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ABSTRACT 
 
This paper presents a new control strategy called "Semitrailer Differential Braking 
Technique (SDBT)" to improve the dynamic stability of 2 axle tractor combined with 3 
axle semitrailer  equipped with a standard antilock braking system (ABS) during 
evasive maneuver at high speed. A Matlab Simulink model constructed to study the 
dynamic stability under different driving conditions; brake sequence, driver input, 
steering response, road type, and loading condition. The new concept based on 
monitoring of the yaw rate difference between the tractor and semitrailer, and 
applying differential braking on the semitrailer at certain articulation rate threshold. 
The results show improving of the handling performance of the combination against 
rollover and jackknifing during evasive maneuver at high speed. 
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NOMENCLATURE 
 

uuu &&&,,  Tractor longitudinal translation, velocity, & acceleration. 
ω  Tractor yawing motion. 

vvv &&&,,  Tractor lateral translation, velocity, & acceleration. 
γγγ &&&,,  Tractor pitching angle, velocity, & acceleration. 

δ  Tractor front tire input steering angle. 
δ&  Rate of Tractor front tire input steering angle 
µ Coefficient of tire road adhesion. 

φφφ &&&,,  Tractor rolling angle, velocity, & acceleration. 
uuu &&&,,  Tractor longitudinal translation, velocity, & acceleration. 

δ  Tire tractor front steering angle. 
FHx Fifth wheel force between tractor and semitrailer in x direction. 
FHy Fifth wheel force between tractor and semitrailer in y direction. 
FHz Fifth wheel force between tractor and semitrailer in z direction. 
Fxi (i=1÷10) Tires longitudinal forces. 
Fxi (i=1÷18) Tires longitudinal forces. 
Fyi (i=1÷10) Tires lateral forces. 
Fyi (i=1÷18) Tires lateral forces. 
hf Distance between tractor rolling axis & ground. [0.6 m] 
hhs Distance between fifth wheel & ground. [0.95 m] 
hpf Distance between tractor c.g & tractor front axle.  [  0.6 m] 
hph Distance between tractor rolling axis & ground.  [ 0.35 m ] 
hps Vertical distance between tractor c.g & tractor pitching axis.  [ 0.61 m ] 
hr Distance between tractor c.g & tractor front axle.  [ 0.6 m] 
hs Vertical distance between tractor c.g & tractor rolling axis.  [0.61 m] 
L1 Distance between tractor c.g & tractor front axle.  [3m] 
L2 Distance between tractor c.g & tractor rear axle.  [1.6 m] 
L3 Distance between semitrailer c.g & fifth wheel.  [7.5 m] 
L4F Distance between semitrailer c.g & semitrailer first axle. [2m ] 
L4M Distance between semitrailer c.g & semitrailer second axle. [3.5m]  
L4R Distance between semitrailer c.g & semitrailer third axle. [5 m] 
Lh Distance between tractor c.g & fifth wheel. [0.6 m] 
m Tractor mass. [7 ton] 
mst Semitrailer mass.  [44 ton] 
sb Tractor wheel base .  [2.6  m] 
sbst Semi trailer wheel base . [2.6] 
Cs1=Cs2  Lateral stiffness of tractor front axle  suspension . [300000  N.m] 

Cs3=Cs4,.,Cs10  Lateral stiffness of tractor rear axle  ,semitrailer axles suspension. 
[800000  N.m] 

Ks1=Ks2 Roll stiffness of tractor front axle  suspension . [2000000  N/m] 

Ks3=Ks4,.,Ks10  Roll stiffness of tractor rear axle  ,semitrailer axles suspension. 
[5000000  N/m] 
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1. INTRODUCTION 
 
One of the main objectives of the control of vehicle dynamics is to improve the 
handling performance, or maneuverability, in order to obtain safer and more joyful 
driving. A range of systems are commercially available today, such as antilock 
braking, active stability control, yaw control, and traction control. Many new systems 
are under consideration, in parallel with efforts to integrate and coordinate the 
currently existing. In this process, models are necessary tools to analyze and design 
the control strategies and to evaluate the dynamic performance of the full-scale 
systems. In this paper a 10 DOF tractor-semitrailer dynamic handling model 
(longitudinal, lateral, yaw, roll, &pitch for both bodies) of a tractor-semitrailer 
combination has been adapted from Tetsuya Kaneko [5].  Another 4DOF 
(longitudinal, lateral, vertical, & rotational) for the 18 tire has been constructed. A 
simulink program has been developed to simulate tractor semitrailer motion including 
tractor, semitrailer, axle and suspension, tire, and brake model. A predefined 
maneuver scenario is used to simulate driver behavior and road conditions, initial 
velocity, which are the inputs to the program. Validation of the simulation program is 
done through comparing results with previous work made by Tetsuya Kaneko [5]. 
This program is used to investigate the dynamic performance of a 2 axle tractor 
combined with 3 axle semitrailer during evasive high speed lane change maneuver. 
Identification of the jackknifing threshold through simulation of the vehicle (2 axel 
tractor combined with 3 axle semitrailers) to move straight forward at different initial 
speeds (u0 = 70, 80, 90, and 110 km/h) for 2 sec and the driver faces an obstacle so 
he had to make an evasive lane change maneuver with front steering angle pattern 
as shown in Figure 1. The driver response was taken into consideration 30 deg/Sec, 
on dry road. The only way is to control the tire forces during turning by applying brake 
force on appropriate side tires [14]. 
In this paper a new control concept called Semitrailer Differential Braking Technique 
(SDBT), has been developed by the authors to eliminate jackknifing. The new control 
strategy analyzed in this paper does not depend on the driver's behavior because it 
prevents the occurrence of critical situation before the driver takes action or even 
before taking in appropriate action resulting in improving of the dynamic stability of 
the combination against rollover and jackknifing during evasive maneuver at high 
speed. 
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 Fig. 1. Steering input at tractor front axle tires.  
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2. MATHEMATICAL MODEL 

A 10 DOF tractor-semitrailer dynamic handling model (longitudinal, lateral, yaw, roll, 
&pitch for both bodies) of a tractor-semitrailer combination has been adapted with 
previous work made by Tetsuya Kaneko [5]. 

 A 4DOF (longitudinal, lateral, vertical, & rotational) for the 18 tires. The equations of 
motion are derived from the fundamental equations of motion. The tractor motion was 
described by equation (1) to equation  (5) ,the semitrailer motion was described by 
equation (6), (7), (8), (9)and (10).The tractor semitrailer interaction(fifth wheel)was 
described by equation (11), (12), (13) and (14).On real suspension systems the load 
transfer has great influence , to capture this phenomenon correctly it is necessary to 
use a model with sprung masses, that are connected to the unsprung body parts by 
the suspension system as shown in figure 2.  
The analyzed vehicle is a Mercedes-Benz tractor semitrailer, with the tractor 
denominated LS1935 with 4x2 traction system. With the following main 
specifications, according to information given by the tractor and semitrailer 
manufacturers [25]: - Model of the tractor: LS1935; Traction system: 4x2; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2.  A 2-axle tractor combined with 3-axle semitrailer 
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Semi trailer motion 
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2.1. Fifth wheel modeling 

Relationship between vehicle speeds and relative angles are governed by the 
following equations: 

 
stphtsthhsph huLhvhu γψωφψγ &&& +=−−−+ sin)(cos)(  (11) 

 
ststhhsph LvLhvhu ωψωφψγ 3cos)(sin)( +=−−++ &&  (12) 

 ststh LLL ωγγ 33 +−= &&  (13) 
 

ststhhsph LvLhvhu ωψωφψγ 3cos)(sin)( +=−−++ &&  (14) 
 
 

2.2. Tire modeling 
A ready made Matlab file called STI developed by System Technology Corporation 
was adopted to calculate the tire forces. Tire normal load, slip ratio, & slip angle are 
the inputs to the model, then through a series of algebraic and empirical equations 
based on experiments used to produce longitudinal and lateral forces, according to 
the following scheme (figure 3). 
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Fig.3.  Scheme for the STI  tire model 

 

 
 
2.3. Simulation program 
 
A Matlab/Simulink model was constructed to simulate tractor semitrailer 
performance. The model(shown in figure 4) consists of two sprung inertial bodies, 
connected through the hitch coupling which introduces the constraints on the relative 
motion of the tractor and the semitrailer. The unsprung bodies (axles) are assumed 
to be mass less. Suspension characteristics at each wheel are included. The initial 
velocity, maneuver scenario, braking sequence, and road type, are the inputs to the 
model. Figure 2   shows the main blocks of the simulation program. Different analysis 
and investigations for the handling performance are done through simulation outputs. 
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Fig.4. Main blocks of the simulation program 

 
2.4. Tractor model 
 
To tractor motion simulate by a predefined initial velocity, and using the inputs: road 
type, steering angle, longitudinal and lateral forces. The model outputs are: tractor 
longitudinal, lateral, yawing, rolling, pitching velocity as shown in figure 5. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.5. Tractor model 
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2.5. Semi trailer model 
 
Semi trailer is simulated as a different mass driven by the tractor, so tractor velocities 
(u,v,ω,φ,α) are transferred instantaneously to the semitrailer through the fifth wheel 
(hitch point), accordingly a mutual interaction the fifth wheel forces (FHx, FHy, FHz) are 
generated and applied to both. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. Semi trailer model 
The outputs of the semitrailer model are: semitrailer longitudinal, lateral yawing, 
rolling, pitching velocity, fifth wheel longitudinal, lateral, and normal forces as shown 
in figure 6. 
 
2.6. Axle and suspension model 
 
On all road vehicles the chassis movement is actively guided by steering, throttling, 
braking, and possibly suspension actuations, which all ultimately result in forces in 
the tire road interaction. An axle and suspension model was created to achieve this; 
there are two axle types, a steerable single tire axle to simulate the tractor front axle, 
and non-steerable dual tire axle to simulate the tractor rear axle, and semitrailer 
axles as shown in figures 7. The axle model consists of 2 suspensions as shown in 
figure 8 with four tires according to the tractor semitrailer configuration.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.7. Dual tire axle model 
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Fig.8. Suspension model 

2.7. Tire model 
 
The tires performance has the major influence on the dynamic behavior of a vehicle. 
Obviously, accurate tire models are necessary for analyzing and simulating vehicle 
motion in real driving conditions. With new active chassis control systems that are 
based on unilateral braking it is increasingly important to describe the effects of 
combined braking and cornering correctly, also near and beyond the tire road friction 
limits. A ready made Matlab file called STI developed by System Technology 
Corporation was adopted to calculate the tire forces. Tire normal load, slip ratio, & 
slip angle are the inputs to the model, then through a series of algebraic and 
empirical equations based on experiments are used to produce longitudinal and 
lateral forces. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9. Tire model 
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The input normal load was multiplied by a scale factor and the output longitudinal and 
lateral forces were multiplied by anther scale factor, these scales were chosen to 
match STI results with previous work introduced by [M. El-Gindy and S. Chae The 
Pennsylvania State University March, 2001, dry road condition] shown in Figure10  to 
get the STI results to be suitable for a tractor semitrailer combination (Heavy 
vehicles). 
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 Fig.10. Tire characteristics [M. El-Gin dy and S. Chae The Pennsylvania State 
University March, 2001] [Modified STI] 

 
2.8. Brake model 
 
A ready made anti-locking braking system (ABS) model from Simulink library was 
utilized to simulate the braking performance for the combination. This model is 
activated through applying braking force for each wheel to maintain a desired slip 
(0.2) avoiding locking of the tire as shown in figure 11. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11. Brake system model 
 
 
 
 
 
 
 



Proceeding of the 12th AMME Conference, 16 -18 May 2006 Paper   DV-12 668 
 

  

2.9. Validation of the simulation program 

Simulation results are compared with those achieved through published papers to 
verify the model.Validation of the simulation Program is done by applying the vehicle 
parameters and conditions introduced by Tetsuya Kaneko [5]  and comparing the 
results as shown in figure 12,13 respectively . 
 

 
Fig.12. Simulation result by Testuya Kaneko[5] 

 
Fig.13. Simulation result from the established program   

 
2.10. Jackknifing problem during evasive high speed maneuver  
 
The 2 axel tractor combined with 3 axle semitrailer is simulated to move straight 
forward at different initial speeds (u0 = 70, 80, 90, and 110 km/h) for 2 sec. and then 
the driver faces an obstacle so he had to make an evasive lane change maneuver 
with front steering angle pattern as shown in Figure 1 The driver response was taken 
into consideration (15, and 30 deg/Sec), under different driving conditions, with or 
without braking, on dry or wet road, with empty or fully loaded semitrailer. 
 
2.11. Determination of stable performance limit 
 
To determine the stable performance limit several simulations were made using the 
defined Simulink Matlab program in the previous chapter for a 7 [Ton] 2-axle tractor 
combined with 44 [Ton] (fully loaded) 3-axle semitrailer, at different initial speed (u0= 
70, 80, 90, 100, 110 km/hr), dry road condition (µ =0.85), applying an evasive 
maneuver steering input shown in Figure 1, without braking, Figure 14  shows the 
combination path at different initial speeds[yaw plane]. 
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Fig.14. Lane change maneuver with different initial longitudinal velocities (u0)[yaw plane] 

 
Inspection of the Figure 14 shows that: 

 At u0 = 70 km/hr: the combination achieved a stable path. 
 At u0 = 80 to 100 km/hr: a drift out from the stable path takes place. 
 At u0 = 110 km/hr: jackknifing takes place. 

 
 
2.12. Simulation results of the jackknifing case u0 = 110 km/hr 
 
Simulation was made using the Simulink Matlab program for a 7 Ton 2-axle tractor 
combined with 44 Ton (fully loaded) 3-axle semitrailer, at initial speed u0 = 110 km/hr, 
on dry road (µ = 0.85), applying an evasive maneuver steering input shown in  
Figure 1, without braking Figure 15 shows the motion of the tractor semitrailer in the 
yaw plane plane, tractor is represented by the small rectangle, while semitrailer is 
represented by the big rectangle as shown in figure 15. 
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The articulation angle (yaw angle difference between the tractor and the semitrailer), 
and the articulation rate drastically increase resulting in a tractor jackknifing as shown 
in Figure 16. the tractor yaw rate increases rapidly to reach 95 Deg/sec. while the 
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semitrailer yaw rate was 20 Deg/sec. resulting in a high articulation rate as shown in  
Figure 17,18. 
 

0 2 4 6 8
-20

0

20

40

60

80

100

120

140

Time [Sec]

Y
aw

 A
ng

le
 [D

eg
]

Tractor 2ax
Semitrailler 3ax

 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

Time [Sec]

Y
aw

 R
at

e 
[D

eg
/S

]

Tractor 2ax
Semitrailler 3ax

Fig.17. Tractor and Semitrailer  
Yaw Angle 

Fig.18. Tractor & Semitrailer  
Yaw Rate 

 
The tractor pitch rate oscillates resulting in an increase to the pitch angle to the value 
of 0.25 Deg. while the semi trailer pitch rate and angle don't change significantly as 
shown in figure 19.The semi trailer roll angle rate and oscillate with an amplitude 
greater than the tractor due to difference in moment of inertia until the 7th sec. then 
the tractor jackknife to the semitrailer as shown in figure 19, 20.  
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Inspection of Figure 21 and Figure 22 shows that tractor longitudinal speed 
decreases rapidly till zero while its lateral speed increases in the negative direction. 
On the other hand, the semitrailer almost maintains its resultant velocity direction. 
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2.13. Jackknifing analysis  
 
From the previous simulation results with initial speed u0=70km/hr, and u0=110km/hr, 
the former will be considered as the ideal successful maneuver, and the later will be 
analyzed to find out a solution for the combination to obey the former path. The 
jackknifing takes place when the articulation rate increases rapidly during the evasive 
high speed maneuver, this happens as a result of a difference in the longitudinal 
speed between the tractor and the semitrailer where the later pushes the tractor and 
the semitrailer is at an angle to it, resulting in high lateral forces on the tractor tires 
greater than the instantaneous available tire road interaction adhesion limit as shown 
in Figure 23. 
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Fig.23. Tractor Absolute Lateral Force, lateral Adhesion Limit: u0=110km/hr 

 
 
2.14. Elimination of jackknifing during high speed evasive maneuver 
 
From the previous analysis of the jackknifing problem it is concluded that to avoid 
pushing of the tractor by the semitrailer and consequently the arise of undesired 
lateral forces on the rear tractor tires, the semitrailer instantaneous longitudinal 
velocity must be reduced to a value approximately equal to that of the tractor during 
the evasive maneuver at high speed. 
 
 
2.15. Proposed semitrailer differential brake technique (SDBT) 
 
For a tractor semitrailer combination equipped with an antilock braking system The 
primary aim of the model is simulation of handling different scenarios with active 
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articulation rate control (between tractor & semitrailer), using differential braking 
applied on semitrailer tires (only) that have enough surplus in tire road interaction as 
shown in figure 24. 
The proposed control strategy (SDBT) improve the behavior of both the tractor and 
semitrailer equipped with standard anti lock braking system (ABS) simultaneously, if 
the surplus in the tire road adhesion limit deceases, the potential for improvement in 
the directional behavior is reduced. Nevertheless, even in wet road surfaces, (SDBT) 
can improve the dynamic stability during severe maneuvers at 110 Km/hr forward 
speed under dry/wet road conditions at  different  driver responses .The applications 
of (SDBT) has good influence not only on the in-plane motion of the tractor 
semitrailer combination but also on the roll motion of both the tractor and semitrailer. 
When applying this control strategy, semitrailer differential brake technique (SDBT), 
the forward speed of the combination decrease slightly (<5Km/hr).The articulation 
rate threshold that the (SDBT)  should be activated is 0.02 rad/sec (The Yaw rate 
difference between the tractor and semitrailer). Inspection of figure 23,and figure 36 
show that the lateral forces on rear tractor tires generated during the maneuver at 
high speed exceeded the available lateral adhesion limit resulting in tractor 
jackknifing. On the other hand by monitoring the articulation rate, till reaching a 
critical value the (SDBT) starts the application of the brake force (0.002 times the 
normal load)   on the semitrailer tires that have suitable adhesion limit resulting in 
lower lateral forces on tractor tires lower than the adhesion limit  that  can  withstand 
resulting in stable performance of the combination without jackknifing  
 
 

 
 

Fig.24. Scheme of the SDBT control system 
 
 
2.16. Computer simulation using the proposed semitrailer differential brake 
technique (SDBT) 
 
Computer simulations are carried out to verify the effectiveness of the control system 
designed in this study. The  simulations are conducted under the conditions that the 
road friction coefficients are 0.85. The controller is designed at the condition that the 
vehicle speed is 110 km/hr 
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Fig.25. Tractor Semi trailer path 

 [Yaw plane] using SDBT 
Fig.26. Articulation angle, and rate of 

Tractor Semi trailer using SDBT 
 
The articulation angle (yaw angle difference between the tractor and the semitrailer), 
and the articulation rate( Figure 26) decrease  to a value of -10[deg]and -23[deg/s] 
respectively   resulting in successful  path as shown in Figure 25 during an evasive 
lane change maneuver , the tractor  yaw angle and rate decreases to a value of 16 
[deg] and  -15 [deg/s] respectively while the semitrailer yaw angle and rate didn't 
exceed 17[deg] and -17[deg/s] respectively as shown in Figure 27,28. Tractor and 
semitrailer pitch and roll rate are shown in figure 29 and 30 respectively.  
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Fig.27. Tractor and Semitrailer Yaw 
Angle using SDBT 

Fig.28. Tractor & Semitrailer Yaw Rate 
using SDBT 
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Fig.29. Tractor and Semitrailer  

Pitch Rate 
Fig.30. Tractor and Semitrailer Roll 

Rate 
 
Inspection of Figure 31 and Figure 32 shows that semitrailer longitudinal speed 
decreases slightly to a value approximately 106.5 [km/hr] while its lateral speed 
increases slightly to a value approximately -15 [km/hr] in the negative direction. On 
the other hand, the tractor longitudinal speed decreases slightly to a value 
approximately 107.75 [km/hr] while its lateral speed increases slightly to a value 
approximately - 6 [km/hr] in the negative direction resulting in successful  path as 
shown in Figure 25 during an evasive lane change maneuver.  to avoid an obstacle 
at combination longitudinal speed 110[km/hr]. the dynamic tire normal loads for the 
tractor semitrailer are shown in figure 33and figure 34 .Figure 35 shows fifth wheel 
forces  
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Fig.31. Tractor and Semitrailer 
Longitudinal speed using SDBT 

Fig.32. Tractor and Semitrailer Lateral 
Speed using SDBT  
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Fig.33. Normal load on tractor tires 1,2,3,3',4 ,4'[N] using SDBT 
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Fig.34. Normal load on semi-trailer tires 
 5,5',6,6',7,7',8,8',9,9',10,10' [N] 
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Fig.35. Fifth-wheel forces using SDBT 
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Inspection of figure 36 shows lower lateral forces on tractor tires  lower than the 
lateral adhesion limit  that  can  withstand resulting in stable performance of the 
combination without jackknifing  
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Fig.36. Absolute Lateral Force, lateral Adhesion Limit:u0=110km/hr,  

µ=0.85,δ& =30Deg/sec, loaded, using SDBT 
 
3. CONCLUSIONS  
1. A 2 axle tractor combined with 3 axle semitrailer Matlab Simulink model was 

established to study the dynamic stability under different driving conditions (brake 
sequence, driver input, steering response, road type & grade, loading condition, 
and the combination dimensions). 

2. The results of the model are validated by applying the vehicle parameters and 
conditions introduced by [Tetsuya Kaneko] [5] and comparing the results. 

3. The dynamic stability of the combination during sever high speed[110kmlhr] 
maneuver has been improved by contributing additional control strategy logic to 
the standard antilock braking system through the articulation rate 
monitoring[0.02rad/s]using semitrailer differential braking technique (SDBT) on 
semi trailer tires[0.002times the  normal load ] 

4. The new proposed control logic strategy will make the semitrailers act as smart 
equipment regardless of the driver response and  tractor type since tractors and 
semi trailers are built by different manufacturers. 
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