, D. (2023). The Value of Open AI and Chat GPT for the Current Learning Environments and the Potential Future Uses (SSRN Scholarly Paper 4439267). Social Science Research Network. https://doi.org/10.2139/ssrn.4439267
- Mishra, C., & Gupta, D. L. (2017). Deep Machine Learning and Neural Networks: An Overview. IAES International Journal of Artificial Intelligence (IJ-AI), 6(2), Article 2. https://doi.org/10.11591/ijai.v6.i2.pp66-73
- Purwono, P., Ma’arif, A., Rahmaniar, W., Fathurrahman, H. I. K., Frisky, A. Z. K., & Haq, Q. M. ul. (2022). Understanding of Convolutional Neural Network (CNN): A Review. International Journal of Robotics and Control Systems, 2(4), Article 4. https://doi.org/10.31763/ijrcs.v2i4.888
- Ramzan, S., Iqbal, M. M., & Kalsum, T. (2022). Text-to-Image Generation Using Deep Learning. Engineering Proceedings, 20(1), Article 1. https://doi.org/10.3390/engproc2022020016
- Sarker, I. H. (2021a). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, 2(6), 420. https://doi.org/10.1007/s42979-021-00815-1
- Sarker, I. H. (2021b). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
- Schwendener, M. (2007, September 24). Midcentury Moderns in a Cross-Cultural Conversation. The New York Times. https://www.nytimes.com/2007/09/24/arts/design/24nogu.html
- Shi, L., Ding, A.-C. (Elisha), & Choi, I. (2024). Investigating Teachers’ Use of an AI-Enabled System and Their Perceptions of AI Integration in Science Classrooms: A Case Study. Education Sciences, 14(11), Article 11. https://doi.org/10.3390/educsci14111187
- Singh, S., & Hooda, S. (2023). A Study of Challenges and Limitations to Applying Machine Learning to Highly Unstructured Data. 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA), 1–6. https://doi.org/10.1109/ICCUBEA58933.2023.10392115
- Suidan, A. H., El-Harairy, Y. M., & El-fayoumy, A. H. (2022). Integrating Of Building Information Modelling into the Curriculum of Interior Design Students. Journal of Applied Arts and Sciences, 9(2), 129–149. https://doi.org/10.21608/maut.2022.235196
- Taherdoost, H. (2023). Deep Learning and Neural Networks: Decision-Making Implications. Symmetry, 15(9), Article 9. https://doi.org/10.3390/sym15091723
- The Economist. (2022). Huge “foundation models” are turbo-charging AI progress. The Economist. https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress
- Udousoro, I. C. (2020). Machine Learning: A Review. Semiconductor Science and Information Devices, 2(2), Article 2. https://doi.org/10.30564/ssid.v2i2.1931
- Wang, X., He, Z., & Peng, X. (2024). Artificial-Intelligence-Generated Content with Diffusion Models: A Literature Review. Mathematics, 12(7), Article 7. https://doi.org/10.3390/math12070977
- Zhu, Y., & Xiong, Y. (2015). Towards Data Science. Data Science Journal, 14(0). https://doi.org/10.5334/dsj-2015-008
|