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ABSTRACT 
In this paper the dynamic behavior of a cylindrical bar with longitudinal crack as a 
new case of crack geometry is investigated. The bar is bounded and excited in way 
which permits only torsional vibration of the bar. This work is based on crack induced 
by the manufacturing processes not due to applied load. The dynamic analysis of the 
cracked bar is based on the investigation of the measured transient response in time 
and frequency domains beside its modal parameters. Experiments are carried out in 
two different specimens of the bar providing that their mechanical properties and 
dimension are kept identical. The first specimen of the bar is uncracked while the 
second one has a longitudinal crack along its whole length. The bar is excited with its 
first torsional mode and the measured signals are analyzed using (FFT) analysis. A 
finite element model has been made using ANSYS software to simulate the 
uncracked bar. Modal, transient and harmonic analysis are made to validate the 
experimental work. The finite element prediction of the dynamic response and the 
fundamental natural frequency were in good agreement with the experimental 
results. This work suggests a simple method for crack detection in beams. 
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NOMENCLATURE 
A, B, C ,D Arbitrary constants. 
a Constant. 
D Bar diameter [m]. 
E Modulus of elasticity [GPa]. 
f(x,t) External torque acts on the shaft per unite length. 
G Shear modulus [Pa]. 
Jo Mass moment of inertia of the concentrated mass [Kg.m2]. 
Jbeam Mass moment of inertia of the beam [Kg.m2]. 
J(x) Polar moment of inertia of the cross section at distance x [m4]. 

                                                 
  
*   Egyptian Armed Forces. 
** Higher Institute of Technology-10th of Ramadan. 
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L Bar length [m]. 
Mt(x,t)  Twisting moment at bar location x and time t [N.m]. 
t Thickness of the concentrated mass [m]. 
W0 Static load [N]. 
ωn Natural frequency [Hz]. 
θ(x,t) Twisting angle [Deg]. 
θi Initial twisting angle [Deg]. 
ρ Density of  the bar material [Kg/m3]. 
 .Poison’s ratio ע
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1. INTRODUCTION 
Cracks in any structure can initiate catastrophic failures. Therefore, there is a need to 
understand the dynamics of cracked structures. The crack identification in structures 
has been the subject of intensive investigations during the last three decades. 
 
Cracks in the element of a structure have many causes. They may be fatigue cracks, 
mechanical defects and another group involves cracks that are inside the material, 
they are created during the manufacturing processes .These cracks open for a part 
of the cycle and close when the vibration reverses its direction. These cracks will 
grow over time, as the load reversals continue, and may reach a point where they 
pose a threat to the integrity of the structure. As a result, all such structures must be 
carefully maintained and monitored so that in the event of the development of any 
crack, it can be located and repaired before it can impair the safety of the structures.  
 
There are several non-destructive test techniques available for crack detection, for 
example: visual examination, radiographic test, ultrasonic test, liquid penetrate test 
and magnetic test. All the above methods cannot be utilized under the operating 
conditions of the structures. Due to this limitation it is now believed that the 
monitoring of the global dynamics of structures offer promising alternative for 
damage detection. Vibration-based techniques have been proved a fast and 
inexpensive means for crack identification. 
 
 
2. CRACK-VIBRATION RELATIONSHIP 
When a structure suffers from damage, its dynamic properties can change. 
Specifically, crack damage can cause a stiffness reduction and increases the 
damping of the structure. As a consequence many researchers have used the 
decrease in natural frequencies and modification of the modes of vibration to detect 
and locate cracks accordingly; vibration-based methods for crack detection have 
been developed.  Murigendrappa et al. [1] made a technique based on measurement 
of change of natural frequencies to detect multiple cracks in long pipes containing 
fluid at different pressures.  Lele and Maiti [2] used frequency measurements for 
crack detection in short beams, taking into account the effects of shear deformation 
and rotational inertia through the Timoshenko beam theory and representing the 
crack by a rotational spring. Crack extension is estimated from the change in the first 
natural frequency .The accuracy of the results is quite encouraging. Chaudhari et al. 
[3] modeled transverse vibration of a beam of linearly variable depth and constant 
thickness in the presence of an open edge crack using the concept of a rotational 
spring to represent the crack. The main disadvantage of using natural frequency 
changes for crack detection is the fact that significant cracks may cause small 
changes in natural frequencies so, research has been focused on using changes in 
mode shapes. Mode shapes are more sensitive to local damage compared to 
changes in natural frequencies. Ratcliffe [4] used a modified Laplacian operator on 
mode shape data to locate the damage in a beam. But it requires cumbersome post 
processing of determining cubic polynomial to fit the Laplacian locally at each spatial 
coordinate. The theory of spring loaded fracture-hinge was used by Ju and Mimovich 
[5] to diagnose the fracture damage in structures by post processing the 
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experimentally obtained frequency values with analytical frequency equations. Tasi 
and Wang [6] used the change in fundamental mode shapes between the cracked 
and uncracked shaft to identify the crack location. The crack was modeled as a joint 
of a local spring. The transfer-matrix method was employed to obtain the dynamic 
characteristics. 
  
More sensitive methods capable of detecting local abnormalities with high resolution 
became important. In that vein, methods based on wavelet analysis and fast Fourier 
transform. The wavelet transform, as opposed to Fourier or modal analysis, breaks 
down a signal into a series of functions (wavelets). Chih-Chieh Chang et al [7] have 
detected the location and size of cracks in the multiple cracked beams by spatial 
wavelet based approach based on spatial wavelet analysis. Gomez-Mancilla et al [8] 
have used the local resonance for crack detection in rotor. They based on Vibration 
peaks occurring at rational fractions of the fundamental rotating critical speed, here 
named Local Resonances; facilitate cracked shaft detection during machine shut-
down.  Ertugerul et al. [9] were used the impact-echo method, The signals obtained 
in defect-free and cracked beams were compared in the frequency domain. The 
results of the study suggest determining the location and depth of cracks by 
analyzing the measured signals. Hadjileontiadis et al. [10] Introduce new technique 
for crack identification in beam structures based on fractal dimension analysis (FD). 
In this work, the fundamental vibration mode of a cracked cantilever beam is 
analyzed and both the location and size of the crack are estimated. The location of 
the crack is detected by a sudden change in the spatial variation of the analyzed 
response, while the size of the crack is related to the fractal dimension measure. The 
proposed technique forms an FD-based crack detector (FDCD), which accesses the 
complexity of the vibrational signal in order to efficiently detect both the location and 
the size of the crack. 
 
 For stress analysis purposes many researchers have used the finite element method 
(FEM) , Anifantis and Dimarogonas [11] introduced the full 6 x 6 flexibility matrix for 
the cracked region and computed for a rectangular beam with a transverse crack the 
5 x 5 local crack flexibility matrix neglecting torsion. Further, they observed that this 
matrix was not purely diagonal but had off-diagonal terms which indicated the 
coupling between the longitudinal and lateral vibration. A full 6 x 6 matrix for a 
general loading of a Timoshenko beam was introduced by Papadopoulos and 
Dimarogonas [12]. They introduced the coupled longitudinal, torsional and bending 
vibration analysis of a cantilevered beam with a transverse crack. Using a local 
flexibility matrix for the crack, they determined the first three modes of free vibration. 
During the analysis and experiment, they gave the beam a longitudinal, harmonic 
displacement at its fixed end and plotted the response as a function of the excitation 
frequency. At small crack depths, peaks occurred at the natural frequencies of 
longitudinal vibration. As the crack depth increased, other peaks appeared due to the 
coupling with bending vibration.  
For crack modeling process there is extensive confusion in distinguishing between a 
notch and a crack. Wendtland [13] reported that there is extensive confusion 
between a notch and a crack. Many authors treat cracks as notches experimentally, 
analytically and numerically. Saw cuts are used to model cracks. It must be 
understood that no matter how much thin a saw cut is, the obtained notch will not 
behave as a real crack. 
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The aim of the present paper is to investigate the free torsional vibration of bar with 
longitudinal crack and using FFT analysis technique on the measured dynamic 
response to detect the crack in bar. Both experimental as well as numerical (FEM) 
procedures are used.  At first, measurements were performed on an uncracked bar in 
order to construct reference results, which can be compared with other results of 
cracked bar to diagnose the crack. Secondly, Modal analysis is performed through 
ANSYS software to estimate the fundamental natural frequency for uncracked bar 
before the comparison of the obtained experimental frequencies (in both cases 
cracked and uncracked bar) has been done. The dynamic response of the cracked 
bar is obtained with the same measurement procedure of the bar in good condition. 
The cracked bar has a longitudinal crack which is not a fatigue crack but it is created 
during the manufacturing processes. During the measurement we will permit the 
beam to vibrate under its fundamental mode due to an initial displacement θi(x) and 
then the dynamic transient response is measured at some points on the bar through 
strain gauge. Finally the transient and harmonic analysis has been performed 
through ANSYS to validate the experimental work in the case of uncracked bar. 
 
 
3. THEORITICAL BACK GROUND 
The equation of motion for forced torsional vibration of a bar From Newton’s second 
law [14] can be written as 
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Where A, B, C and D are arbitrary constants depend on the boundary and initial 
conditions. 
4. CRACK EFFECT ON LOCAL MODAL PARAMETER  
In general, crack adds flexibility to the structure. This flexibility will affect the bar 
stiffness in local area around the crack more than any other area of the structure. 
Since monitoring of modal parameters natural frequency and mode shapes will give a 
more direct and significant indication of the crack occurring in the structure [15].  
 
Lakshimi et.al. [15] Have studied a beam with transverse crack and concluded that 
the effect of crack is observed obviously in mode shape in the location of the crack. 
Namely, in the vicinity of the crack tip only. Therefore, measurement of strain by a 
sensor in the crack location would be ideal but all other places the sensor will not 
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have any sensible variation. Therefore, measurement of mode shapes values is not a 
practical one to locate the crack since prior knowledge of the location of the location 
of the crack is not valid to us. So, an attempt is made by Lakshimi to look into the 
global parameters (like frequencies and change in frequency). To identify the 
presence of crack instead of local parameters (like mode shape) which has 
insignificant contribution or high localized contribution which cannot be practically 
measured to identify the presence of the crack.  
 
 
5. EVALUATION OF THE FREQUENCY CHANGE  
In the present work both analytical and numerical FEM solutions were performed to 
estimate the value of the natural frequency of the uncracked bar, Then the 
experimental work is performed to the uncracked bar. The different procedures 
namely, experimental and numerical should be verify each other. Finally the 
experimental work is performed on the cracked shaft and the deviation of the natural 
frequency due to the presence of the crack is evaluated.  
    
 
6. ANALYTICAL MODEL  
Consider a cylindrical steel bar with length L=300[mm], diameter D=13[mm] and with 
material properties (ρ=7815 [kg/m3], E=215 [Gpa] and ν=0.3). A concentrated mass 
in the form of a solid disc with diameter 236 [mm] and thickness t=7.7 [mm] is welded 
to its free end as shown in         Fig.(1) to reduce the fundamental frequency of the 
bar. The bar is mounted with fixed support from one end and with roller support from 
the end which has the concentrated mass.   

 
        Fig.(1) A beam with concentrated mass 

By solving Eq.(2) we can get the frequency equation.        
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Eq.(4) is the frequency equation or characteristic equation of the bar with end disc. 
The values of ωn are the eigen values (natural frequency) values of Eq.(2). The nth 
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natural frequencies are given by solving Eq.(4). Eq.(4) is solved by using graphical 
solution to get the first fives natural frequencies, the result is shown in Table 1. 
 

Table.1. Analytical solution of first fives natural frequencies 
Mode no. Mode-1 Mode-2 Mode-3 Mode-4 Mode-5 

natural freq.[Hz] 32.7 5438.7 10970 16690 22691  
 
 
7. FINITE ELEMENT MODEL (FEM) 
Consider the model given in Fig(2). Using ANSYS software, the bar FEM model is 
selected to have 13 elements of element type pip16 to simulate the bar. Element type 
mass21 is used to simulate the concentrated mass and it is shown as element no.14 
in Fig.(2). 

 

1 2 3 4 5 6 7 8 9 10 11 12 13

y

x
14

 
 

Fig.(2)  Finite element model for uncracked bar (pipe16 & mass 21) 
 
Modal, transient and harmonic analysis modules has been used for dynamic analysis 
of the uncracked bar. 
 
7.1   Modal analysis of uncracked beam 
The modal analysis has been performed. Only the first fives torsional natural 
frequencies and mode shapes are extracted. The calculated natural frequency for 
each mode is shown in Table.2. Fig.3) illustrates the obtained first fives mode shapes. 
 

Table.2. Numerical result for first fives natural frequencies 
Mode no. Mode-1 Mode-2 Mode-3 Mode-4 Mode-5 

natural freq.[Hz] 32.7 5438.7 10970 16690 22691  
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Fig.3. First fives mode shapes of uncracked bar 

 
According to Tables 1 and 2, the modal analysis validates the analytical calculation of 
first fives natural frequencies. 
 
7.2   Transient and harmonic analysis for uncracked beam 
A transient and harmonic analysis has been performed. The transient signals are 
obtained at the same locations of measuring points in experimental work. 
 Fig.4-a), Fig.4-b) and Fig.4-c) illustrate the  transient response of the twisting angle 
(θ) [Deg.] due to applied weight 10.26 [kg] at the three different  points on the beam 
2,12 and 22 [cm] respectively from the fixed support. Fig.4-d) represent the harmonic 
analysis of transient response of the model. The harmonic analysis illustrate that the 
fundamental frequency is 32 [Hz]. 
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Fig.4. Transient response at (a) 2 [cm] ,  (b) 12 [cm],  (c) 22 [cm]  from the  
root due to applied weight10.26 [kg]. (d) The harmonic analysis of the  

transient response at the three points. 
 
8. EXPERIMENTAL WORKS 
According to Wendtland [13], there is crack model confusion happened between 
researchers during their experimental modeling of cracks in structure. Wendtland 
concluded that the real crack is different from the crack created experimentally in the 
form of a notch made with thin saw, what ever how thin the saw is. In the following 
procedure, a crack due to manufacturing process in steel bar was investigated in 
order to understand its real effect in the dynamics of structures. The cracked bar is 
obtained from an iron store which feeds the turning workshops with their needs of 
steel work pieces. This means that the crack is created during the manufacturing 
processes not due to fatigue. The cracked bar has longitudinal crack Fig.(5). The 
uncracked piece of bar is obtained from the same source.  

 
Fig.5. Bar with longitudinal crack 

 
The material composition for the two bars has been analyzed by using the x-ray 
analysis technique with the help of the scanning electron microscope (machine 
SEMMA 202M) to assure that the two pieces of the used bars have the same 
material properties. The material composition analysis is shown in Fig.(6). From 
Fig.(6-a) and Fig.(6-b) we can conclude that the two specimens of bars (crack & 
uncracked) have the same material properties. 
Then, the two bars, cracked and uncracked are turned to the same dimensions given 
in Fig.(1). A concentrated mass in the form of solid steel disc is welded to the bar to 
reduce the fundamental natural frequency and increase the signal amplitude. The 
two measured bars have been supported to become fixed-roller supported bar. The 
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fixed support has been represented as shown in Fig.(7-a). The roller support has 
been represented by a ball bearing which is mounted as shown in Fig.(7-b). A static 
load is applied on the disc represented by a standard weight connected to a point on 
the peripheral of the disc through a steel wire as shown in Fig.(8). 
The tested bar is twisted with an initial twisting angle θi under the applied static load 
W0. Once the applied load is released by cutting the steel wire the beam will perform 
a torsional vibration due to the initial displacement θi, and fundamental mode is 
predominantly excited. 

 
 

 
 

Fig.6. Material composition analysis:  (a) uncracked bar    (b) cracked bar 
 

(a) cracked 

        (b) uncracked 
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(a) 
 

(b) 
Fig.7. mounting and fixation of    (a) fixed support    (b) roller support 

 

 
 

 
Fig.8. the static load which create the initial displacement 

 
A data acquisition system is used to measure the signal as the shown in the block 
diagram Fig.(9). 
 

 
Fig.9. Data acquisition system block diagram 
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For each bar (cracked and uncracked), the transient response is measured by using 
metal foil strain gauge type KFG-2-120-D31-11 which is suitable for measuring 
torsion in steel, Fig.(10). The Half bridge strain gauge configuration illustrated in 
Fig.(11) was bonded on three different points on peripheral  of the bar at distances 2, 
12, 22 [cm] from fixed support as shown in Fig.(12).   
 

 

Fig.10. Photography of metal foil strain 
gauge type KFG-2-120-D31-11 mounted 

on the measured bar 

Fig.11. Half-Bridge configuration circuit 
 

 
 
 

 
Fig.12. Strain gauges locations 

 
 
The measured signals are transferred to the strain gauge signal conditioning 
amplifier type (RS stoke no. 826-171) to make the required balancing and 
amplification for the obtained signals. Finally the resulting signals are converted from 
analog to digital by using A/D converter device type CIO-DAS16/330 which is 
compatible with MATLAB software and the obtained signal is displayed in PC by 
using Simulink program. Fig.(13) shows photography of the test rig and 
instrumentation. 
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Fig.13. Photography of the test rig and instrumentations 
 
 
9. EXPERIMENTAL RESULT 
Fig.(14) and Fig.(15) show the measured strain for uncracked and cracked bar when 
the applied weight is 10.26 [kg] and with sampling rate 1 [KHz]. Fig.(16) shows the 
measured twisting angle of uncracked bar which has been calculated from the strain 
shown in Fig.(14). Fig.(17) shows the measured twisting angle of cracked bar which 
has been calculated from the strain shown Fig.(15). It can be observed from Fig.(16) 
and Fig.(17)  that  the damping in the cracked bar is more than the damping in the 
uncracked bar.  
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Fig.14. Measured strain for uncracked 
beam at three points (a) at 2[cm] from 

 the root (b) at 12[cm] from the root  
(c) at 22[cm] from the root 

 

Fig.15. Measured strain for cracked beam 
at three points (a) at 2[cm] from the root 

(b) at 12[cm] from the root  
(c) at 22[cm] from the root 
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Fig.16. Measured angle [degree] for 
uncracked beam at three points (a) at 

2[cm] from the root (b) at 12[cm] from the 
root (c) at 22[cm] from the root. 

Fig.17. Measured angle [degree] for 
cracked beam at three points (a) at 2[cm] 

from the root (b) at 12[cm] from the root (c) 
at 22[cm] from the root. 

 
 



Proceeding of the 12th AMME Conference, 16 -18 May 2006 Paper  DV-14 711 
 

 

10.  TRANSIENT FREQUENCY RESPONSE 
Dynamic signal analysis has been performed to the measured signals using the Fast 
Fourier transform (FFT). FFT algorithm has been performed on the PC by using 
MATLAB software. Fig.(18) shows the  block diagram for FFT. 
 

 
Fig.18.  FFT block diagram 

 
Fig.(19) displays the FFT of measured twisting angle shown in Fig.(16). While 
Fig.(20) displays the FFT of measured twisting angle shown in Fig.(17). 
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Fig.19.  FFT of uncracked bar Fig.20. FFT of cracked bar 
 
11.  EFFECT OF CRACK ON BEAM RESPONSE 
The measured signals for the cracked and uncracked bars are displayed in both time 
and frequency domains to illustrate the effect of the presence of the crack. Fig.(21), 
Fig.(22) and Fig.(23)  illustrate  (a)  time history  (b) spectrum for various 
measurement points on the bar 2,12 and 22 [cm]. From the shown figures, both 
uncracked and cracked bars vibrate predominantly at its fundamental frequency. We 
can observe that the signals obtained from the cracked bar is dissipated higher than 
the dissipation of the uncracked bar. Which mean that the damping of the cracked 
bar is higher than the damping in uncracked bar and it is cleared for each point of 
test in Fig.(21-a), Fig.(22-a) and Fig.(23-a). Also the fundamental frequency of the 
cracked bar and the uncracked bar have different values and it is cleared in  
Fig.(21-b), Fig.(22-b) and Fig.(23-b). 



Proceeding of the 12th AMME Conference, 16 -18 May 2006 Paper  DV-14 712 
 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
 angle response of uncracked and cracked bar at 2 cm from root 

an
gl

e 
[d

eg
]

Time [s]

uncracked bar
cracked bar

 
(a) 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

A
bs

ol
ut

e

Frequency

 FFT of uncracked and cracked bar at 2 cm from root 

uncracked bar
cracked bar

 
(b) 

Fig.21. Measured signal at 2 [cm] from fixed support :  (a)Time history   (b) spectrum 
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(b) 

Fig.22. Measured signal at 12 [cm] from fixed support :  (a)Time history   (b) spectrum 

(a) (b) 
Fig.23. Measured signal at 22 [cm] from fixed support :  (a)Time history   (b) spectrum 
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12.  EXPERIMENTAL WORK VALIDATION 
In the present work both the experimental as well as the numerical (FEM) procedures 
are used. The output results for the two procedures should validate each others. As 
was mentioned before that we deal in the present work with real crack occurred 
during the manufacturing processes. And by taking Wendtland [13] conclusion in our 
consideration, the modeling of real crack by FEM will not be a real simulation of the 
real crack. So, the dynamic simulation of the cracked bar has real crack is not 
available in the FEM package. As a result of this, The FEM discussed before has 
been established only for the uncracked bar. Fig.(24), Fig.(25) and Fig.(26) illustrate 
the experimental time history and spectrum for various measurement points on the 
bar at 2,12 and 22 [cm] from fixed support for uncracked and cracked bar as well as 
the result of FEM for uncracked bar at the same points.  From these figures, we can 
observe that, the FEM results of the uncracked bar were in excellent agreement with 
the experimental result of uncracked bar in both time and frequency domains. 
 
 

 
(a) 

 
(b) 

Fig.24. Experimental angle response of uncracked and cracked bar with FEM response 
for uncracked bar at 2 [cm] :     (a) Time history       (b) spectrum 

(a) (b) 
Fig.25. Experimental angle response of uncracked and cracked bar with FEM response 

for uncracked bar at 12 [cm] :      (a)Time history      (b) spectrum 
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(a) 

 
(b) 

Fig.26. Experimental angle response of uncracked and cracked bar with FEM response 
for uncracked bar at 22 [cm] :     (a)Time history      (b) spectrum 

 
 
13.  CRACK WELDING EFFECT 
The effect of the crack welding on the dynamic of the cracked bar has been 
experimentally investigated. The experimental work is repeated and the cracked bar 
is welded with variable lengths (5, 10 and 15 [cm] long) from the fixed support to 
study the effect of welding on the dynamics of cracked bar.  
 

  
(a)Time analysis at welded length 5 [cm] (a)Time analysis at welded length 5 [cm] 

  
(b)Time analysis at welded length 10[cm] (b)Time analysis at welded length 10[cm] 



Proceeding of the 12th AMME Conference, 16 -18 May 2006 Paper  DV-14 715 
 

 

  
(c)Time analysis at welded length 15 [cm]
 

(c)Time analysis at welded length 15 [cm]

Fig.27. Time analysis at 2 cm from root 
signal for various welded length (a) 5 cm 
welded length (b) 10 cm welded length 

(c) 15 cm welded length 

Fig.28. Time analysis at 22 cm from root 
signal for various welded length (a) 5 cm 
welded length (b) 10 cm welded length 

(c) 15 cm welded length 
 

Fig.29. Frequency analysis of the cracked 
beam and the welded beam for various 

lengths At 2 cm from root 

Fig.30. Frequency analysis of the cracked 
beam and the welded beam for various 

lengths At 22 cm from root 
 
The signals are measured at the same point 2, 12, and 22 [cm] from the fixed support 
with the same conditions as the previous experimental work. Fig.(27) and Fig.(28) 
show the time history of the twisting angle measurement at extreme points 2 and 22 
[cm] from the root at various welded lengths for cracked bar ( 5,10  and 15 [cm] long). 
For the time domain the responses show that, the amplitude of the signal increased 
in the welded cracked bar more than the cracked bar without welding. Also, there is 
insignificant increase in amplitude with the increase in welded length. Fig.(29) and 
Fig.(30)  show the spectrum of the twisting angle response measurement at extreme 
points 2 and 22 [cm] from the root at various welded lengths for cracked bar ( 5,10  
and 15 [cm] long). It is clear from the above figures that, the frequency of the cracked 
bar doesn't change and the amplitude increases with increasing in welding length. 
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14.  DISCUSSION 
In general, the values of the fundamental frequency and damping change due to the 
presence of crack. Both experimental and analytical study were carried out for the 
uncracked bar in time and frequency domains. For time domain, at each point of 
measurement 2, 12 and 22 [cm] from the fixed support as shown in figures  
Fig.(24-a), Fig.(25-a) and Fig.(26-a), respectively. The calculated transient response 
(FEM) was in good agreement with the experimental measurement of transient 
response. For frequency domain, the harmonic analysis of the calculated signal 
(FEM) illustrate that the fundamental frequency is 32.7 [Hz]. This value has a good 
agreement with fundamental frequency which calculated from the experimental work 
as shown in Fig.(24-b), Fig.(25-b) and Fig.(26-b). Also, the analytical and numerical 
solution of the fundamental frequency for the uncracked beam was also 32.7 [Hz] as 
shown in Table.1 and Table.2. Thus the experimental study validates the FE model.  
 
In the present work, two important parameters are affected with the presence of the 
crack. The first one is the natural frequency. From the experimental work Fig.(21-b), 
Fig.(22-b) and Fig.(23-b)  we can observe that the fundamental  frequency for the 
cracked bar  is 30 [Hz]  and for uncracked bar is 32.7 [Hz] . So, we can conclude that 
the value of fundamental frequency decreased due to the presence of crack. The 
second parameter is the damping effect. Friction happens between the crack faces 
during the vibration of the cracked bar at each cycle. This friction cause increase in 
the dissipation of energy from the structure since the damping in the cracked bar is 
higher than the uncracked bar as shown in Fig.(21-a), Fig.(22-a) and Fig.(23-a).  
 
15.  CONCLUSIONS  
The result of the present work indicated that the presence of the crack affects the 
modal parameters of the structure. The change in frequencies such as the 
fundamental frequency is a valid parameter to detect the crack. In the real application 
the change in frequency value can be obtained by mounting sensors in a structure. 
For that purpose, both simulated and experimental works were analyzed by using 
FFT. It was found that there is frequency deviation in the fundamental frequency of 
structure due to the presence of crack. The dynamic response of the measured 
signals indicated that the damping of the measured signals increase in the case of 
the cracked structure. The damping increase due to the increase in the energy 
dissipation because of the friction between the crack faces. The parameter of 
damping can also be an important indicator for the presence of crack in structure. For 
cracked bar with high crack geometry (high length and depth) vibrates in such mode 
which permit the friction between the crack faces such as torsion mode (mode III) as 
our case. The friction between the crack faces has significant effect on the damping 
of the structure. But this effect has insignificant change in the damping of the 
structure for the small crack geometry or during the vibration in such a mode which 
not permits the friction between crack faces for example the transverse or 
longitudinal vibration of a bar has transverse crack (mode I). The presented results 
provide a foundation of using FFT technique and the modal parameter as an efficient 
tool for crack detection. 
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