Efficiency of Phenolic Contents and some Field Factors on the Population Abundance of Aphid Species and Onion Thrips Infesting Bread Wheat Cultivars under Irrigation Conditions
 Ahmed, A. M. M. ${ }^{1}$; Abeer A. Radi ${ }^{2}$ and Eman F. M. Tolba ${ }^{3}$
 ${ }^{1}$ Department of Plant Protection, Faculty of Agriculture, Assiut University (71526), Assiut, Egypt
 ${ }^{2}$ Department of Botany, Faculty of Science, Assiut University (71526), Assiut, Egypt
 ${ }^{3}$ Department of Plant Protection, Faculty of Agriculture, New Vally University, Assiut, Egypt
 E-mails: saleh_moda@yahoo.com ${ }^{1}$; abeeradi@hotmail.com ${ }^{2}$; Samaraamrmr@yahoo.com ${ }^{3}$

Abstract

The study was conducted during (2015/ 2016 and 2016/ 2017) at the farm of Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt on five wheat cultivars: Sahel 1, Seds 4, Gemaza 9, Giza 168, and Misr 2). To study the effects of phenolic contents (free and bound phenols), climatic factors (daily maximum (DMxT) and minimum temperatures $\left({ }^{\circ} \mathrm{C}\right)$ (DMnT), soil maximum and minimum temperatures $\left({ }^{\circ} \mathrm{C}\right)(\mathrm{SMxT}$ and SMnT$)$ at 5 cm depth, and the natural enemies (N . E.) on the population density of onion thrips, Thrips tabaci Lindeman and aphid species (Mayzus persicae Sulz., Brivecoryne brassicae Linnaeus, and Rhopalosiphum padi Linnaeus) infesting bread wheat cultivars under irrigation conditions, with references to the yields of wheat cultivars. The invasions started in February during the $1^{\text {st }}$ season and in January for the $2^{\text {nd }}$ season on all of wheat cultivars. The invasions of thrips individuals were higher than aphids in almost of wheat cultivars during the two seasons of the study. In the $1^{\text {st }}$ season, aphid's populations showed three peaks on all cultivars in the $31^{\text {th }}$ of March, $15^{\text {th }}$ of April, and in the $30^{\text {th }}$ of April. Meanwhile, thrips individuals registered two peaks: the $1^{\text {st }}$ peak was in the $15^{\text {th }}$ of March and the second were occurred in the $31^{\text {th }}$ of March. Respect to the $2^{\text {nd }}$ season, aphids recorded three peaks in $15^{\text {th }}, 28^{\text {th }}$ of February and $15^{\text {th }}$ of March on all wheat cultivars and thrips recorded two peaks of fluctuations in the $28^{\text {th }}$ and $15^{\text {th }}$ of March. All of the considered factors were contributed together in forming the patterns of the population density $\left(\mathrm{R}^{2}\right)$ by $53.62,60.44$, and 71.65%; respectively for aphids, thrips and the grand total of pests during the two seasons of the study. In case of Aphids, (DMnT) was the highest participated factor in regulating the population (16.906 out of 53.62%), the free phenol contents showed that the only negative correlation and ranked the second efficient factor by (16.62 out of 53.62%), afterwards the third efficient factor was (DMxT) which shared with (11.073 out of 53.62%), and finally the natural enemies showed the least efficient factor by (0.026 out of 53.62%) on all wheat cultivars. The population for both thrips and grand total were mostly under controlled by the same factors, (DMnT) was the highest efficient factor (18.614 out of 60.48% and 24.525 out of 71.65%; respectively for thrips and the grand total of pests). Then, (N. E.) played the second role with (13.337 out of 60.44%) for thrips and (15.032 out of 71.65%) for the grand total. Afterwards, (DMnT) ranked the third factor (12.794 out of 60.44% and 14.800 out of 71.65%; respectively for thrips and the grand total of pests). The least efficient factor for thrips was (SMxT) which participated by (0.240 out of 60.44%) and for the grand total of pests were bound phenol contents (0.129 out of 71.65%). Top yields were gained from Giza 186 and Misr $2(218.0,213.4$ and 207.3, 198.8 GY/10 plants; respectively during the $1^{\text {st }}$ and $2^{\text {nd }}$ seasons. Afterwards, Gemeza 9 ranked the third cultivar in the $1^{\text {st }}$ season (182.7 GY/10 plants) and Sahel 1 for the $2^{\text {nd }}$ season (192.8 GY/10 plants)

Keywords: Irrigation condition, Phenolic content, wheat aphids, Onion thrips, wheat resistance

INTRODUCTION

Wheat (Triticum aestivum L.) is the most economic and nutritious food among various cereal crops which globally cultivated on 23% for its importance in world food safety (Istvan, 2006). It participated by 20% of world food calories for about 40% of world population and contains 13% of protein (Ahmad and Shaikh, 2003).

Aphid's species and thrips are the great challenge facing the production of wheat around the world. Insect pests cause an obvious negative reduction in the yield. On the other hand, the intensive use of insecticides has become non acceptable for human hazard toxicity and expensive costs due to insects-resistance to various insecticides as the total cost of pesticides reached to approximately $\$ 40$ billion spent worldwide for chemical control (FAO, 2011; Lewis et al., 1997).

The aphids are sucking insect pests which capable of infesting various wheat cultivars and cause distortion, chlorosis, curling of leaves and the damage are not easy managed (Geza, 2000; Dedryver et al., 2010). Aphids infestation reduce the numbers of wheat heads and the lost could be reached up to $35-40 \%$ as direct loss, and $20-$ 80% of the indirect loss occurs due to the excretions of aphids honeydew which followed by fungi and moulds growth then shortage in photosynthesis process (Rossing et al., 1994).

Thrips tabaci Lindeman, is a minor insect pest on more than 300 species of host plant groups and adapt to infest various species of plants (Ghabn, 1948; Ahmed et al., 2016). Thrips is very difficult pest to be controlled due to its behaviour in escaping from direct sunlight and high temperatures by sheltering in flowers and folded leaves where insecticides could not eternally reach to such parts (Palumbo, 2000).

In this regard, most of plants developed the defence reaction due to the continuous attacks of the same kind of insect pests or organisms by using various mechanisms of defence such as producing numerous of chemical compounds in order to deter or prevent insect pests attack to protect their tissues (Kamila, 2016). The plant chemicals classified into several categories such as phenols, repellent, toxins, tannins. Phenolics are the major chemical group released for its primary function in the defence system of the plant species self-protection (Marta and Sarah, 2011). Several of these compounds are repellent to haematophagous insects which could be an evolutionary relict from plant-feeding ancestor, as many of these compounds evolved as repellents to phytophagous insects (Harrewijn et al., 1995).

The aim of this study is to investigate the effect of free and bound phenols contents, plant age, climatic factors of daily maximum and minimum temperature in Celsius
degrees, soil temperature at 5 cm depth in Celsius degrees, and the natural enemies of aphids and thrips on the fluctuation of onion thrips, T. tabaci and aphid species (M. persicae, B. brassicae, and R. padi); respectively on five wheat cultivars under irrigation condition with references to the yields of the examined cultivars.

MATERIALS AND METHODS

1. The design of the experimental:

The experiment was conducted on five bread wheat cultivars: Sahel 1, Seds 4, Gemaza 9, Giza 168, and Misr 2 throughout two seasons (2015-2016 and 2016-2017) at the farm of Faculty of Agriculture, Assiut University, Assiut, Egypt. The five cultivars were allowed for irrigation and each cultivar was planted in three plots (replicates), with total number of 15 replicates for all cultivars. The plot size was $3 \mathrm{~m} \times 4 \mathrm{~m}$ and contains ten rows. 40 plants in each row, with 30 cm spacing the rows, and 30 cm within plants and the experiment was maintained free from using pesticides or weedicides.

2. The estimation of population density of aphids and thrips:

The weekly random collection was done for three plants/ cultivar/ replicate. The plants (samples) were transferred in polyethylene bags 45 samples/ week from the selected cultivars and the plants were kept in refrigerator at The Laboratory of Economic Entomology/ Plant Protection Research centre at the Faculty of Agriculture Farm, Assiut University, Assiut, Egypt for examination. The whole plants (heads, stems, leaves: upper and lower surfaces) were well examined by binocular, and the numbers of mature and immature stages of aphids and thrips were registered and the unknown samples of aphids species were maintained on glass slides and sent to the specialist Dr. Amal Hamed Ahmed Atta, at Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt for identification according to Atta, (1989).

3. The meteorological date:

The daily maximum (DMxT) and minimum (DMnT) temperatures of weather and soil in Celsius degrees (SMxT and SMnT) in 5 cm depth were obtained from the meteorological station of Assiut University, Faculty of Agriculture Farm, Assiut, Egypt.

4. Determination of phenolics in the wheat cultivars:

The determination of free and cell wall-bound were determined according to Kofalvi and Nassuth (1995).
-Reagents: 50% methanol, Folin-Ciocalteu's, 0.5 N NaOh , 2 N HCL, and $20 \% \mathrm{Na} 2 \mathrm{Co} 3$.
-Procedure: The fresh leaves $(0.3 \mathrm{~g})$ were extracted in 50% methanol (10 ml) for 90 min . at $80^{\circ} \mathrm{C}$. The extract was centrifuged at $14,000 \mathrm{rpm}$ for 15 min . and the supernatant taken for free phenolics determination using the Folin-Ciocalteu's phenol reagent. The pellet was sponified with 2 ml of 0.5 N NaOH for 24 h at roomtemperature to release the bound phenolics, neutralized with 0.5 ml 2 N Hcl and centrifuged at 14,000 rpm for 15 min . The supernatant was taken for bound phenolics determination using the Folin-Ciocalteu's assay. One hundred microliters of the methanol and NaOH extracts were diluted to 1 ml with water and mixed with 0.5 ml 2 N Folin-Ciocalteu's reagent and 2.5 ml of 20%
$\mathrm{Na} 2 \mathrm{Co3}$. After 20 min . at room temperature, absorbance of samples was measured at 725 nm with a unico UV-2100 spectrophotometer. Phenolic concentration in the extract was determined from standard curve prepared with gallic acid.

5. Statistical analysis:

The multi-regression analyses (Table: 2) was done by ASAP (Advanced Statistical Analysis Package) to present the efficiency of each variable by dropping one of each variable, step by step from the input analysed data. The statistical analysis was run for 2016 and 2017 seasons together between the numbers of aphid species, thrips, the grand total (sums of aphids and thrips); separately with phenolic contents (free and bound), daily maximum and minimum temperature in Celsius degrees, soil temperature in 5 cm depth Celsius degrees and the natural enemies on all cultivars.

RESULTS AND DISCUSSION

1. The fluctuation of Aphids and thrips during the

 seasons of the study (2015/ 2016 and 2016/ 2017):The means of thrips populations (Table: 1; Fig. 1 and 2) were higher than the means of aphid species on all of wheat cultivars during the two seasons of the study.

In the beginning of the season the cultivars were not attacked by aphids and thrips, because the vegetative growths of the cultivars were not completed yet. Therefore, the population fluctuations of both pests were (0.0 individuals/ 9 plants/ 3 replicates) during the months of December and January.
The abundance of aphids and thrips during the first season (2015/ 2016):

The population of both pests (Table: 1; Fig. 1 and 2) were in low fluctuations in the $15^{\text {th }}$ of February and the density of aphids reached to moderate levels of abundance in the $29^{\text {th }}$ of February. This could be occurred because the cultivars were not mature enough and the vegetative growth was lake to attract insect pests.

Aphids individuals were registered three peaks (Table: 1; Fig. 1 and 2) on all of wheat cultivars in the $31^{\text {th }}$ of March, $15^{\text {th }}$ of April, and in the $30^{\text {th }}$ of April as the last one recorded the highest numbers of individuals among all peaks (averages 292.7, 311.0, 284.3, 206.0, and 178.0 individuals/ 9 plants/ 3 replicates; respectively for Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2) when the temperatures were (Max. temp. $37.2^{\circ} \mathrm{C}$, Min temp. 15.4 ${ }^{\circ} \mathrm{C}$, Soil max. temp. $44.6^{\circ} \mathrm{C}$, Soil min. temp. $28.6^{\circ} \mathrm{C}$) under the respect order of free and bound contents of phenol as following ($0.4,1.0 ; 0.4,1.4 ; 0.4,1.0 ; 1.5,1.7$; 0.5 , and $0.8 \mathrm{mg} / \mathrm{g}$ fresh weight; respectively in Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2). These results are similar to the findings of Sayed and Teilp (2013) in Egypt, Ismailia whom demonstrated that the highest numbers of B. brassica individuals were observed on the $1^{\text {nd }}$ week of March and the $2^{\text {nd }}$ week of April. Besides, there are other similar results has been occurred with Aslam et al. (2007) in Pakistan, whom found that the population of B. brassica was in moderate levels from the end of February to early or mid. of March.

The population of thrips recorded two peaks: the first one was in the $15^{\text {th }}$ of March and the second were occurred in the $31^{\text {th }}$ of March with mean averages (215.0,

J. Plant Prot. and Path., Mansoura Univ., Vol. 10 (1), January, 2019

231.7; 213.0, 247.0; 192.0, 221.3; 167, 205.0; 143.3, and 200.0 individuals/ 9 plants/ 3 replicates; respectively for Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2) where the temperature degrees were (Max. temp. $26.2{ }^{\circ} \mathrm{C}$, Min temp. $13.4{ }^{\circ} \mathrm{C}$, Soil max. temp. $36{ }^{\circ} \mathrm{C}$, Soil min. temp. 19 ${ }^{\circ} \mathrm{C}$, in the $15^{\text {th }}$ of March, and Max. temp. $31.6{ }^{\circ} \mathrm{C}$, Min temp. $11^{\circ} \mathrm{C}$, Soil max. temp. $38.6^{\circ} \mathrm{C}$, Soil min. temp. 18.4 ${ }^{\circ} \mathrm{C}$ in the $31^{\text {th }}$ of March respectively for Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2) and the free and bound phenol contents were found in the previous order of cultivars as following: $0.5,1.2 ; 0.4,1.2 ; 0.5,1.1 ; 1.8,2.0$; 0.6 , and $0.9 \mathrm{mg} / \mathrm{g}$ fresh weight in $15^{\text {th }}$ of March, while in the $31^{\text {th }}$ of March were $0.4,1.0 ; 0.4,1.2 ; 0.4,0.9 ; 2.0,1.4$; 0.4 , and $0.7 \mathrm{mg} / \mathrm{g}$ fresh weight; respectively for Sahel 1 , Seds 4, Gemaza 9, Giza 186, and Misr2).

At the end of the season, the populations of both pests were decreased on all cultivars with mean averages (145.3, 74.3; 299.0, 86.0; 136.0, 73.3; 95.7, 52.3; 77.7, and 61.0 individuals/ 9 plants/ 3 replicates; respectively for aphids and thrips on Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2), during the following degrees of temperatures which reached to (Max. temp. $45{ }^{\circ} \mathrm{C}$, Min temp. $24^{\circ} \mathrm{C}$, Soil max. temp. $53.2^{\circ} \mathrm{C}$, Soil min. temp. $34^{\circ} \mathrm{C}$) under the same respect order of cultivars the free and bound contents of phenol reached to $(0.4,1.2 ; 0.4,1.3 ; 0.5,1.1 ; 1.6,2.0$;
0.5 , and $0.9 \mathrm{mg} / \mathrm{g}$ fresh weight; respectively in Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2). These results are in agreement with the findings by Sayed and Teilp (2013) who reported in Egypt, Isamilia that the population of the individuals of B. brassica / plant recorded law numbers in February and May.

The highest grand total numbers of aphids and thrips were recorded on Seds 4 (1472.0 and 1183.3 individuals/ season; respectively for aphids and thrips), and the lowest were occurred on Misr 2 (648.0 and 812.7 individuals/ season; respectively for aphids and thrips). The highest yield was obtained from Giza 186 (218.0 GY/10 plants), and the lowest one was found from Sahel 1 (181.3 GY/10 plants). These variations in the numbers of insect pests among the studied cultivars might be ascribed to certain morphological characteristics among the selected cultivars, because the type of mouth parts in both aphids and thrips which not only affected with the density of plant hairs, but also with the type of hairs on leaves and stems. These results were stated before by Metcalf and William (1975) as they emphasized that the plant resistance to insect attack mainly derives from morphological characteristics which affect the behavior of insect pests and influence the relative damage degrees.

Fig. 1. The fluctuations of aphid species and thrips with the amounts of free and bound phenols under the considered meteorological data in some wheat cultivars during (2015/2016 and 2016/2017) at the farm of Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt under irrigation condition.

Fig. 2. The fluctuations of aphid species and thrips with the amounts of free and bound phenols under the considered meteorological data in some wheat cultivars during (2015/2016 and 2016/2017) at the farm of Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt under irrigation condition
Table 1. Mean numbers of "aphid species and onion^ thrips on some *wheat cultivars and their phenolic contents under irrigation conditions during (2015/ 2016 and 2016/2017) at the farm of Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt.

The abundance of aphids and thrips during the second season (2016/ 2017):

The population of both pests recorded low levels of fluctuations (Table: 1) during the $15^{\text {th }}$ of January. Afterwards, the individuals increased gradually increased to moderate levels of abundance during the 31th of January for aphids and the moderate levels extended to $15^{\text {th }}$ of February for thrips.

The populations of aphids showed that three peaks in $15^{\text {th }}, 28^{\text {th }}$ of February and $15^{\text {th }}$ of March on all wheat cultivars were occurred. The highest peaks on all wheat cultivars where occurred in the $28^{\text {th }}$ February (mean averages 199.0; 249.0; 278.0; 169.0, 152.0 individuals/ 9 plants/ 3 replicates; respectively for Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2) during the temperatures degrees of factors (Max. temp. $28.8^{\circ} \mathrm{C}$, Min temp. $7.6^{\circ} \mathrm{C}$,

J. Plant Prot. and Path., Mansoura Univ., Vol. 10 (1), January, 2019

Soil max. temp. $36.6^{\circ} \mathrm{C}$, Soil min. temp. $16^{\circ} \mathrm{C}$) under free and bound contents of phenol in the following order (0.4 , $1.0 ; 0.4,0.5 ; 0.5,2.5 ; 0.5,0.4,0.4 \mathrm{mg} / \mathrm{g}$ fresh weight; respectively for Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2).

However, thrips recorded two peaks of fluctuations in the $28^{\text {th }}$ of February and the $15^{\text {th }}$ of March. The greatest peaks where observed in the $15^{\text {th }}$ of March (averages 260.0; 249.0; 288.0; 209.0; 246.0 individuals/ 9 plants/ 3 replicates; respectively for Sahel 1, Seds 4, Gemaza 9, Giza 186, and Misr 2), while the temperature degrees where (Max. temp. $26.4^{\circ} \mathrm{C}$, Min temp. $9.8^{\circ} \mathrm{C}$, Soil max. temp. $36^{\circ} \mathrm{C}$, Soil min. temp. $19{ }^{\circ} \mathrm{C}$) and the phenols contents were $(0.5,1.2 ; 0.4,0.5 ; 0.4,0.4 ; 2.4,0.6 ; 0.3,0.4$ mg / g fresh weight; respectively for Sahel 1 , Seds 4, Gemaza 9, Giza 186, and Misr 2).

Afterwards, the numbers of individuals of both pests were gradually decreased till the end of the season in the $15^{\text {th }}$ of April, 2017. There are similar results reported that the individuals of T. tabaci were not found in the beginning of the season in canola, then population was in law numbers afterwards increased to reach to their peaks in the mid. of March and late April (Sayed and Teilp, 2013).

The grand total of aphid numbers was occurred on Seds 4 (1219.0 individuals/ season), and the lowest one was observed on Giza 186. Respect to thrips, the grand total was found on Sahel 1 (1411.0 individuals/ season), and Giza 186 was ranked the lowest grand total (1127.0 individuals/ season). According to the yield of cultivars, it has been showed that Giza 186 ranked the first cultivar (213.0 GY/10 plants) and Gemaza 9 was the last cultivar (132.0 GY/10 plants) among all of wheat cultivars. These differences between the population of invasive aphid species and thrips on the cultivars could be returned to the
variations in the botanical prosperities, which may be played the role in appearing some resistance to insect attack. These results was reported by Kavitha and Reddy (2012) in an intensive study for resistant, tolerant, and susceptible varieties as a main component of Integrated Pest Management (IPM) and found that using of resistant or less suscebtible cultivar is important to keep the population of insect pests below the Economic Threshold Level (ETL).
2. The efficiency of factors in regulating the fluctuations of pests during (2015/16 and 2016/17):

The R^{2} of the studies factors (Table: 2) in changing the fluctuation were $53.62,60.44,71.65 \%$; respectively for aphids, thrips, and the grand total (sums of both aphids and thrips together).
The efficiency of factors on the population density of aphids during (2015/16 and 2016/17):

The populations of aphids (Table: 2) were highly affected with all considered factors together by 53.62%. The highest participated factor in this portion was the minimum temperatures (16.906 out of 53.62%), with little difference between the free phenol contents which ranked the second factor affected the abundance with (16.62%). The third factor was the maximum temperatures which shared with (11.073 out of 53.62%). The least efficient factor was the natural enemies (0.026 out of 53.62%) on all wheat cultivars. These results are in agreement with the findings of (Ajmal et al., 2017), where the biological control agents of aphids didn't present any correlation with aphid individuals. Likewise, these results are stated by Naser et al., (2001) who stated a non-significant correlation between the individuals of aphids and the natural enemies of Coccinelidae, lacewing, and Syrphid fly.

Table 2. Multiple correlations between the considered independent variables and the changes in the population density of ${ }^{\#}$ aphids species and ^onion thrips on various *bread wheat cultivars under irrigation conditions during (2015/16 and 2016/17) at the farm of Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt.

Cv.	Treatment	Irrigation Condition								
	Variable removed	Aphids			Thrips			Grand total (Aphids + Thrips)		
		r	$\mathrm{R}^{2} \times 100$	Efficiency	r	$R^{2} \times 100$	Efficiency	r	$\mathrm{R}^{2} \times 100$	Efficiency
の	None	------	53.62	------	------	60.44	------	------	71.65	------
\%	Plant age	0.593	53.75	0.666	0.605	59.42	7.992	0.661	70.9	4.082
\%	Free phenols	-0.204	47.91	16.62	-0.127	59.65	6.224	-0.169	69.43	12.012
-	Bound phenols	6.112	53.86	3.166	-0.384	60.40	0.618	- 1.623	71.64	0.129
	N.E.	0.461	53.98	0.026	0.60	60.47	13.337	0.647	71.66	15.032
$\stackrel{\circ}{0}$	Max. Temp.	0.638	49.94	11.073	0.661	58.78	12.794	0.726	68.91	14.800
	Min. Temp.	0.520	47.81	16.906	0.495	58.01	18.614	0.553	67.11	24.525
¢్ర్ర	Soil Max. Temp.	0.636	53.1	2.428	0.690	60.45	0.240	0.749	71.56	0.543
	Soil Min. Temp.	0.611	52.99	2.732	0.592	60.40	0.625	0.660	71.57	0.527

\# Mayzus persicae, Brivecoryne brassicae, and Rhopalosiphum padi $\wedge^{\wedge}=$ Thrips tabaci lindeman N.E= Natural enemies
Min.Temp. $=$ Minimum Temperature; Max. Temp. $=$ Maximum Temperature
$\mathbf{r}=$ Simple correlation coefficient $\quad \mathbf{R}^{2}=$ Coefficient of determination.
Significant at >0.001 level of probability

The efficiency of factors on the population density of thrips and the grand total of pests (aphids and thrips) during the seasons of the study (2015/16 and 2016/17):

Almost of the considered factors (Table: 2) showed some similar efficiencies in regulating both of the population of thrips and the grand total of pests. The negative correlations between the selected factors were found by the phenolic contents with thrips (-0.127 and -
0.384 ; respectively for free and bound phenols) and also with the grand totals of pests $(-0.169$ and -1.623 ; respectively for free and bound phenols). The highest efficient factor was recorded by the minimum temperature (18.614, 24.525; respectively for thrips and the grand total of pests), followed by the natural enemies which played the second role with efficiency of (13.337 and 15.032 out of 71.62%; respectively for thrips and the grand total). These
results was confirmed by Wratten et al. (2003) as they reported that, the natural enemies is one of the best efficient alternatives to serve the agricultural ecosystem to suppress the population of insect pests. Additionally, it has been stated that the predators of natural enemies are important to regulate the fluctuation of aphids and minimize the chance of occurring outbreaks (Symondson et al., 2002). In respect to the efficiency of natural enemies to T. tabaci, there are agreements between the obtained results by Fok et al., (2014) who found positive relationship between the fluctuation of predators and T. tabaci abundance in both of large and small scale ecosystem with observation of a strong positive significant relationship in case of large scale system than the small and found between predators and T. tabaci $(P<0.001)$ under free insecticides plots.

Afterwards, the maximum temperature ranked the third factor (12.794, $\mathrm{r}=0.661$ and $14.800, \mathrm{r}=0.726$); respectively for thrips and the grand total of pests). These findings was in agreement with Li et al., (1992) and Patel \& Rote (1995) whom found that, minimum temperature didn't significantly affect the population of thrips. In this regard, Sayed and Teilp (2013) stated that the maximum temperature showed significant positive effect on arranging the population of thrips by simple correlation and partial regression analysis.

The least efficient factor for thrips was the soil maximum temperature (0.240 out of 60.44%). The obtained results were in the same line of Mohamed (2016) who concluded that, the peaks of T. tabaci were coincided with high levels of soil temperature degrees under 5 cm depth from soil surface. Respect to the grand total of pests, bound phenol contents were the least efficient factor (0.129 out of 71.65%). These findings are similar to the results of Scholtz, (1989) who found that, the plant phenolics influence food preference and performance for insects and various herbivores. Besides, another study emphasized that, detoxified phenolics showed a positive impacts and played the defence role on insects and other herbivores (Bernays et al., 1983).

In general, the same influence of both thrips and the grand total populations could be occurred due to the obvious high numbers of thrips than aphid species, which directly affect in the sums of the grand total and makes both of them take the same trend under the efficiency of the considered factors.

CONCLUSION

The invasion of thrips individuals was higher than aphids during the two seasons of the study. Respect to aphid species, the individuals recorded three generations per season and the population were strongly affected and controlled by the minimum temperatures and free phenols, but the natural enemies were the least efficient factor on their population. For thrips and the grand total of pests, the minimum temperatures ranked the first factor followed by the natural enemies and then the maximum temperatures in regulating the individuals of thrips and the grand total of pests, while the soil maximum temperatures and bound phenols; respectively were the weakest factors affect the population of thrips and grand total of pests. In the $1^{\text {st }}$ season, the highest yield was obtained from Giza 186
(218.0 GY/10 plants), and the lowest one was recorded from Sahel 1 ($181.3 \mathrm{GY} / 10$ plants), while in the $2^{\text {nd }}$ season Giza 186 ranked the first cultivar ($213.0 \mathrm{GY} / 10$ plants) and Gemaza 9 was the last cultivar ($132.0 \mathrm{GY} / 10$ plants) among all of wheat cultivars.

ACKNOWLEDGEMENT

I wish to express my sincere gratefulness to Prof. Dr. Mostafa Mohamed Ahmed Rizk, professor of Plant Protection/ Economic Entomology, Faculty of Agriculture, Assiut University, Assiut, Egypt, for running the statistical analysis of the and the useful comments of the research.

REFERENCES

Atta, H. A. 1989. Survey and taxonomic studies on certain aphid species. M. Sc. thesis of Economic Entomology, Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt.
Ahmad, R and A.S. Shaikh. 2003. Common weed of wheat and their control. Pak. J. Water Res., 7: 73-76.
Ahmed M. M. Ahmed. 2016. Biotic and abiotic factors affecting the population dynamics of leucaena genotypes pests: Heteropsylla cubana Crawford and Thrips tabaci Lindeman under tropical conditions in Yucatan, Mexico. PhD thesis, pp. 1.
Ajmal Muhammad Saqib, Javaid Iqbal, Mirza Abdul Qayyum, Muhammad Asad Saleem, Muhammad Tayyab and Muhammad Sajjad. 2017. Preferential influence of wheat varieties (Triticum aestivum L.) on population build-up of aphid (Homoptera: Aphididae) and its natural enemies. Journal of Entomology and Zoology Studies, 6 (1): 609-612.
Aslam M, Razaq M, Ahmad F \& Mirza YA, 2007. Population abundance of aphids (Brevicoryne brassica L.) and Lipaphis erysimi (Kalt.) on Indian mustard (Brassica junicea L.). 8th African Crop Science Society Conference, El-Minia, Egypt, 8: 935-938.
Bernays, E. A., Chamberlain, D. J., and Woodhead, S. 1983. Phenols as nutrient for a phytophagous insect Anacridium melanorhodon. J. Insect Physiol. 29:535-539.
Dedryver, C.A., Le Ralec, A., Fabre, F. 2010. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biologies 333:539-553.
Fok Elaine J., Jessica D. Petersen, Brian A. Nault. 2014. Relationships between insect predator populations and their prey, Thrips tabaci, in onion fields grown in large-scale and small-scale cropping systems. Biocontrol (Springer) Volume 59, Issue 6, pp 739748.

Food and Agriculture Organisation. 2011. Save and Grow: A policymaker's guide to the sustainable intensification of smallholder crop production. [Accessed 19 May 2018]. Available from: http:// www.fao.org/docrep/ 014 /i2215e/i2215e.pdf.
Geza, K. 2000. Aphid flight and change in abundance of winter wheat pests. Archives phytopatholgy. Plant Prot., 33: 361-373.
Ghabn, A. A. A. E. 1948. Contribution to the knowledge of the biology of Thrips tabaci Lindeman in Egypt. Bulletin de la Societe Fouad Ier d'Entomologie 32: 123-174.
Harrewijn P, Minks AK, Mollema C. 1995. Evolution of plant volatile production in insect-plant relationships. Chemoecology 1995, 5:55-73.

J. Plant Prot. and Path., Mansoura Univ., Vol. 10 (1), January, 2019

Istvan, H. 2006. The main elements of sustainable food chain management. Cereal Res. Community., 34 : 1779-1793.
Kamila Kulbat. 2016. The role of phenolic compounds in plant resistance. Review article, Institute of General Food Chemistry, Lodz University of Technology. Biotechnol Food Sci 2016, 80 (2), 97-108.
Kavitha K \& Reddy KD, 2012. Screening techniques for different insect pests in crop plants. International Journal of Bio-resource and Stress Management, 3(2):188-195.
Kofalvi SA and Nassuth A. 1995. Influence of wheat streak mosaic virus infection phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Phys iol. Mol. Plant Pathol. 47: 365-377, 1995.
Lewis W. J., van Lenteren J. C., Phatak, S. C., Tumlinson, J. H. 1997. A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences of the United States of America 94:12243-12248.
Li JZ, Zang HJ \& Zhang ZM, 1992. Observation on the time and spatial dynamics of the diurnal cycle of tobacco thrips. China Journal of Entomology, 18: 26-30.
Marta Ferreira Maia and Sarah J Moore. 2011. Plant-based insect repellents: a review of their efficacy, development and testing. Maia and Moore Malaria Journal 2011,10(Suppl1):S11 http://www. malariajournal. com/ content/10/S1/S11
Metcalf, R. L. and L. M. William. 1975. Introduction to Insect Pest Management. New York, pp. 103.
Mohamed S. M. A. 2016. Studies of certain factors affecting the abundance of some aphids and thrips in Assiut Governorate. MSc. Thesis Faculty of Agriculture Assiut University Egypt.

Palumbo, J.C. 2000. Management of Aphids and Thrips on Leafy Vegetables. University of Arizona. College of Agriculture and Life Sciences, Cooperative Extension, Tucson, Arizona. 「Accessed: 22 June 20181. Available from URL: http://cals.arizona .edu/crops/vegetables/insects/aphid/aphidsandthrips .html
Nasir S, Ahmed F. 2001. Correlation between wheat aphid population and abiotic factors. Pakistan Entomologist, 23:23-25.
Patel IS \& Rote NB, 1995. Seasonal incidence of sucking pest complex of cotton under rainfed conditions of South Gujrat. Agricultural University Research Journal, 21: 127-129.
Rossing, W.A.H., Daaman, R.A., Jansen, M.J.W. 1994. Uncertainty analysis applied to supervised control of aphids and brown rust in winter wheat. Part2. Relative importance of different compound of uncertainty. Agris. Sys. 44: 449-460.
Sayed AMM \& Teilep WMA, 2013. Role of natural enemies, climatic factors and performance genotypes on regulating pests and establishment of canola in Egypt. The Journal of Basic \& Applied Zoology, 66: 18-26.
SCHOLTZ, J.C. 1989. Tannin-insect interactions, pp. 417433, in R.W. Hemingway and J.J. Karehesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.
Symondson WOC, Sunderland KD, Greenstone MH. 2002. Can generalist predators be effective biocontrol agents?. Annu Rev Entomol 47: 561594.

Wratten SD, Bowie MH, Hickman JM, Evans AM, Sedcole JR, Tylianakis JM. 2003. Field boundaries as barriers to movement of hover flies (Diptera: Syrphidae) in cultivated land. Oecologia 134: 605611.

أجريت الدراسة خلال موسمي (2016/2015 و 2017/2016) بمزر عة قسم وقاية النبات ، كلية الزراعة ، جامعة أسيوط ، أسيوط ، مصر على خمسة
 المناخية (درجات الحرارة العظمي اليومية ودرجات الحرارة الصغري اليومية (بالدرجات المئوية)، وكذلك درجات الحرارة العظمي والصغري للتربة بالدرجة اللئوية عند عمق 5 سم من سطح التزبة، بالأضافة الي تأثيُر الأعداء الحيوية على تنبّب عشائر تربس البصل Thrips tabaci Lindeman وبعض انواع المن التي تم (Mayzus persicae Sulz., Brivecoryne brassicae Linnaeus, حصر ها من علي جميع اصناف القمح سالفة الذكر موضع الالراسة تحت ظروف الري وهيا بأ ظهور الأصابة في بداية شهر فبراير خلال الموسم الأول وفي يناير للموسم الثاني علي جميع أصناف القتح. كان من and Rhopalosiphum padi Linnaeus)
 فورانات لحشرة المن على جميع الأصناف في 31 مارس ، 15 و 30 من شهر أبريل. بينما سجل التربس فور انين: ألقهة الاولى كانت في 15 من مارس و الثانية في 31 مارس. وفيما يتعقق بالموسم الثاني، فقدا أوضحت النتائج عن وجود ثلاث فور انات لعشائر المن في 15 و 28 فبر اير و 15 مارس على جميع أصناف القمح، بينما في حالة

 بأعلى عامل مشاركة في تنظي الاعداد (16.906 من 53.62٪) ، وأظهرت المحتويات الفينولية الحر نتائج الارتباط السلبي الوحيدة وسجلت ثاني عامل من حيث الكفاءة بنسبة (16.62 من 53.62٪)؛ ثم بعد ذلك كانت درجات الحرارة العظمي هي العامل الثالث من حيث الفعالية والذي شارك بنسبة (11.073 من 53.62٪) ، وأخيرًا أظهرت الأعداء الحيوية أقل عامل من حيث الكفاءة (0.026 من 53.62٪) على جميع أصناف القـحع. كما أثنارت النتنائج الي أن معظم العشائر الخاصة بالتربس و المجموع الكلي للأفات خضعوا لللسطرة تحت تأتيّر نفس العو امل، وسجلت درجات الحرارة الصغري أعلى عامل من حيث الكفاءة (18.614 من 60.48 ٪ \% 24.525 من 71.65 ٪، على التو اللي بالنسبة للتربس والمجموع الكلي للافات)، ثم لعبت الاعداء الحيوية اللور الثاني بنسبة للتربس (13.337 من 60.44 ٪) وكللك بالنسبة للمجموع الكلي للأفتين (15.032 من 71.65 \%). اما درجات الحرارة الصغري احتلا العامل الثالث (12.794 من أصل 60.44 ٪ و 14.800 من 71.65 ٪ ، على التوالي لللتربس و المجموع الكلي للآفات). ثم كان العامل الأقل كفاءة في التأثير علي مجاميع التزبس هي درجات الحراة العظمي لللتربة والتي شاركت بنسبة (0.240 من 60.44٪)، وبالنسبة للمجموع ألكلي للحشرات كانت محتوى الفينو لات المرتبطة (0.129 من 71.65٪). تم الحصول على أعلى العو ائد المحصولية من صنف الجيزة 186 و مصر 2 (218.0) ، 213.4 و 207.3 ، 198.8 198 محصول الحبوب/ 10 نباتات على التوالي خلال الفصلين الأول و الثاني. ثم بعد ذلك سجل جميزة 9 المركز الثالث في الموسم الأول (182.7محصول الحبوب/ 10 نباتات) والساحل 1 للموسم الثناني (192.8 محصول الحبوب/ 10 نباتات).

