Samah A. Elsemelawy¹ and Rehab Ibrahim Tag Al Deen²

¹Home Economics Dept., Faculty of Specific Education, Tanta University .Egypt.
²Home Economics Dept., Faculty of Specific Education, Zagazig University, Egypt.

ABSTRACT

n ayurvedic medicine, herbal plants as ashwagandha (Withania somnifera) were used as a powerful plant to cure many of diseases. The present study was carried out to evaluate the protective effect of fortified cake by different concentrations of ashwagandha root powder against sodium arsenite induced toxicity in rats. Thirty male Sprague-Dawley rats weighing $(120 \pm 10g)$. Rats classified into to five groups (6 rats). The first group was kept as a negative control and fed on the basal diet only. Other four groups were administered sodium arsenite at a single dose of 5 mg/kg/day to induce toxicity injury. One of these groups left as positive control (group 2). The third group was treated with 100% wheat flour fortified cake. The fourth group was treated with 10 % ashwagandha powder fortified cake. The fifth group was treated with 20 % ashwagandha powder fortified cake. Laboratory analysis showed that fortification with ashwagandha inhibited the levels of liver injury biomarkers, also improved the kidney function enzymes. These results suggested that ashwagandha has a powerful antioxidant effect which can reduce organ injury through its ability by scavenge the free radical.

Key words: Ashwagandha, Sodium Arsenite, Anti-amnesiac, Hepatotoxicity.

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

INTRODUCTION

Ashwagandha" Withania also somnifera" known as winter cherry is one of the most traditional powerful Indian used Avurvedic herbs in (Chatteriee medicine and Pakrashi, 1995). Ashwagandha is belonging to family Solanaceae with oval leaves and vellow flowers. It bears red fruit which is native to the dry regions of India, and the Middle East (Gupta, et al., 2011). The chemical composition of ashwagandha roots contain high level of protein (10.72%), ash (5.41%), crude fiber (14.58%) carbohydrates and total (65.80%) (**Pingali**, et al., 2014). Many pharmacological studies and investigations have been conducted to study the effects of ashwagandha for human health in an attempt to find its use as a medicinal agent(Mirjalili, et al., 2009) in Avurveda medicine or alternative medicine. ashwagandha is used for improving thinking ability, arthritis, decreasing pain ,anxiety, chronic liver disease, asthma and as an adaptogen to

increase energy to stand the daily stress (**Ingrid Hehmeyer and Hanne Schönig Herbal Medicine in Yemen, 2012**).

Recently. ashwagandha shows an anti-amnesiac effect streptozotocin in against neurological degenerative disease which can be а promising alternative treatment for Alzheimer's disease as it improves the formation of memories and physical performance (Baitharu, et al., 2013).

Arsenic is a naturally occurring element and released into the environment through agriculture and industry that ubiquitously exists as trivalent $(As^{3+}, arsenite)$ and pentavalent $(As^{5+}, arsenate)$ forms, and arsenite has been considered to be more toxic when compared with arsenate (**Domingo, 1995 and Baitharu, et al., 2013**).

Sodiumarsenite isan inorganic compound with theformula NaAsO2 which may beinhaled or absorbed through theskin (**Grund, et al., 2005**).Accordingtoclinicalobservations,thearsenic exposure is a cause of

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. June 2016 (47) 103

various disorders such as diabetes mellitus, cardiovascular diseases, nephrotoxicity, and cancer of the skin, bladder and neurotoxicity. In addition, it has been suggested to affect the liver function and to induce hepatotoxicity. During arsenic metabolism, oxygen radicals can be produced frequently which lead to overproduction or accumulation of oxygen free radicals in cells causing damage of DNA, lipids and proteins (Gurr, et al., 2003). Acute sodium arsenite poisoning may lead to abdominal pain, diarrhea. poor appetite and (Ratnaike, nausea 2003). Accumulation of arsenite in vital tissues and organs due to chronic poisoning of sodium arsenite can lead to convulsions, decreased blood pressure, nervous system damage, headache, weakness, eventual paralysis and death (ICPEMC, 1990).

Food fortification is a modern strategy which refers to the addition of micronutrients to processed foods (World Health Organization and Food and Agriculture Organization of the United Nations, 2006). Reducing micronutrient malnutrition is considered as prime goal of food Fortification to provide adequate levels of the respective nutrients in the diet. In many situations, this strategy can lead to use this nutritional supplementation as medicine which is used in treating many disorders including cancers, also it can used to ensure approaching nutrient deficiencies among people (Gerrior, et al., 2004). The purpose of this study is to review and evaluate the influence of fortified cakes with ashwagnda on the levels of some physiological parameters function, as kidneys liver function and lipid profile of chronic renal failure in rats.

MATERIALS & METHODS Materials

Animals: Thirty male albino rats, *Sprague Dawley* strain, weighing $(120 \pm 10g)$ were purchased from the animal house of Agriculture Research Center, Giza, Egypt. The animals were housed in plastic cages, maintained on a natural

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

light-dark cycle at room temperature of $26 \pm 2^{\circ}$ C and fed standard diet according to (Reeves, et al., 1993).

margarine were purchased from local market in Cairo. Egypt.

Methods:

Chemical and plant products:

-Sodium Arsenite[©]: (NaAsO2) obtained from was Sigma Chemical Co. (St Louis, Mo, USA). Minerals and vitamins constituent, sucrose, glucose and absolute ethanol were obtained from El-Gomhoriya Pharm. and Chem. Ind. Co. Cairo, Egypt.

-Casein (> 85% protein) was obtained from Misr Scientific Company, Giza. Egypt. Cellulose and DL- methionine were purchased from Morgan Company, Cairo, Egypt.

- Corn oil was obtained from the local market. Corn starch was from Starch obtained and Glucose Company, Helwan, Egypt.

-Ashwagandha (Withania somnifera) and roots were purchased as dried material from local market in Cairo. Egypt.

-American Wheat flour (72%), sucrose, skim milk, whole egg, salt, baking powder, vanillin,

Phytochemical composition:

Analyzed phytochemical constituents of the roots of the major phytoconstituents were determined by using the methods of (Adesanya and Sofowora, 1983).

Preparation of Fortified cakes:

Fortified cakes were prepared according to the common method of (Penfield Campbell, and **1990**). Preparation of cake was carried out by using wheat flour (72%), samples replaced separately with 10 and 20% ashwagandha powder.

Experimental design:

The experiment was performed in Animal House in the Food Technology Research Institute, Agriculture Research Giza. Center. After the acclimatization period, rats were divided randomly into two main groups, the first main group (n= 6 rats) fed on the basal diet only

as a negative control. While, the second main group (n= 24 rats) sodium arsenite were administration (Sa, 5 mg/kg BW per day) the selection of arsenic dose and procedure of administration were based on the prior study to (Chattopadhyay, et al., 2003). The second main group was given orally 10 ml of water containing sodium arsenite at the dose of 5 mg per kg body weight per day) which classified into positive control (+ve) group and three treated rat groups that treated with cake 100% wheat flour (10g /100 g Basel diet), fortified cake with 10% ashwagandha powder (10g /100 g Basel diet), fortified cake with 20% ashwagandha powder (10g /100 g Basel diet). Body weight (BW) was recorded weekly during the experimental period and feed intake was measured daily during the experimental periods. At the end of the experiment, biological evaluation of the tested diets was carried out by determining total feed intake, body weight gain (BWG) and food efficiency ratio (FER).

Blood sampling:

At the end of the experiment period (8 weeks), were sacrificed rats after overnight fasting under ether anesthesia. Blood samples were taken from hepatic portal vein and were left to clot by standing at room temperature for 15 minutes, and then centrifuged at 3000 rpm for 20 minutes. Serum was carefully separated and transferred into clean quite fit plastic tubes and kept frozen at -20°C until the time of analysis.

Biochemical analysis:

Serum alanine and aminotransferases aspartate (ALT & AST) were estimated according to (Reitman and Frankel, 1957) while alkaline phosphatase (ALP) was assayed by (Kind and King, 1954) and bilirubin levels were estimated according to Bartholomev and Delany, (1966). Serum creatinine, uric acid and urea were determined according to the methods described bv (Bohmer, 1971; Fossati et al., 1980 and Patton and Crouch, 1977), respectively. Enzymatic colorimetric determination of

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. June 2016 (47) 106

triglycerides was carried out according to (Fossati and Prencipe, 1982). Total cholesterol was determined by colorimetric method according (Allian. et al.. 1974). to Determination of HDL-c (high density lipoprotein) was carried out according to the method of (Fnedewaid, 1972). The determination of VLDL-c (very low density lipoproteins) and LDL-c (low density lipoproteins) were carried out according to the method of (Lee and Nieman, 1996) by calculation as follows:

* VLDL-c (mg/dl) = Triglycerides /5

LDL-c (mg/dl) = Total * cholesterol -HDL-c-VLDL-c Acetyl cholinesterase (AchE) activity determined was according (Knedel to and Boottger, **1967**). Superoxide dismutase (SOD) activity, total antioxidants capacity (TAC), and malondialdehyde (MDA) were determined according to (Nishikimi, et al., 1972; Cao, et al., 1993 and Oh-kawa, et al., 1979), respectively.

Statistical analysis:

The obtained data were statistically analyzed using computerized SPSS (Statistic Program Sigmastat, Statistical Soft-Ware, SAS Institute, Cary, of different NC). Effects treatments were analyzed by one way ANOVA (Analysis of variance) test using Duncan's multiple range test and p<0.05 used to indicate was significance between different groups (Snedecor and Cochran, 1967).

RESULTS & DISCUSSION

(1) shows the Fig phytonutrient constituents of ashwagandha roots, the highest phenolic compound concentration in ashwagandha roots was chlorogenic acid. ashwagandha roots also contain pyrocatechol, caffeic acid. ferutic acid, protocatechuic acid, vanillic acid and pyrogallol.

Table (1) discusses the effect of sodium arsenite and the other treated groups on body weight gain and feed intake. The results indicated that the control group (+ve) Showed a significant decrease in body

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. June 2016 (47) 107

weight gain and feed intake compared to Normal control group while the other treated significant groups showed increase in these parameter compared with control group (+ve). There wasn't a significant difference between the treating with ashwagandha powder and wheat flour on body weight gain and feed intake. Our results were matchd with (Mane, et al., 2012). who reported that Inclusion of aswaganda powder in broiler food was beneficial in improving the body weight and feed intake ratio.

The effect of ashwagandha powder fortified cake on liver function enzymes in rats received NaAsO2 are presented in Table 2. The function elevation of liver enzymes was due to the injury caused by NaAsO2, as the positive group (+ve) showed a significant increase in total bilirubin. AST and ALT in comparing to normal control group (-ve). On the other hand, the treated groups with different concentrations of ashwagandha powder improved the results as those levels were found to be

significantly lower in comparing to positive group (+ve). specifically, the cake fortified with ashwagandha powder at different concentrations was better than 100% wheat flour cake in lowering the elevation of hepatic enzymes caused by NaAsO2.

Similarly Udavakumar, (2009)clarified that both ashwaganda root and leaf have a great role in decreasing the circulating liver enzymes In diabetic animals induced by alloxan at 200mg/kg. Moreover, (Hosny and Farouk, 2012) aimed to investigate the protective effect of ashwaganda extract against irradiation of gamma-induced oxidative stress in hepatic cells. His results were closely matched to our study as he suggested that ashwaganda extract abrogated the increases in liver enzymes so it could be used as a preventive drug which protects the hepatic cells in radiotherapy.

Thus, it may be due to the hepatoprotective action of Withanolide A which is exist in ashwaganda by alleviating oxido-nitrosative stress and

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. June 2016 (47) 108

inflammatory via inhibition of interleukin-1(IL-1 β),

cyclooxygenase activity (COX-2), tumor necrosis factor-alpha (TNF- α) and total nitric oxide (INOS). Hence. ashwaganda exerts a hepatoprotective effect through several mechanisms which could be attributed to the ability to remove the urea compounds related and antioxidant properties (Dhuley, 2000).

Table (3), results In showed that kidney function tests were elevated by NaAsO2 as it shown in positive group (+ve). The changes in the kidney function tests were due to NaAsO2 induced kidney injury, as there was significant increase in urea, uric acid and creatinine compared to normal group (-ve). Meanwhile, the other treated groups reversed those results as there was a significant decrease in the levels of creatinine, urea and uric acid except the 100% wheat flour group, as there is а non significant difference in uric acid level compared to positive group. Fortified cake with 20% ashwaganda powder showed the best results as shown in table (3). Recently (Jevanthi and Subramanian, 2009) investigated the nephroprotective role of withania somnifera on gentamicin induced nephrotoxicity in mice. These studies showed that 500mg/kg of root extract of ashwagandha given to albino rats for two weeks prior to gentamicin induced renal toxicity was able to attenuate the increase in urinary protein and serum creatinine.

Furthermore,

ashwagandha contain many of withanolides and alkaloids. (Harikrishnan, et al., 2008) withaferin A, 1-oxo-5b, 6bepoxy-witha-2-ene-27-etnoxyolide, etc, 32, 33 are the main compounds active in ashwagandha (Jayaprakasam, 2003). They have the ability to glomerular increase the filteration rate (GFR) which decrease the serum urea and creatinine levels.

NaAsO2 induced toxicity (positive group) caused a significant rise in total cholesterol, triglycerides,

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

VLDL-C and LDL-C while, there was significant decrease in HDL-C in comparing to normal group (-ve) as it shown in table (4). This is due to accumulation of sodium arsenite in liver and kidneys after excessive doses (**Engel, et al., 1994**).

On the other hand, the other treated groups showed significant decrease in serum total cholesterol, triglycerides, VLDL-C and LDL-C while increase in HDL-C compared to positive group (+ve). The fortification with 10% and 20% of ashwagandha demolishes the negative impact of NaAsO2 on lipid profile more than 100% wheat flour group.

results Our were matched with (Visavadiva and Narasimhacharya, 2011) who found that the supplementation of ashwagandha in albino rats with normal cholesterol level for four weeks was seems to decrease the total cholesterol (10.5 - 16.6%).He also investigated the effect of ashwagandha in diet-induced hypercholesterolemic, founding significant that there was decreasing in LDL-C (49.262.7%) with significant a HDL-C increase in (15.1 -17.7%). In other study, there was a reduction in LDL level in otherwise healthy persons who did not have elevated LDL cholesterol at baseline when the subjects given 750-1,250mg of the water extract (Raut, 2012). (Bhattacharva, et al., 1997) have suggested that ashwagandha the exerts Hypolipidaemic effect due to the antioxidant effect which may be responsible for its pharmacological properties.

Table (5) represent the the Effect results of of ashwagandha on antioxidant parameters in rats received NaAsO2. NaAsO2 induced toxicity significant caused decrease in serum antioxidant superoxide enzyme activity; dismutase SOD and total antioxidants level while increase malondialdehyde (MDA) in activity compared to normal group (-ve). On the other hand, all other treated groups significantly attenuated the decreased levels of MDA and elevated the serum antioxidant enzyme levels in comparing to

positive group (+ve). This result was agreed with (Visavadiya and Narasimhacharya, 2011) who noted lipid that peroxidation (MDA) is reduced 12.4-18.2% when rats fed 0.75of the 1.5% diet as ashwagandha root. These antiperoxidative action observed in are most likely due to free radical scavenging activity of ashwagandha specially at concentration 20%. The potent antioxidant power in ashwagandha is may be due to the presence of several compounds like. flavanoids. withanolides alkaloids and withaferin-A. The reduction in levels of lipid the increased peroxidation because the ashwagandha is known as a good source of flavanoids and polyphenolic compounds which they are consider as potent free radical scavengers, including hydroxyl and superoxide anions (Jovanovic and Simic, 2000). Also ashwagandha root powder proved to have another compounds such as sitoindosides VII-X which have also antioxidant activity an (Bhattacharya, et al., 1997).

CONCLUSION

From the above study results, it be concluded that mav fortification with ashwagandha (Withania somnifera) root powder at different concentration possess antioxidant and antihyperlipidaemic activities in NaAsO2-induced toxicity in rats and may have some role in decreasing serum urea and creatinine levels. Ashwagandha root powder appears to prevent the oxidative damage to kidney and liver tissue.

REFERENCES

Adesanya, S.A and Sofowora, E.A. (1983):

Biological standardization of Zanthoxylum roots for antisickling activity. Plant Med. 48: 27-33.

Allian, C., Poon, L., Chan, C. and Richmond, W. (1974):

Enzymatic determination of total serum cholesterol. Clin. Chem.; 20: 470.

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

Baitharu, I., Jain, V., Deep, S.N., Hota, K.B., Hota, S.K., Prasad, D., and Ilavazhagan, G. (2013):

> Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol. Jan 30;145(2):431-41.

Bartholomev, R.J. and Delany, A. (1966):

Proc Aust. Assoc. Biochemists. 1, 214.

Bayne, C.J. Gerwick, L. Fujiki, K. Nakao, M. and Yano, T.

(2006):

Immune-relevant (including acute phase) genes identified in the livers of rainbow trout, Oncorhynchus mykiss, by means of suppression subtractive hybridization, Dev. Comp. Immunol. 25 205–217. Bhattacharya, S.K., Satyan, K.S., and Chakrabarti, A. (1997):

Effect of Trasina, an Avurvedic herbal formulation on pancreatic islet superoxide dismutase activity in hyperglycaemic rats. Biol. Indian J Exp 35(3):297-9.

Bhattacharya, S.K., Satyan, K.S., and Ghosal S. (1997):

Antioxidant activity of glycowithanolides from *Withania somnifera*. Indian J. Exp.Biol.(1997) 35 23 6–239.

Bohmer, H. (1971):

Micro-determination of creatinine. Clin. Chem. Acta.; 32:81-85.

Cao, G.; Alessio, H. and Cutler, R. (1993):

Oxygen radical absorbance capacity assay for antioxidants. Free Radic Biol Med.; 14:303-311.

Chatterjee, A., and Pakrashi, S.C. (1995):

The Treatise on IndianMedicinalPlants4:208-212.

Chattopadhyay, S., Ghosh, S., Chaki, S., Ghosh, D., and Debnath J.(2003):

Effect of dietary coadministration of sodium selenite on arseniteinduced ovarian and uterine disorders in mature albino rats. Toxicol Sci. 75: 412-422.

Dhuley, J. N. (2000):

Adaptogenic and cardioprotective action of ashwagandha in rats and frogs. J. Ethnopharmacol., 70, 57.

Domingo, J. L. (1995):

Prevention by chelating agents of metal-induced developmental toxicity. *Reprod Toxicol. 1995 Mar-Apr; 9(2):105-13.*

Engel, R.R., Hopenhayn-Rich C., Receveur, O., and Smith, A.H. (1994):

Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev. 16: 184-209

Fnedewaid, W.T. (1972):

Determination of HDL-c . Clin. Chem.; 8:499.

Fossati, P. and Prencipe,

L.(1982):

Determination of triglycerides, Bicon Diagnostics, made in Germany. Clinical Chemistry; 28: 2077-2078.

Fossati, P.; Prencipe, L. and Berti, G. (1980):

Use of 3.5 dichloro–z– hydroxybenzenesulfoni c acid / 4 aminophenazone chromogenic systems in direct enzymic assay of uric acid in serum and

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

urine. Clin. Chem.; 26:227-231.

Gerrior Shirley., Bente, Lisa. and Hiza Hazel. (2004):

Nutrient Content of the U.S. Food Supply. Home Economics Research Report No. 56, U.S. Department of Agriculture, Center for Nutrition Policy and Promotion: 45.

Grund, S. C., Hanusch, K., and Wolf, H. U. (2005):

Arsenic and Arsenic Compounds. Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 10.1002.03-113.

Gupta, A., Mittal, A., Jha, K. K. and Kumar, A. (2011):

Nature's treasurer: plants acting on colon cancer" Journal of Stress Physiology & Biochemistry 7 (4): 217–231. Gurr, J.R., Yih, L.H., Samikkannu, T., Bau, D.T., Lin, S.Y., and Jan, K.Y. (2003):

> Nitric oxide production by arsenite. Mutat Res. 10; 533(1-2):173-82.

Harikrishnan, B., Subramanian, P., and Subash, S. (2008):

Effect of Withania somnifera root powder the levels on of circulatory lipid peroxidation and liver marker enzymes in chronic Hyperammonemia. E.Journal of Chemistry. 5(4): 872-877.)

Hosny Mansour H., and Farouk Hafez, H. (2012):

Protective effect of Withania somnifera against radiationinduced hepatotoxicity in rats. Ecotoxicol Environ Saf. 80:14-9.

ICPEMC (1990):

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

International				
Commission	for			
Protection A	gainst			
Environmental				
Mutagens	and			
Carcinogens. IC	PEMC			
Working Paper	7/1/2.			
Shared risk facto	ors for			
cancer	and			
atherosclerosisa	ı			
review of	the			
epidemiological				
evidence.Hansen	ES			
Mutat	Res.;			
239(3):163-79.				

Ingrid Hehmeyer and Hanne Schönig, Herbal Medicine in Yemen (2012):

Traditional Knowledge and Practice, and Their Value for Today's World, Series: Islamic History and Civilization (vol. 96), Brill: Leiden, P. 200 ISBN 978-90-04-22150-5.

Jayaprakasam, B., Zhang, Y., Seeram, N. P. and Nair, M. G.(2003):

Plant products as functional foods and

botanical medicines to improve human, animal and plant health. Life Sci., 74, 125.

Jeyanthi, T., and Subramanian, P. (2009):

> Nephroprotective effect of withania somnifera: a dosedependent study. Ren Fail. 31(9):814-21.

Jovanovic, S.V. and Simic, M.G. (2000):

Antioxidants in nutrition. Ann. NY Acad. Sci. 899 326– 334.

Kind, P.R. and King, E.J. (1954):

Estimation of alkaline phosphatase activity by determination of hydrolyzed phenol with aminoantipyrene. J. Clin.Path.7: 322.

Knedel, M. and Boottger, R. (1967):

A kinetic method for determination of the

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

activity of pseudo cholinesterase. Klin. Wochenschr; 45: 325-327.

Lee, R. and Nieman, D. (1996):

Nutritional assessment. 2 nd Ed., Mosby, Missoun, USA.

Mane, A.G. Kulkarni, A.N. Korake, R.L. and Bhutkar, S.S. (2012):

Effect of				
supplementation of				
Ashwagandha				
(Withania somnifera)				
and Shatavari				
(Asparagus racemosus)				
on growth performance				
of broilers. Research				
Journal of Animal				
Husbandry and Dairy				
Science. Volume 3.				
Issue 2. December, 94-				
96.				

Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., and Palazón, J. (2009):

Steroidal	Lactones		
from	Withania		
somnifera,	an Ancient		

Plant for Novel Medicine. Molecules 1 4 (7): 2373–2393.

Nishikimi, M.; Rao, N. and Yogi, K. (1972):

Colorimetric determination of superoxide dismutase. Biochem. Biophys. Res. Common.; 46: 849-854.

Oh-kawa, H., Ohishi, N. and Yagi, K. (1979):

Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem.; 95: 351-358.

Patton, C. and Crouch, S. (1977):

Determinationofserumureaenzymatically.J.ofAna.Chem.49 : 464 -469.469.

Penfield, M.P. and A.M. Campbell, (1990):

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

Evaluating food by objective methods. In Experimental Food Science, 3rd ed. pp. 23-45. Academic Press, Inc. San Diego, CA.

Pingali, U., Pilli, R., and Fatima, N. (2014):

Effect of Ashwagandha on Tests of Cognitive and Psychomotor Performance. Pharmacognosy Res. 6(1):12-18.

Ratnaike, R.N. (2003):

Acute and chronic arsenic toxicity. Postgrad Med J. 2003 Jul; 79(933):391-6.

Raut, A.A. (2012):

Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers . J Ayurveda Integr Med. BMJ Case Reports. 10.1136 -2012-007052.

Reeves, P., Nielson, F. and Fahmy, G. (1993):

Reports of the American Institute of Nutrition, Adhoc Wiling Committee on reformulation of the AIN 93. Rodent Diet. J. Nutri.; 123: 1939-1951.

Reitman, S. and Frankel, S. (1957):

Determination of serum alanine and aspartate aminotransferases (ALT & AST). Clin .Path. Am. J. 28: 57-63.

Snedecor, G.W. and Cochran, W.G. (1967):

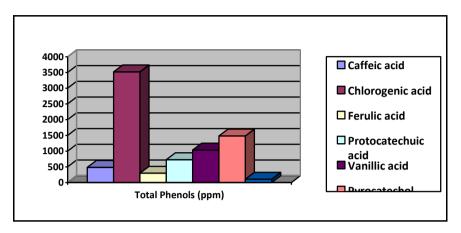
Statistical Methods; 7th Ed., The Lowa State University Press., Ames, Lowa, U.S.A.

Udayakumar, R. (2009):

Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. The

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

National Institute of Technology. 1313-1320 11.


Visavadiya, N.P., and Narasimhacharya, A.V. (2011):

> Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesteremic

rats. Oxid Med Cell Longev. 160408.

World Health Organization and Food and Agriculture Organization of the United Nations, (2006):

> Guidelines on food fortification with micronutrients, cited on Oct 30.

Fig 1: Phytonutrient constituent of ashwagandha roots

Table (1): Effect of fortified with ashwagandha on feed intake,body weight gain % in rats received NaAsO2

\sim	Parameters	Feed intake	Body weight gain	
		g/day	%	
Group	s			
Normal control group		19.43	94.10	
		±2.31 ^a	$\pm 9.80^{a}$	
Contro	ol group (+ve)	12.86	51.15	
		± 2.75 ^c	± 7.62 °	
	Wheat flour	16.85	77.46	
	100%	± 2.24 ^b	± 8.07 ^b	
sdı	Ashwagandha	16.99	71.37	
rot	powder	± 2.19 ^b	± 10.8 ^b	
sd g	10%			
Treated groups	Ashwagandha	17.72	72.12	
	powder	±2.37 ^b	± 9.19 ^b	
	20%			

Values are expressed as mean \pm SD. Significance at p<0.05.

Values which don't share the same letter in each column are significantly different.

<u> </u>			1	1
	Parameters	AST	ALT	Total bilirubin
Gro	oups	(µ /ml)	(µ /ml)	mg / dl
Normal control group		43.63	39.07	0.49
		±8.50 b	±3.43 c	±0.03d
control group (+ve)		79.67	74.67	1.06
		±9.03 a	±6.84 a	±0.08 a
	Wheat flour	64.67	54.67	0.75
sdı	100%	±8.15 a	±5.51 b	±0.24 b
rou	Ashwagandha	46.23	47.33	0.57
sd g	powder 10%	±6.27 b	±8.92 bc	±0.39 c
Treated groups	Ashwagandha	43.01	39.67	0.48
Tr_{t}	powder 20%	±7.48 b	$\pm 8.08 bc$	±0.13 d

Table (2): Effect of fortified with ashwagandha on liver functions in rats received NaAsO2

Values are expressed as mean \pm SD. Significance at p<0.05.

Values which don't share the same letter in each column are significantly different.

AST: Aspartate aminotransferase.

ALT: Alanine aminotransferase.

Table (3): Effect of fortified with ashwagandha on kidney functions in rats received NaAsO2

/	Parameters	Uric acid	Creatinine	Urea
Groups		mg/dl	mg/dl	mg/dl
Norn	nal control group	2.73	1.02	40.67
		±0.78 b	±0.07 b	±3.06 d
Control group (+ve)		5.18	1.97	64.03
		±0.52 a	±0.31 a	±2.65 a
	Wheat flour	4.80	1.47	54.0
sdı	100%	±0.57 a	±0.15 b	±7.64 b
groups	Ashwagandha	2.91	1.51	50.67
	powder10%	±0.72 b	±0.22 b	±6.35 b
Treated	Ashwagandha powder	2.82	1.19	42.01
Tr_{i}	20%	±0.93 b	±0.06 b	±3.21 c
TT 1		an a' 'a'	0.05	

Values are expressed as mean \pm SD. Significance at p<0.05. Values which don't share the same letter in each column are significantly different.

/	Parameters	ТС	TG	VLDL-c	LDL-c	HDL-c
		mg/dl	mg/dl	mg/dl	mg/dl	mg/dl
Grou	ps					
No	ormal control group	82.27	68.13	13.62	31.16	37.50
		±4.16 d	±2.97 d	±0.59d	±5.99e	±2.29a
C	ontrol group (+ve)	101.57	114.33	20.78	54.56	26.23
		±4.71 a	±10.66a	±2.13a	±3.55a	±1.37c
	Wheat flour	96.67	89.60	17.94	46.56	32.17
sdı	100%	$\pm 7.26 \text{ b}$	±3.14 b	±0.63b	±5.76b	±1.76b
groups	Ashwagandha powder	89.80	79.47	15.89	39.77	34.53
	10%	±2.44 c	±5.22bc	±1.04bc	±1.34c	±3.02b
Treated	Ashwagandha powder	84.27	74.27	14.98	32.91	36.70
Tr	20%	±2.89c	±1.42cd	±0.28cd	±3.66d	±2.07a

Table (4): Effect of fortified with ashwagandha on lipid profile in rats received NaAsO2

Values are expressed as mean \pm SD. Significance at p<0.05.

Values which don't share the same letter in each column are significantly different.

TG: Triglyceride TC: total Cholesterol density lipoprotein cholesterol

VLDLc: Very low

HDLc: High density

LDLc: Low density lipoprotein cholesterol lipoprotein cholesterol

	Parameters	SOD	Total antioxidants	MDA	
Grou	ps	U/mL	mmol/L	mmol/L	
Normal control group		198.23	3.12	4.47	
		±12.74 a	±12.74 a ±0.75 a		
Control group (+ve)		114.33	1.17	11.05	
		±12.01 c	±0.55 b	±1.16 a	
	Wheat flour	147.12	1.23	8.2	
	100%	±13.01 bc	±0.65 b	± 0.86 b	
sdı	Ashwagandha	163.33	1.99	5.11	
<i>rot</i>	powder	$\pm 14.81b$	±0.80 ab	±0.62 c	
Treated groups	10%				
eate	Ashwagandha	173.33	2.73	4.76	
Tr_{c}	powder	±14.15 a	±0.68 a	±0.43 c	
	20%				
Values are expressed as mean \downarrow SD Significance at $n < 0.05$					

Table (5): Effect of fortified with ashwagandha on antioxidantparameters in rats received NaAsO2

Values are expressed as mean \pm SD.

Significance at p<0.05.

Values which don't share the same letter in each column are significantly different.

SOD: Superoxide dismutase.

MDA: Malondialdehyde.

Effect of Feeding Cake Fortified with Different Concentrations of Ashwagandha Root Against Sodium Arsenite Toxicity in Male Rats

Samah A. Elsemelawy and Rehab Ibrahim Tag Al Deen

تأثير التغذية بالكيك المدعم بواسطة تركيزات مختلفة من جذور الاشواجاندا ضد السمية الناتجة عن تناول زرنيخ الصوديوم في ذكور الجرذان

سماح عبد الله السملاوي، (رحاب ابراهيم تاج الدين ّ

أقسم الاقتصاد المنزلي – كلية التربية النوعية – جامعة طنطا – مصر . أقسم الاقتصاد المنزلي – كلية التربية النوعية- جامعة الزقازيق- مصر .

الملخص العربي

في الطب الهندي القديم، كانت النباتات العشبية مثل نباتالا شواجانداتعتبر من النباتات القوية المستخدمة لعلاج العديد من الأمراض. وأجريت هذه الدراسة لتقييم التاثير الوقائي للكيك المدعم بتركيزات مختلفة من مستخلص جذور الاشواجانداضد السمية الناتجة عن زرنيخ الصوديوم في الفئران. ثلاثون من ذكور الفئران البيضاء (سبراج داولي) وزنها ١٢٠ ± ١٠ جرام تم تقسيمهم إلى خمسة مجموعات (٦ فئران). المجموعة الأولى (الضابطة السالبة) والتي تغذت على الوجبة القياسية فقط، أما المجموعات (٦ فئران). المجموعة الأولى (الضابطة السالبة) والتي تغذت على الوجبة القياسية فقط، أما المجموعات الاربعة الاخري تم اعطائها زرنيخ الصوديوم بجرعة ٥ ملجم / كجم/من وزن الجسم في لاحداث الاصبة. أم قسمت إلى ٤ مجموعات (٦ فئران). المجموعة الأولى (الضابطة السالبة) والتي تغذت على الوجبة القياسية فقط، أما المجموعات الاربعة الاخري تم اعطائها زرنيخ الصوديوم بجرعة ٥ ملجم / كجم/من وزن الجسم في لاحداث الاصابة بالسمية. ثم قسمت إلى ٤ مجموعات على النحو التالي : معموعات على النحو التالي القياسية فقط، أما المجموعة الاربعة الاخري تم اعطائها زرنيخ الصوديوم الجرعة ٥ ملجم / كجم/من وزن الجسم في لاحداث الاصابة بالسمية. ثم قسمت إلى ٤ مجموعات على النحو التالي : معموعات الاربعة الموجبة. المجموعة (٦) تغذت على كيك مدعم ب١٠٠ الكي دقيق القمح. عولجت المجموعة (٤) بكيك مدعم ب١٠ % من مستخلص جذور الاشواغاندا. بينما محموعة (٥) بكيك مدعم ب١٠ % من مستخلص جذور الاشواغاندا. بينما مولجت المجموعة (٥) بكيك مدعم ب٢٠ % من مستخلص جذور الاشواخاندا. المختبرية ان التدعيم بجذور الاشواجاندا تثبط مستوي المؤشرات الحيوية الخاصة بالكبد، كما انها المختبرية ان التدعيم بجذور الاشواجاندا تثبط مستوي المؤشرات الحيوية الخاصة بالكبد. كما انها لمختبرية ان التدعيم بجذور الاشواجاندا تشب مستوي المؤشرات الحيوية الخاري الحيات الموسماد الموسمو جائم مرمو مالكبور مال النتائج إلى أن نبات الاشواجاندا لها تائير قوي كمضاد للاكسدة والتي تقلل من إصابة الاعضاء الحيوية عن طريق مسح الشقوق الحرة.