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ABSTRACT 
 
Solid mechanics investigators gave the dynamics of bodies in impact special interest 
long time ago. Many approaches were developed to solve this problem since F. 
Neumann (1885). Reviewing these various approaches revealed that the impact body 
usually regarded as a system possessing one degree of freedom and the aim is to seek 
the configuration of maximum compression when the body starts to achieve 
instantaneous equilibrium. This paper is aimed to model the impacted body as a system 
possessing multi degrees of freedom by using the finite element method. The normal 
and oblique impacts are discussed taking into consideration the neighborhood area of 
the instantaneous impact point is smooth or rough. The effect of the number of elastic 
modes of vibration on the impact response is considered. 
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1. INTRODUCTION 
 
Dynamics of mechanical systems are commonly used models of rigid body. However 
they have number of limitations and difficulties that are not usually appreciated when 
applied to problems involving impact and Coulomb friction. The presence of these 
difficulties is imposed due to the fact that no body can be considered perfectly rigid 
where all bodies are deformed to some extent when they go beyond contact with an 
obstacle. The classical approximation of longitudinal impact of elastic rod against a rigid 
obstacle was described by Newmann (1885) in terms of a system of 2nd order partial 
differential equations. These equations were reduced to a single D’Alembert equation. 
Solution of this equation is not simple, especially when impact frequently occurs, the rod 
cross-section is variable, or produced stresses exceed the elastic limit. Since that time 
many authors attempt to describe this problem by different approaches [1-5]. Contact 
with a rigid obstacle is widely common approximate by contact with spring-like body in 
studying elastic bodies carried out by Kikuchi and Oden in1988 [6]. Spring-like 
approximations are used to obtain results for certain kinds of contact models of elastic 
bodies, where springs do not have inertia and each point of contact have only one 
degree of freedom. On the other hand elastic bodies do have inertia and their 
description is infinite dimension. 
In the last two decades mathematicians and engineers gave this problem special 
interest 
Stewart [7-10] presented an approach to model bodies in impact come out of work on 
rigid body dynamics. Solberg & Papadopoulos [11] formulate the problem in a psedo-
rigid body model. Schatzman [12] approximated the dynamical impact problem in 
generalized coordinates by penalty method, which is often used for numerical 
approximation. His approximation includes smooth time-dependent set of constraints 
and the possibility of zero restitution coefficients. Glocker [13] established the contact 
kinematical equations and the impact equations. furthermore, Newton’s and Poisson’s 
impact laws were studied in inequality form for one collision point and extended by 
superposition to multi-contact configurations. Paoli [14] considered vibro-impact 
problems of mechanical systems with finite number of degrees of freedom submitted to 
perfect unilateral constrains. The model is basically described by a second-order 
measure differential inclusion for the unknown position completed with a constitutive 
impact law. Mahmoud et al. [15] developed an incremental finite element model to 
simulate the dynamic behavior of elastic bodies in contact. They solve the direct impact 
of similar and dissimilar rods. There model solution based on finite element simulation. 
Moreover, Hughes et. al. [16] solved the problem of classical impact contact problem 
based on finite element. 
 

2. CONTACT IMPACT MODELS 
 
There are at least two historical approaches to impacts: Newton’s kinematics impact law, 
which reverses the sign of the relative velocity at the impact and takes into account 
dissipation by a coefficient 0 ≤ ε ≤ 1 

ε (v - V) = (C - c),        (1) 
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Newton’s impact law is indeed not an independent equation, but it can be derived from 
the conservation of linear momentum of the actually one-dimensional system of two 
point masses under the hypothesis of the law of interaction and the assumption of a 
dissipative contact process. Newton’s impact law is derived and validated independent 
of the contact duration and of any temporal distribution of the contact forces. 
Poisson’s impact law, which requires a decomposition of the impact process into a 
compression phase (-) and a decompression phase (+) in order to define the restitution 
coefficient ε by the ratio of the corresponding impulsive forces, 

Λ+= εΛ- 
        (2) 

Poisson impact law is based on Newton’s second law and Euler’s axiom regarding the 
‘normal force’ at the impact. This is already close to the common applied methods of 
treating impacts, where the impact law is handled as an independent equation, which 
can generally be derived from any mechanical principle when dealing with rigid bodies. 
 
 
2.1. Impact kinematics 
 
This section will concern by a brief study to the kinematics of contacting bodies as far as 
it is needed for impact. This requires in particular the definitions of the contact points 
and the normal relative velocity to set up unilateral constraint and to formulate  
an impact law. 
We consider a non-moving strictly convex rigid body and choose a body-fixed point P as 
the point of reference. The surface Σ of the body is assumed to be smooth and given in 
a regular parametric form with displacements ρ(ξ1, ξ2) relative to P (Fig 1a). The 
trihedral (t1, t2, n) at point ρ(ξ1, ξ2) of the surface is obtained via 

 
Fig. 1. Surface parameterization and rigid-body kinematics 
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where (ξ1, ξ2) are arranged such that the unit vector n becomes the outward normal. 
Assume now that the body is moving with the linear velocity vP(t) of the point of 
reference P and the angular velocity Ω(t) (Fig 1b). Furthermore, let ξα (α = 1, 2) depend 
on time t, which makes ρ and n also change relative to the body. By Euler’s formula for 

rigid-body kinematics we obtain the absolute changes in time 
..

, nρ of ρ, n as follow: 
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Denote vc the velocity of the body-fixed point C with displacement ρ relative to P. 
Employing the rigid-body velocity formula, 

ρ×Ω=   v-v pc         (5) 
 
we can rewrite the absolute time change of  ρ as follow: 

α

α ξξ
ρρ

..

∂
∂

+−= pc vv         (6) 

Noting that 
.
ρ differs from (vc – vp) only in the tangential terms. 

Now, the main equations of contact kinematics collisions are able to be derived which 
present the definition of the contact points including their gap function and their relative 
velocity. Therefore, two rigid bodies are considered and referenced by right lower 
indices 1 and 2 as depicted in Fig. 2, performing the following construction.  

 
Fig.2. Kinematics Parameters of Two Bodies in Impact 

 
A distance vector Dr  can be introduced as: 

 )()( 1122 ρρ +−+= rrrD        (7) 
The two tangential planes τi are constructed in a parallel manner so that rD becomes 
collinear with each of the normal ni.  
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The gap function of the contact points can be defined with the following properties. 
When the bodies are properly separated the gap function should be g > 0 with a 
magnetude equal to the minimum value of all distances between any point of body 1 and 
any point of body 2. For contacting bodies the gap function should be g = 0. Hence, g ≥ 
0 defines a unilateral constraint. Now, differentiation of g with respect to time leads to 
the normal relative velocity i.e. the velocity on which the classical impact laws are 
based. 

D

T

D
T rnrng 1

..

1

.
+=         (9) 

Gap time change rate may further be simplified particularly when 01
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where civ  are the absolute velocities of the rigid-body contour points Ci placed at 

)(
α

ξρ ii

−

at instant time t. 
2.2. Impact kinetics  
 
After having established the equations of contact cinematically the impact equations of 
the system is now planning to be stated. Consider two bodies with already given contact 
points, oriented normals ni and tangent planes Ti as depicted in Fig. 3. Starting 
investigations with the impact-free motion followed by developing the contact model and 
the contact forces in the classical Newton–Euler equations are taken into account. 
These equations are then reformulated as equalities of measures in order to allow 
atomic quantities to express velocity jumps and impulsive forces when integration with 
respect to time is performed. The resulting equation balances at each single point in 
time the instantaneous changes in the generalized momentum and the impulsive 
generalized forces of the system if any, and is called the impact equation. 
Our contact model is based on the assumption that the force interaction of the two 
bodies at the contact points is frictionless. The contact forces FCi are therefore collinear 
with the normals ni and, by the principle of interaction, of the same size but of opposite 
direction, FC1 = -FC2 . Therefore, FCi can be expressed as 

,, 1211 λλ nFnF CC =−=  
where ni are normalized vectors. The multiplier λ is the scalar value of the contact forces 
which acts as compressive forces when λ > 0 and reflects tension for λ< 0. 
Assume now a system of n rigid bodies with one contact between body 1 and body 2. 
The virtual work δW of the system to obtain the projected Newton–Euler equations 
including the virtual work of the contact forces, 
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Fig.3. Kinetics parameters of two bodies in impact  
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In this expression one discover for each body Newton’s second law    
  

0=− FmaS            (12) 
And Euler’s axiom 

0=−ΩΘ×Ω+ΨΘ SSS M          (13) 
where  
m    is the mass of the corresponding body,  
as    is the acceleration of the center of mass S,  
F    is the of the bodies resultant external forces,  
Θs    is the inertia operator with respect to point S,   
Ψ    is the angular acceleration, Ω the angular velocity and  
Ms    is the resultant of the bodies external free and induced moments with respect to  
             point S. Srδ   is the virtual translation of the center of mass S and  
Φδ     is the  virtual rotation of the body.  

ii C
T

C Frδ   is the virtual work due to translation of the contact force acts at the body contour 
point Ci.  

Let 
iCJ  are the Jacobians of the body contour points Ci ,  RJ and SJ denote the 

Jacobians of rotation and translation of point S of the investigated body, and RS ii
−−

,  are 

obtained from differentiation of the corresponding velocities and depend on tqq ,,
.

. Now, 
the virtual work of the system can be written as follows: 
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This leads to the projected Newton-Euler equations  
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the generalized force direction as already introduced. 
1)(

12
nJJw T

CC −=           (18) 

Note that the projected Newton-Euler equations require the existence of velocities 
.
q and 

accelerations
..
q , both being meaningless for the event of impact. One has therefore to 

replace Newton-Euler equations by a more suitable formulation, which also takes into 
account the impacts as follows: 

0),(),,(),(
.

=Λ−− dtqwdttqqhdutqM        (19) 
Here the velocities denoted by u(t) are assumed to be functions of bounded variations. 
The displacement q(t) are obtained from integration of u(t). The probably ‘infinite values’ 

of the acceleration 
..
q  and the force λ at the impact are taken into account by the 

deferential measure du of u and by the force measure dΛ. In order to now obtain the 
impact equations we integrate Newton-Euler over singleton {to}and denote qo = q(to), 

∫ −+ −=
0

)()( 00
t

tutudu , and ∫ Λ=Λ
0

)( 0
t

td defines the value of the impulsive force at to. This 

yields: 

∫ =Λ−−
0

0),(),,(),((
t

dtqwdttuqhdutqM        (20) 

0)(),())()()(,( 00000 =Λ−− −+ ttqwtututqM        (21) 
The resulting expression is called the impact equation of the system. 
Poisson’s impact law requires a decomposition of the impact process into two 
succeeding phases. The first is the compression phase and the second is the 
decompression phase. Compression starts with the pre-impact velocity denoted by 
(upper index -). Decompression events with the velocity stats at the end of compression 
and terminates with the post-impact velocities denoted by (upper index +). This yields 
the equation of the compression phase, 

−− Λ=− wuuM )( 0  ,          (22) 
and for the decompression phase, 

++ Λ=− wuuM )( 0           (23) 
where 0u  is post-compression velocity. The impulse at decompression phase +Λ can be 
determined by Poison’s law as a function of the impulse at compression phase +Λ = −Λε . 
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3. PROBLEM FORMULATION 

3.1. General formulation 
 
To describe the configuration of a mechanical system we use a vector q of generalized 
coordinates; these can include things like the position of the center of mass in ℝ3, 
orientations represented as orthogonal matrices Q∈ℝ3x3 or unit quaternion, angles of 
hinges or other joints, amplitudes of elastic modes, or deformation matrices for pseudo-
rigid bodies .. etc. If we have two mechanical subsystems each with their own 
generalized coordinates q

1
 and q

2
, then the configuration of the combined system is 

described by the vector q = [q
1

T, q
2

T]T. For hinges and joints there may be some bilateral 
(equality) constraints: g(q) = 0. Note that g may be a vector-valued function. However, 
we expect that the dimension of g (q) is less than the dimension of q. 
For contact problems we are interested in unilateral (inequality) constraints h (q) ≥0. For 
a single possible contact we need only a scalar function h, but for more complex 
systems we will need a vector function h(q). In that case, h(q) ≥ 0 is interpreted as 
meaning hi(q) ≥ 0 for all i. These functions define the admissible contact region C: 

C = {q | g(q) = 0, h(q) ≥ 0 }.       (24) 
Contact occurs when hi(q) = 0 for some i. If hi(q) > 0 for all i, then we can locally ignore 
the inequality constraints. There is a normal contact force which prevents q leaving C is 
a linear combination of the vectors ▽ gi(q) and ▽hi(q). Since the normal contact force 
must point inward into C, the coefficients of ▽hi(q) have to be non-negative. 
In keeping with the use of generalized coordinates, we use a Lagrangian formulation of 
mechanics: the Lagrangian function is 

).()(
2
1),( qVvqMvvqL T −=       (25) 

The Euler-Lagrange equations of motion are therefore 

,contactext ff
q
L

v
L
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d

+=
∂
∂

−
∂
∂        (26) 

where the extf  are the external forces and contactf  are the contact forces. 
The contact force can be separated into normal and frictional tangential forces, and 
parameterize the friction component 

∑ +=
j

jjj
n

j
contact qDCqnf β)()(       (27) 

where the summation is overall potential contact: 
)(qn j  is the outward normal vector at jth  contact point, 
)(qD j  is the matrix of direction vectors, 

j
nC  is the normal contact force at jth contact point, and 
jβ  is the friction force at jth contact point. 

The maximum dissipation principle [6] sates that we chose jβ at time t to maximize  
  )())(()( +− tvtqD TjTjβ         (28) 
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subject to the condition: 
 )(0 qFCC j

j
n

j ∈β         (29) 
where 

)(0 qFC j  is the possible friction force for unit normal contact force. 
This is a linear minimization problem with convex constrains. 
Combining Euler-Lagrange Equations of motion, with Kuhn-Tucker conditions, the main 
contact condition and Newtonian impact law for single contact give the following impact 
model: 

)()(
2
1),( qVvqMvvqL T −= ,      (30) 
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jallforqgC j

j
n             ,0)(0 ≥⊥≤ ,      (31) 
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)())(()())(( −+ −= tvtqntvtqn TjjTj ε   if 0))(( =tqg .   (34) 
where 
a ⊥ b   means that aT b = 0, or a and b are both scalars, ab=0. 

jψ  is non-negative homogeneous convex function which satisfies the property that 

there is γ ≥ 1 such that for all β and α ≥ 0, ψ(αβ) = αγ ψ(β),  
jψ∇  is the generalized gradient of the function jψ , 

ε is the coefficient of restitution for the jth contact and can have values from zero to 
one inclusive, 

)(qg j  is the gap for the jth contact, 
),( vqk is the elastic strain energy. 

v
dt
dq

=        

    
3.2. Convex programming formulation 
Impact response analysis is to describe the dynamic behavior of objects after a collision 
occurs. In order to obtain a continuous solution of the impact mechanics problem 
concerned in this paper, variational methods of approximation can be used. They 
include Raleigh and Ritz, Galerkin, Petrov-Galerkin (Weighted-residuals), and the finite 
element method. All these methods except the last one are traditional variational 
approaches which have three main shortcomings: 1) difficulty in handling irregular 
domain: 2) difficulty in selecting coordinate functions; 3) dependence of coordinate 
functions on the geometry of the domain. These limitations can be overcome by the 
finite element method which is a piecewise polynomial approximation of weak forms of 
boundary- or initial-value problems over a domain partition of the solution to the system. 
Locally, the finite element method represents a function as a polynomial in much the 
same spirit as the classical Lagrange and Hermit interpolation methods. In this paper, 
the proposed impact response analysis algorithm contains two key components: the 
forward Lagrange multiplier method (convex programming) and the local finite element 
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method. Convex programming has recently found widespread use in the efficient 
formulation and solution of a multitude of engineering problems. Advantages of convex 
programming include its polynomial-time convergence to globally optimal solution, 
availability of highly efficient and reliable solvers, and the scale of problems that can be 
handled.  
The Lagrange dynamics and the finite element method are used to describe the 
generalized motion because of their simplicity and flexibility. On the basis of 
D'Alembert's principle and the principle of virtual displacement, the semi-discrete system 
governing equations that describe the equilibrium of a system (Eq. (30)) is approximated 
by: 

[ ] [ ] [ ]{ } { }RqKqCqM =+
⎭
⎬
⎫

⎩
⎨
⎧+

⎭
⎬
⎫

⎩
⎨
⎧ ...

      (35) 

Where; 
[M] is the Mass matrix, 
[C] is the Damping matrix, 
[K] is the stiffness matrix, 

⎭
⎬
⎫

⎩
⎨
⎧ ..

q  is the acceleration vector, 

⎭
⎬
⎫

⎩
⎨
⎧ .

q  is the velocity vector, 

{ }q  is the movement vector, and 
{R} is the external load vector. 
For arbitrary impact between deformable objects, Lagrange multipliers may be 
introduced into the equation of motion as follows: 

[ ] [ ] [ ]{ } [ ] { } { }RGqKqCqM T =Γ++
⎭
⎬
⎫

⎩
⎨
⎧+

⎭
⎬
⎫

⎩
⎨
⎧ ...

     (36) 

 [G] Geometric constraint matrix to prevent any penetration between colliding bodies, 
{Γ} Lagrange multiplier vector which represents the surface contact forces. 
Mathematically, equation (36) represents a set of linear differential equations of second 
order and, it will be solved by using standard procedures for differential equations [17]. 
However, the procedures for the solution of general differential equations could become 
computationally expensive if the matrices are large unless some special methods are 
used by taking advantage of the characteristics of the matrices K, and M [18, 19]. The 
direct integration method proposed by Hughes et. al. [20-22] will be considered as one 
of the few effective methods for the solutions of dynamic analysis. Naming the term 
'direct' means that prior to the numerical integration no transformation of the equations 
into a different form is conducted. The basic ingredients in the implicit-explicit procedure 
are 1) a given implicit integrator, 2) a predictor-corrector explicit scheme constructed to 
be “compatible” with the given implicit integrator, and 3) a synthesis of the implicit and 
explicit schemes by way of modified time-discrete equation of motion. For the aim of 
efficiency the Newmark family will be used assuming positive η which gives rise to 
implicit method. The proposed method is used as follows: 
i- Corrector 

1
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2

1

~
1   ++
+ ∆+= nn

n qtqq θ        (37) 
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ii- Predictor 
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wher  

η = 0.5  and   θ = 0.25 
Factorize [G] into [Ga] and [Gn] substitution of equation (37-40) into equation (36) which 
corresponds to the conventional Lagrange multiplier method leads to 
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Where; 
[Keq.] is the equivalent matrix 
[Req.] is the equivalent load vector 
[M] is the mass matrix, 
[C] is the damping matrix, 
[K] is the stiffness matrix, 
[Ga] is the active constraint matrix, 
[Gn] is the inactive constraint matrix, 
Γa  is the Lagrange multiplier corresponding to active subset of constraints have non-

zero positive value, 
Γn  is the Lagrange multiplier corresponding to inactive subset of constraints should  
           be zero, 
{b} is the gap vector, 
{S}a is the correspond to the active constraints, would be equal to corresponding {b}, 
{S}n is the correspond to the inactive constraints would be corresponding zero  
           multiplier.  
 

4. IMPLEMENTATION SCHEME 
 
The step-by-step implementation scheme is to be performed over the time interval [0,T] 
as follows: 

1- Initialization, set n = 0 and define all the initial data. 
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2- Form all needed matrices {[M], [C], and [K]}. 
3- Form [Keq.] according to equation (42). 
4- Start time step loop. 

5- Compute  1

~

+nq  and 1

~
.

+nq  according to equations (39) and (40). 

6- Compute [Req.] according to { } { } [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
~

~
.

. R  qKqCReq  

7- Solve equation (41) for 1

..

+nq  and Γa . 

8- Compute 1+nq  and 1

.

+nq  according to equations (37) and (38). 
9- Check all candidate contact points and detect the contact event and its contact 

time Tc. 
10- Compute the reactions at the contact points and check which is the most 

probable to release and detect its release time Tr. 
11- Compare Tc and Tr and chose the minimum to be the state event. 
12- Modify [Keq.] according the state event if existed. 
13- Add time step 
14- If the admissible time is exhausted, STOP. 
15- If NOT, Repeat step 4. 

5. NUMERICAL EXAMPLE 
 
Consider an elastic beam ab of length l = 10 cm, uniform cross-section area with 
diameter equals one sixth the length, and second moment of area I made of an isotropic 
homogeneous material has elasticity modulus E = 210x109 Pa, and mass density  
ρ = 7.5x103 kg/m3 impinging a rigid wall with constant velocity v in a plane perpendicular 
to the wall and the longitudinal axis of the beam inclined at an angle ϕ with the wall at 
the instant of the first contact as shown in Fig. 4. At the instant t = 0, the end b of the 
beam collides with the rigid wall, and the subsequent motion after impact is to be 
determined from general principles of mechanics subject to certain additional 
assumptions to be stated. 
It is assumed that the duration of the rebound process is not instantaneous but 
nevertheless is sufficiently small for the beam to remain approximately the same length l 
as before the impact and inclined at an angle α to the wall. Simultaneously, compressive 
behavior of the beam is permitted in accordance with standard approximations of the 
linear theory of elasticity. Rates of change of the displacements to first and higher orders 
are therefore not necessarily zero during the rebound. Of course, after impact, 
conversion of the rotational inertia causes the beam immediately to commence bending. 
The components of the uniform velocity prior to impact are given by (vx; vy), while, during 
the period subsequent to contact, the displacement components of any point on the 
beam are (x(t ); y(t )) and the anti-clockwise rotational displacement is denoted by ϕ(t ). 
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The proposed model is implemented according to the implementation scheme to solve 
this example and computational results are obtained. The simulation used 40 transverse 
and 40 lateral modes of elastic vibration. 
Figures showing the contact forces generated over the impact period for friction and 
frictionless oblique impact taking into consideration the effect of oblique angle ϕ. 
Comparing the contact period with [23] shows good agreement. Figure (5) presents the 
normal contact forces generated  
over the contact period for different incident angels (45, 60, 70, 80, and 90) when the 
coefficient of friction µ = 1. Note that normal contact force had built up to a constant 
value to the last fourth of the contact period then started to fluctuate due to the effect of 
elastic modes of vibration. Also, the normal contact force decreased as the incident 
angle ϕ decreased (direct proportionality). Figure (6) shows friction force generated over 
the contact period. The same behavior is detected but the friction force increased in 
value as the incident angle decreased (inverse proportionality). The normal contact 
forces generated when the coefficient of friction µ = 0 are presented in Fig. (7). It is 
depicted that the contact period increased as the incident angle ϕ increased (direct 
proportionality).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4,. An Elastic Beam Impact A Rigid Wall
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Fig.5. The oblique impact contact force induced  

by rod at different incident angles β (µ = 1.0) 
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Fig.6. The oblique impact friction force induced  
by rod at different incident angles β (µ = 1.0) 
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Fig.7. The oblique impact contact force induced 

by rod at different incident angles β (µ = 0.0) 
Effects of the considered elastic modes of vibration taken into consideration are shown 
in Fig. (8). It is depicted that the contact force had built up gradually when the beam is 
presented by one element, classical theory, monotonically compression and 
monotonically decompression interpretation of Poisson’s law of impact. Wherever, as 
the number of elements increased the constant load period increased. It is also depicted 
that as the number of elements tends to infinity the normal contact force can 
approximately represented by a rectangular pulse load with effective time duration τ = π/ 
λn (s). where λn is the natural frequency of the system.  
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Fig.8. Effect of elastic vibration modes on the direct impact contact forces 

 
 

6. CONCLUSION 
 
An impact model based on Lagrange multiplier and finite element approach has been 
described and applied to an example involving direct and oblique impact of rod with a 
rigid obstacle. This example problem studies the effect of oblique angle on impulse force 
generated within the impact period as well as the neighborhood area of the 
instantaneous impact model smooth or rough. Moreover, the effect of elastic modes of 
vibration on the impulsive force generated within the contact period has been discussed. 
Results show that friction playing a strong role in time contact period as will as in the 
response of the contact impulsive force. Also, the number of elastic vibration modes 
taken into consideration had strongly affected the impulse contact force response. 
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