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ABSTRACT 

The objective of this work is to study the dynamic behavior of thin flat rectangular 
composite plates when subjected to static loads. A program for calculating the load at 
first ply fracture was made to estimate the maximum loads that can be carried by 
each specimen. The natural frequencies of the plate, using finite element program  
(ANSYS) are obtained considering the fractions of these failure loads. The static 
deflection corresponding  to the applied static loading changes the assumption of 
straight flat plate to a curved one.  An experimental modal test was made to verify the 
finite element technique. The comparison between numerical and experimental 
results is carried out. The effect of combined load on the natural frequencies for 
composite plates with different fiber types, different fiber orientations and at different 
load locations are estimated.   
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NOMENCLATURE 

Aij Components of extensional stiffness matrix m2

Bij Components of coupling stiffness matrix N 
Dij Components of flexural rigidity matrix N.m 
EL Longitudinal elastic modulus  
ET Transverse elastic modulus  
GLT Shear modulus in L-T plane N/m2

h Lamina thickness m 
k Lamina number  
Mx Bending moment per unit length in x-direction N.m/m 
Mxy Torsion moment per unit length in x-y plane N.m/m 
My Bending moment per unit length in y-direction N.m/m 
Nx Normal force per unit length in x-direction N/m 
Nxy Shear force per unit length in x-y plane N/m 
Ny Normal force per unit length in y-direction N/m 
Q Lamina stiffness matrix N/m2

r, t, s Element coordinate system  
u, v, w Displacement in x, y and z directions  
ui ,vi ,wi Displacement of node i  
Vf Fiber volume fraction  

x, y, z Cartesian coordinates  
z Displacement in Z - direction  
ε Normal strain  
γ Shear strain  

LTυ  Major Poisson ratio  

TLυ  Minor Poisson ratio  

φi Rotation about i direction  

Lσ  Longitudinal tensile strength N/m2 

Tσ  Transverse tensile strength N/m2 

LTτ  Inplane shear strength N/m2 
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1. INTRODUCTION  

A composite material is a material having two or more distinct and separate 
constituent materials combined in a macroscopic structural unit. Many man-made 
materials are generally not referred as composite if the structural unit is formed at the 
microscopic level rather than the macroscopic level such as alloys and polymers 
blends. The composite properties are noticeably different from the constituent 
properties. The difference will be generally obvious when the volume fraction is 
greater than 10% or when a property of one constituent is greater than 5 times. 
Nowadays composite materials are widely used in many modern industries because 
of their high strength and stiffness compared to lightweight. Moreover, the primary 
advantage of these composites is the ability to control anisotropy by design and 
fabrication [1]. The layers making composite structures may be of different materials, 
or of the same orthotropic material with the principal material directions of each layer 
oriented at different angles to the reference axes. The analysis of composite 
laminates is complicated because of the anisotropic structural behavior that couples 
in plane deformation to out-of-plane deformation (i.e. bending-stretching coupling) 
and characteristics of composite materials (e.g., delaminations, matrix cracks, fiber 
breakage …etc.) [2]. The classical theory of plate is inadequate in the modeling the 
dynamic aspects of laminated composite plates because of the assumptions treating 
plates to be infinitely rigid in the transverse direction by neglecting transverse strain. 
Since laminated composite materials are often very flexible in shear (and weaker in 
transverse shear mode), the transverse shearing strains must be taken into account 
to achieved accurate representation of the behavior of the laminated plate. The plate 
theories that include transverse shear deformation can be grouped as  
1- the equivalent-single layer plate theories. 
2- the layer-wise plate theories. 
3- the individual-layer plate theories. 

 
Concerning global response characteristics such as the maximum deflection, 
fundamental frequency, or critical buckling load are needed laminate theories can be 
used. This theories describe the laminate as an equivalent single layer. Otherwise if 
more accurate information is needed at the ply level or between plies layer-wise 
theories must be used. However, most analyses of composite laminates utilize 
single-layer theories which are natural and straightforward extensions of the theories 
available for homogeneous isotropic plates. Single layer theories are classified into 
stress based theories or displacement based theories depending on the stress 
components variation or displacement components variation with respect to 
thickness coordinate respectively [3 - 8]. 

 
For the equivalent-single layer plate theories that include transverse shear 
deformations, the displacement or stress components are expanded as a linear 
combination of the thickness coordinate and undetermined functions of position in the 
reference surface to reduce the 3-D elasticity problem to a two-dimensional. In the 
displacement-based theories, the three components of the displacement vector are 
expanded in power series in terms of unknown functions. The principle of virtual 
displacements or the method of moments is used to derive the equations of 
equilibrium. In all single-layer plate theories the displacements and strains are 
continuous through the laminate thickness. This leads to a discontinuous interlaminar 
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stress field because of different elastic coefficients at layer interfaces. The stresses 
based theories are assumed linear variation of the in-plane stresses over the thick-
ness of the plate. The transverse stresses are then obtained from the differential 
equations of equilibrium. The principle of virtual forces is used to derive the 
governing equations. The most used displacement based theory is the first order 
plate theory in which the displacement field is defined as:-  

°=

−°=

−°=

Wz)y,w(x,
yφzVz)y,v(x,
xφzUz)y,u(x,

                                                                  (1) 

Equation (1),  known as the Mindlin plate theory. The functions Uo, Vo, and Wo are 
the displacements along the three coordinates on midsurface and xφ , yφ are the 

rotation of a transverse normal. Second and higher-order plate theories involve 
higher-order expansions as the third-order theory in which the displacement model is 
so chosen that it can explain adequately the parabolic distribution of transverse shear 
stresses and the non-linearity of the in-plane displacements across the thickness 
where the displacement field is [8 - 22].  

°=

+∂∂−+°=

+∂∂−+°=

Wz)y,w(x,

))yφyw/(23/4(z/t)yz(φVz)y,v(x,

))xφxw/(23/4(z/t)xz(φUz)y,u(x,

oo

oo

                                                                     (2) 

2. PLATE STIFFNESS MATRICES 

The stresses in a laminate vary from layer to layer hence it is convenient to deal with 
a simpler but equivalent system of forces and moments acting on laminate cross-
section. The resultant forces acting on a laminate cross-section are obtained by 
integrating the corresponding stress through the laminate thickness h. The resultant 
moment is obtained by integration through the thickness of the corresponding stress 
times the moment arm with respect to the midplane.  
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3. CALCULATION OF MAXIMUM LOAD AT FIRST PLY FRACTURE 

The maximum load at first ply fracture can be obtained according to the following 
steps. 
1- Transform stiffness matrix to different ply directions. 
2- Calculate laminate stiffness matrices [A], [B], and [D]. 
3- Calculate midplane strains and plate curvatures for the given load.  
4- Calculate laminae strains. 
5- Transform laminae strains from arbitrary directions to the longitudinal and 

transverse directions. 
6- Calculate laminae stiffness matrix from the laminae elastic properties. 
7- Calculate laminae stresses. 

 
For complete laminate analysis used to obtain the load at first ply failure, the first step 
is to carry out a laminate stress analysis for an assumed unit load on the laminate. 
Then selecting the maximum stress failure theory which stated that the failure will 
occur if any of the stresses in the principal material axes exceeds the corresponding 
allowable stress i.e.  

LTULT

TUT

LUL

τ>τ
σ>σ
σ>σ

                                                                                   

 
When one of these inequalities is achieved, the material is considered to have failure 
by a failure mode associated with the allowable stress. compare the laminae stresses 
with the allowable values and predict the maximum load at which the first ply will 
fails. 

4. FINITE ELEMENT TECHNIQUES 

The finite element solution is done using ANSYS program where the input data are 
the elastic module calculated outside the program, dimensions, orientation angle for 
the laminate and applied static load. The load is a percentage of the predicted first 
ply fracture load. 
 
The solution begins with the calculation of the static nodal displacements of nodes in 
Z direction due to applied static load at a specific point, then the displacement at the 
point where the load is applied is again input to the program for solving the modal 
(vibration) problem. In such case the nodal displacement of each mode in Z direction 
is measured from a new origin point that is achieved due to the effect of the static 
loading on the plate in Z direction. The element used for the layered application of a 
plate model has 8-nodes with six degree of freedom at each node. Three translations 
in X, Y, and Z directions and three rotations about the X, Y, and Z axes. 
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Fig.1.The element geometry, node location, and the coordinate system. 
 
The shape function is 
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The results including the fundamental frequencies and mode shapes variation are 
being investigated in nine points on the area of the plate for clamped-free specimens 
(Fig.2). 

 
Fig.2 .Node numbering on plate. 

 
 
5. NUMERICAL EXAMPLES AND RESULTS 
 
A complete mechanical properties of the materials used in this work is tabulated in 
Table (1). The bending and torsion moments at first ply fracture are calculated and 
tabulated in Table (2) with the fiber orientations. The natural frequencies of the plates 
with different fiber orientation angles and different fiber types are tabulated in table 
(3). 
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Table 1. Mechanical properties of the materials. 
 

 Material no. 3 Material no. 4 Material no. 5 Material no. 6
Fiber Carbon T300 Boron E-glass Kevlar 49 
Vf 0.6 0.6 0.6 0.6 
EL (Gpa) 139.248 241.25 44.655 79.848 
ET  (Gpa) 15.847 16.378 13.613 14.988 
νLT 0.272 0.272 0.284 0.362 
νTL 0.031 0.0185 0.0866 0.068 
GLT  (Gpa) 4.33 4.41 3.96 4.16 
ρc (Kg/m3) 1530 2022 2010 1350 
σLU  (Gpa) 2.137 1.93 2.129 2.2 
σTU  (Mpa) 52.73 52.668 53.06 52.85 
ΤLT (Mpa) 52.71 52.657 53 52.84 

 
 

Table 2. The bending and torsion moments at first ply fracture. 
 

Material Orientation Mx (N.m/m) Mxy (N.m/m) 
Material No. 3 (0,90,0,90)s 364 41 
Material No. 3 (45,-45,45,-45)s 81 156 
Material No. 3 (30,-30,30,-30)s 202 174 
Material No. 3 (0,±45,90)s 744 117 
Material No. 4 (0,90,0,90)s 595 41 
Material No. 5 (0,90,0,90)s 150 41 
Material No. 6 (0,90,0,90)s 234 41 

 
Table 3. The natural frequencies of the plates with different materials 

and fiber orientation in case of no load. 
 

Natural frequencies (Hz) Material Fiber orientation 1st 2nd 3rd 4th 
Material 

no.3 (0,90,0,90)s 39.666 75.101 247.05 303.94 

Material 
no.3 (45,-45,45,-45)s 21.598 128.05 153.68 375.97 

Material 
no.3 (30,-30,30,-30)s 32.392 143.11 196.05 451.62 

Material 
no.3 (0,±45,90)s 38.452 120.42 237.38 406.57 

Material 
no.4 (0,90,0,90)s 44.900 72.775 279.32 319.66 

Material 
no.5 (0,90,0,90)s 20.485 54.326 127.60 193.74 

Material 
no.6 (0,90,0,90)s 32.665 72.604 203.42 274.41 
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6. EFFECT OF FIBER ORINTATIONS AND LOAD LOCATIONS 
 
Natural frequencies and mode shapes were studied when the static loads are applied 
in Z- direction in different nodes along the plate length and width. The static 
displacement are deduced from applied static constant load at different node 
locations. The configuration of the plate changes from flat plate to curved plate with 
new constraints. The results are plotted with respect to the plate length (L) and plate 
width (W) with different orientation angle. Tables (4) to (7) presents the load location 
effects on natural frequencies for the materials used and Figures (3) to (8) show the 
load location effects of different orientation angles. The results show that the load 
location change along the plate length and width have a considerable effect on the 
change of natural frequencies. The effect of the fiber orientation angles on the plate 
rigidity and natural frequencies in no load case was extended to the cases of 
combined load at different load locations. 
 
 

Table 4. Load location effect on natural frequencies for material no. 3 (0,90,0,90)s 
along (L) and (W) 

   
LOAD LOCATION ALONG (L) MATERIAL MODE 

NO. 50 48 46 44 22 
1 50.837 53.41 55.914 58.099 59.527 
2 181.66 232.44 246.88 227.71 189.15 
3 269.63 289.98 307.57 280.09 271.81 
4 479.49 399.63 433.91 540.33 489.39 

LOAD LOCATION ALONG (W) MODE 
NO. 2 27 32 37 22 

1 59.527 67.672 75.275 67.672 59.527 
2 189.15 181.27 163.94 181.27 189.15 
3 271.81 287.51 304.01 287.51 271.81 

Material 
no. 3 

(0,90,0,90)s 

4 489.39 552.56 426.62 552.56 489.39 
 

Table 5. Load location effect on natural frequencies for material no. 3 
(45,-45,45,-45)s along (L) and (W) 

 
LOAD LOCATION ALONG (L) MATERIAL MODE 

NO. 50 48 46 44 22 
1 45.417 58.589 73.902 82.859 79.969 
2 141.51 137.39 133.19 134.47 140.93 
3 318.77 293.75 291.94 328.26 340.21 
4 401.89 456.38 468.15 415.26 393.87 

LOAD LOCATION ALONG (W) MODE 
NO. 2 27 32 37 22 

1 76.653 88.927 94.59 91.43 79.969 
2 147.82 154.91 155.73 148.25 140.93 
3 297.45 299.18 294.3 319.38 340.21 

Material 
no.3 

(45,-45,45,-45)s 

4 409.48 459.47 464.48 433.31 393.87 
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Table 6. Load location effect on natural frequencies for material no. 3 
(30,-30,30,-30)s along (L) and (W) 

 
LOAD LOCATION ALONG (L) MATERIAL MODE 

NO. 50 48 46 44 22 
1 51.439 60.162 69.401 77.306 81.573 
2 183.28 191.55 197.27 192.64 179.86 
3 322.68 324.83 312.68 313.61 318.27 
4 469.29 453.21 454.48 463.66 476.07 

LOAD LOCATION ALONG (W) MODE 
NO. 2 27 32 37 22 

1 82.008 104.96 129.59 109.83 81.573 
2 191.3 175.31 147.54 161.8 179.86 
3 296.07 353.66 362.26 375.32 318.27 

Material 
no. 3 
(30,-

30,30,-30)s 

4 492.78 489.82 454.9 478.18 476.07 
 

 
 

Table 7. Load location effect on natural frequencies for material no. 3 
(0,±45,90)s along (L) and (W) 

 
LOAD LOCATION ALONG (L) MATERIAL MODE 

NO. 50 48 46 44 22 
1 57.758 63.21 67.965 71.466 73.09 
2 193.47 221.61 237.67 227.84 203.34 
3 308.98 326.29 345.05 332.05 313.29 
4 496.87 434.77 409.57 450.25 475.17 

LOAD LOCATION ALONG (W) MODE 
NO. 2 27 32 37 22 

1 72.571 96.732 121.03 96.022 73.09 
2 201.49 184.32 155.02 183.19 203.34 
3 291.27 351.43 391.46 351.05 313.29 

Material 
no. 3 

(0,±45,90)s 

4 519.18 529.21 416.62 544.89 475.17 
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Fig.3. Effect of load location along plate 
length on 1st natural frequencies for 
different orientation angles 

Fig. 4. Effect of load location along plate 
width on 1st natural frequencies for 
different orientation angles.  
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Fig.6. Effect of load location along plate 
width on 2nd natural frequencies for 
different orientation angles  
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Fig.7. Effect of load location along plate 

length on 3rd natural frequencies for 
different orientation angles  

 

 
Fig.8. Effect of load location along plate 

width on 3rd natural frequencies for 
different orientation angles  
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Fig.9. Effect of load location along plate 

length on 4th natural frequencies for 
different orientation angles  

 

 
Fig.10. Effect of load location along plate 

width on 4th natural frequencies for 
different orientation angles  

 
 
 

7. EFFECT OF FIBER TYPE  
 
The effects of fiber type are studied for materials no. 3, 4, 5, and 6 with the same 
fiber volume fractions and fiber orientations (0,90,0,90)s and have fiber type of 
carbon (T300), Boron, E-glass, and Kevlar 49 respectively.  The load was applied at 
node 22 and is taken 0.05 of the torsion load at first ply fracture of each material. 
 
 

Table 8. Natural frequencies for materials with fiber type of carbon (T300), Boron,   
E-glass, and Kevlar 49 

 
Boron T300 Kevlar 49 E-glass MODE 

NO. Hz % Hz % Hz % Hz % 
1 60.067 33.780 59.527 50.071 55.224 69.062 39.346 92.072
2 204.23 180.632 189.15 151.861 163.59 125.318 107.5 97.879
3 295.59 5.825 271.81 10.022 236.99 16.503 161.14 26.285
4 521.72 63.211 489.39 61.015 433.17 57.855 294.29 51.899

 
 

8. EXPERIMENTAL VARIFICATION 
 
The experimental work is used to verify the numerical results to ensure the validity of 
the selected finite element technique. Verifications of the results are done by 
comparing the natural frequencies measured experimentally with those computed 
and predicting the error in each case. The specimen was fabricated from carbon fiber 
and epoxy. The composite layer properties have been listed in Table (9). The plies 
were stacked in 8 layers with the stacking sequence [0/90/0/90]S and the lamina 
thickness was 0.156 mm. The overall plate dimension was 101.6mm x 203.2 mm (4in 
x 8in). The results of the no load case and the results of loading at node 22, 46 are 
tabulated in table (10). 
 

Table 9. Unidirectional lamina properties. 
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Longitudinal young’s modulus EL (Gpa)  172.912 
Transverse young’s modulus ET (Gpa)  7.578 
Shear modulus GLT (Gpa) 5.511 
Density (gm/cm3) 1.53 
Poisson’s ratio LTγ  0.34 
Fiber volume fraction (%) 65 

 
Table 10. The experimental results vs. numerical. 

 

MODE EXPERIMENTAL 
FREQUENCIES 

NUMERICAL 
FREQUENCIES 

% 
ERROR 

No load 
 1 41 43.484 6.06 
 2 83 83.854 1.03 
 3 239 270.92 13.36 
4 321 336.3 4.77 

F=1.96N at node 22 
1 60 62.91 4.85 
2 232 205.35 -11.49 
3 280 296.02 5.72 
4 448 524.59 17.10 

F=1.96N at node 46 
1 54 59.78 10.70 
2 231 270.6 17.14 
3 299 334.59 11.90 
4 456 464.59 1.88 

 
 
9. CONCLUSIONS 
 
From the dynamic analysis of the composite thin plates discussed with the various 
effects included it was found that  
• The results of experimental tests show a good agreement with the numerical 

results and the finite element solution technique could be used effectively in solving 
the problem.   

• The composite plates exhibit an increase in the natural frequencies when statically 
loaded in Z-direction wherever for all the load locations due to the static 
deflections, which change of the configuration of flat plate to be curved plate 
configuration with new constraints.  

• For different fiber orientation angle sequences the 1st natural frequency is 
increased as the load is moved toward the free end of the plate along the plate 
length (Figure 3) and at the center of the plate width (Figure 4)  

•  The 2nd natural frequency shows maximum increase at 0.8L for all cases except 
for (45/-45/45/-45) s it shows maximum decrease (Figure 5) and the opposite 
phenomena is occurs along the plate width (Figure 6). 

• The 3rd and 4th natural frequencies show a complex variation along the plate 
length and width with respect to the fiber orientation angles. 
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• It is observed that the composites having high values of EL and GLT (made from 
fibers of higher modulus such as Boron) show maximum percentage increase in 
natural frequencies with respect to the natural frequencies of no load case for 2nd 
and 4th modes. On the other hand composites having low values of EL and GLT 
(made from fibers of lower modulus such as E-Glass) shows maximum percentage 
increase in natural frequencies with respect to the natural frequencies of no load 
case for 1st and 3rd modes. 
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