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ABSTRACT  
 
Optimization of the idle time is the objective of the present work which is done by 
minimizing the idle tool path in drilling on CNC machining centres to improve productivity 
as a result of reducing the idle path time. The case is formulated as a traveling 
salesman problem and is solved using the Genetic Algorithm (GA). The Branch and 
Bound (B&B) optimization method was used for the sake of comparison with the Genetic 
Algorithm. The working mechanism of the GA was inspired by the nature which is based 
on the evolutionary process of biological organisms. The work is done in three steps, 
first step is the parameterization of the GA parameters (population size, replacement, 
crossover and mutation); Second step is the numerical study for the GA validation, for 
comparison between the GA and B&B and comparison between the GA and the current 
practice, the third step is the experimental verification of GA results. 
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1. INTRODUCTION 
 
During recent decades several researchers tried to reduce the product cost by reducing 
the cycle time which consists of two parts; the productive time, during which the cutting 
tool is in contact with the product material and the nonproductive time which consists of 
time for tool change, and the time the tool spends in traveling in the air between the 
work piece features on a pallet (idle tool path). The majority of researchers emphasize 
on reducing the productive time by optimizing the cutting conditions, but only few of 
them paid attention to the nonproductive time which usually represents the major part of 
the cycle time.   
  
Considering the case as a traveling salesman problem, Afifi, et al, 1994 [1] were 
concerned with the development of a computer-aided optimization package for the 
minimization of the total residence time of a multi-component pallet used on a machining 
centre with a multi-tool facility by using the simulated annealing algorithm. Non-
productive tool path optimization between polygons using entry and exit constraints was 
investigated by Khan et al, 1999 [2]. The path polygons were represented as cells with 
possible entry and exit points for open and closed contours by using the simulated 
annealing algorithm to solve the problem as a traveling sales-man problem (TSP) by 
using only single tool without any tool changes. An algorithm for minimizing the non-
productive time or ‘airtime’ for a tool has been presented by Kenneth, et al, 2000 [3] by 
optimally connecting the tool paths for that tool. This problem is formulated as a 
generalized traveling salesman problem with precedence constraints and is solved using 
a heuristic method. The performance of the heuristic algorithm and the amount of 
improvement obtained for different problem sizes also presented. This algorithm had 
been implemented in the automated process planning system and could be applied 
easily to other areas of path planning optimization like fused deposition modeling and 
laser cutting. The TSP is an NP-complete problem and hence it is impractical to find the 
optimal solution for reasonably large sized problems. It is more practical to use heuristic 
algorithms that have relatively short running times and often give solutions that differ 
only slightly from the optimal solution. The symmetric TSP is the most widely studied 
version and has a number of heuristics which have been surveyed by Laporte et al [4]. 
Tour construction methods such as the Christofides algorithm [5] and tour improvement 
heuristics like the Lin-Kerninghan algorithm [6] perform excellently and converge quickly 
to within 1-2% of the optimal solutions for most problems with less than 1000 towns. For 
the asymmetric case, there are fewer heuristic methods such as the Kanellakis-
Papadimitrou [7] and Zhang algorithms [8]. These methods are feasible for problems 
with less than 1000 towns though their performance is not as good as the symmetric 
TSP heuristics. Other optimization methods like simulated annealing, tabu search and 
genetic algorithms have also been used in combination with local search heuristics but 
these approaches generally do not perform as well as the specialized heuristics for 
larger sized problems. 
 
The present work aims at the minimization of the nonproductive time by minimizing the 
idle tool path in drilling on CNC machining centers. The case is formulated as a traveling 
salesman problem and is solved using the Genetic Algorithm 
 



Proceeding of the 12th AMME Conference, 16 -18 May 2006 Paper  PT-04 216 
 

 

 2. THE GENETIC ALGORITHM (GA)  
 
Genetic algorithms are the most common type of evolutionary algorithms. It was 
developed by Holland (1975), [9] and made popular by Goldberg (1989), [10]. This 
method works by generating and coding an initial population of chromosomes then 
selecting a pool of chromosomes and computing a goodness value to each one. Then 
the chromosomes are modified by crossover between each two chromosomes within the 
pool to produce new chromosomes. In addition, to avoid being trapped in a local 
minimum, a percent of the chromosomes is mutated as well. This ensures that the 
algorithm does not focus on only a small area of the solution space. A fitness function is 
used to evaluate the goodness of each chromosome in terms of total path distance. 
Based on the fitness values, the next generation is formed from the newly generated 
sequences and the old population according to the replacement percent. As the 
iterations are continued, the better selection is for higher fitness values (lower total path 
distance) dominate. The previous process is explained in a formal way in (Fig. 1). 

 

 
 
 

2.1 Application of the Genetic Algorithm for the Optimization of the Tool Path as a 
Traveling Salesman Problem (TSP) 
 
A traveling salesman problem (TSP) is that of a salesman starting from his home city is 
to visit each of (N) cities exactly once and then to return home or not, to find the order of 
a tour such that the total distance traveled is minimum. The TSP is a classical NP-
complete problem which has extremely large search spaces and is very difficult to solve. 
Several research workers have tried to use both exact and heuristic or probabilistic 
methods to solve the TSP. Exact methods, like cutting planes and branch and bound 
methods can only optimally solve small sized problems while the heuristic or 
probabilistic methods, like 2-opt, Markov chain [11] and simulated annealing methods 

Fig.1. Genetic Algorithm flow chart 
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are suitable for large sized problems. A genetic algorithm can also be used to solve 
large TSPs and can get good solutions quickly. The first efforts to find near optimal 
solutions to TSPs by using GAs are those of Goldberg [10], using Partial Matched 
Crossover and Grefenstette [12], using Greedy Crossover. Davis, Smith, Suh and Van 
Gucht also tried to solve TSPs with various crossover operators [13,14,15]. 
 
2.1.1 The Objective Function 
 
The evaluations function for the (n) cities in two dimensional TSP is the sum of 
distances between every pair of cities in the tour which has to be minimized. That is:  
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where, xi , yi are the coordinates of the ith city (i=1,2, … ,n).  
 
2.1.2 Encoding 
 
It is needed to make some changes to the traditional genetic algorithm to solve TSPs. 
Binary chromosomes are not to be used to encode TSPs because TSPs are sequential 
problems. Instead, a path representation is used where the cities are listed in the order 
to which they are visited. For example, assuming there are 5 cities (i= 1, 2, 3, 4, 5, 6) 
then if a salesman goes from city 4, through city 1, city 2, city 5, city 3, city 6, the 
chromosome (path) will be 4 1 2 5 3 6. For (n) cities TSP, the population is initialized by 
randomly placing 1 to n into n length chromosomes and guaranteeing that each city 
appears exactly once. Thus chromosomes stand for legal tours.  
 
2.1.3 Crossover 
 
By using for example parent one P1 is (234561) & parent two P2 is (316425) the 
traditional crossover is represented as P1 = (234/561) & P2 = (316/425) then Ch1 is the 
first child (234/425) & Ch2 is the second child (316/561), a repeating happened to cities 
4, 2 in the first child and cities 1, 6 in the second child which produces illegal children, so 
the traditional crossover and mutation operators are not suitable for TSPs. Partial 
Matched Crossover (PMX) is used which was invented by Goldberg in 1985 will deal 
with the previous example as P1 = (23/45/61) & P2 = (31/64/25) then Ch1 = (23/64/61) & 
Ch2 = (31/45/25) the original city (6) will be replaced with city (5) then Ch1 = (236451) 
similarly the original city (5) will be replaced with city (6) then Ch2 = (314526)   
 
2.1.4 Mutation 
 
For the same reason that the traditional crossover operator is not used, the traditional 
mutation operator can not be used. For example if a legal tour exists before mutation <2 
3 4 5 6 1>. Assuming the mutation site is 4, site 4 is randomly changed to 6 and 
generate a new tour <2 3 6 5 6 1>. This new tour is illegal because city 6 appears twice 
while city 4 does not appear. Instead of using the traditional mutation operator, two bits 
are randomly selected in one chromosome and swap their values. Thus, legal tours are 
obtained after swap mutation as shown in Fig. (4.16). 
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No. Parameter Selected value 

1 Population size 80 

2 Replacement 0.7 

3 Crossover 0.8 

4 Mutation 0.07 

 

 
2 3 4 5 6 1 

          Swap sites 

2 6 4 5 3 1 

 
2.1.5 Selection 
 
The method used is roulette wheel selection. The best individual has the highest 
probability of survival. N children were generated by using roulette wheel selection. The 
N parents are combined with the N children. These 2N individuals are sorted according 
to their fitness value and the best N individuals are chosen to propagate to the next 
generation. To prevent convergence to a local optimum, when the population is 
converged the best 20% of the individuals are saved and the rest of the population are 
randomly re-initialize. 
 
2.2 Genetic Algorithm Parameterization 
 
The application of the genetic algorithm to the TSP requires that certain parameters 
have to be set to some initial values before starting a run. These parameters can affect 
the efficiency of the search process in several ways. The parameters that need to be 
initialized are the population size of the problem given by (population size is the number 
of chromosomes in the population); the percentage of population that is replaced in each 
generation; the percentage of population created by crossover for each generation; and 
the percentage of population that is mutated in each generation. In the next sub-
sections, some of these parameters will be discussed. Steady-state GA has been used. 
The roulette wheel is used as a selection method. Parameter values are estimated 
offline within range, and the choice is for the value of the best performance of each 
parameter shown from the optimization program runs. The investigated values of the 
above mentioned parameters are given in table (1) 
 

Table 1. The selected values of GA parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Swap mutation 
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3. IDENTIFICATION OF THE FREE DRIVE DYNAMICS 
 
The free drive speed or the rapid traverse speed is given in any CNC machine 
specifications as a constant speed. Actually it has an acceleration / deceleration profile 
at the start and the end of the travel as shown in Fig (3) and (4)[16]. It is noticed that at 
the same time the acceleration values are found to be linearly proportional to the rapid 
traverse speed fig (5). The drive accelerates from zero to the required speed at the start 
then it decelerates from the constant speed to zero again at the end of the travel Fig (3).  
From the Fig(4) it is obvious that the different Accel./Decel. profiles are composed of two 
phases. The first is the acceleration phase where the acceleration increases from zero 
to a maximum value proportional to the feed rate jump. The periods of the acceleration 
phase for different traverse speeds are found to be approximately identical, independent 
of the magnitude of the feed rate step for any axis of motion. This period, denoted by 
tacc1, is the time required for the Accelerations to reach their maxima. In the second 
phase, the acceleration decreases from the maximum value to a value where the 
acceleration phase is terminated. This phase allows the feed drive to reach the 
commanded feed rate smoothly. In the second phase, the acceleration decreases from 
the maximum value to a value where the acceleration phase is terminated which is 
designated tacc2. The traverse rates are identical, and almost independent of the 
magnitude of the feed rate step. For the feed drive under investigation these times are 
found to be: tacc1= 0.022 s, tacc2 =0.155 s and the sum of tacc1 and tacc2 is tacc for the 
different investigated traverse speeds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Acceleration / Deceleration 
profile for rapid traverse speed [16] 

   tacc. = tacc1 + tacc2    (5) 
= 0.022 + 0.155 = 0.177 s.

Fig. 3. Machine tool rapid traverse speed 
behavior 
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The theoretical time (tth) spent in traveling a certain distance with a constant traverse 
speed (v) can be calculated by dividing the distance by speed. In case of rapid 
positioning on a machining center because of the acceleration / deceleration profile for 
rapid positioning the actual time is not equal to the theoretical time. The actual total time 
(tact tot.) can be obtained as follows: 

 
 

 

 

 

 

where (n) is the number of the visited positions in the free path, (tth tot.) is the total 

theoretical time between the visited positions, (  ) represents the part of (tth tot.) which is 

replaced by (tacc), that is the time consumed in accelerating the feed drive to the 

constant rapid traverse speed [16]. The distance (d) is estimated as follows, assuming 

an average value of the acceleration/deceleration (a) for the sake of simplicity: 

d = ( vv of

22 − ) / 2 aav   (9) 

 

4. GA VALIDATION 
 
The GA has been programmed in Visual C++ version 6.0. The program has been run on 
a PentiumΙΙΙ personal computer, 1.7 GHz processor, 128 MB RAM and 40 GB Hard disk 
to check the validity of the GA program results for the determination of the optimum 
solution (best path which gives the minimum total distance). A comparison between all 

tact tot. = (tth tot. – 2 n    ) + 2 n tacc (6) 
 
where:   
         tth tot. = Σ tth 
 

(7) 

         tacc = tacc1 + tacc2 (8) 

Fig. 5. Acceleration - rapid traverse speed relationship (Deduced from ref. [16]) 
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Table 2. A comparison between manual calculation and GA program results for 
minimization and maximization of total distance between the five positions case study 

available solutions of a simple case study of five positions with dimensionless coordinate 
positions of (2, 3) for the first position, (3, 10) for the second, (6, 5) for the third, (11, 7) 
for the fourth and (9, 12) for the fifth one, with the origin (0, 0) as a start point and the 
GA program output to the same case study has been done. According to the relation ( 
npn = n! ), which gives the number of all possible solutions of the case study (where n is 
the number of positions), the case of five positions has 120 possible solutions which 
have been manually determined. A comparison between the manual and GA program 
results for minimization and maximization of total distance between the five positions 
case study is given in table (2). Manually it can be seen that the solution with the 
arrangement (13452) has the shortest total distance value (25.173 mm) and the solution 
with the arrangement (51423) has the largest total distance value (50.625 mm). By 
running the GA optimization program the same results were obtained which proves the 
validity of the optimization program used for obtaining the minimum and maximum 
values of the objective function. 
 
 

 
 
 

 

 

5. NUMERICAL CASE STUDIES 
 
Numerical case studies are investigated using the developed program to evaluate the 
GA optimization technique performance both quantitatively and qualitatively. Several 
case studies are taken with different number of positions. Flat work pieces with different 
sizes have been proposed for the numerical case studies. Work piece (I) is (200 x 200 
mm2) while work piece (II) is (600 x 600 mm2), and work piece (III) is (1000 x 1000 
mm2), each one is provided with different number of positions; distributed randomly 
using a random number generator as given by: 
 

x = [(max – min) x Rand ( )] + min (9)  
y = [(max – min) x Rand ( )] + min (10) 

Since      0 > Rand ( ) > 1  
 
The number of visited positions is varied in ascending steps for each of the three sizes 
of the work pieces. Another set of work pieces (C, L, and LS) have their positions 
arranged in different pattern shapes circular, linear and linear staggered patterns as 
given in table (3). This variety is used to study the effect of work piece size and pattern 
shape on the GA performance. These work pieces are placed on pallets mounted on 
vertical machining centre. Table 3 presents also the amount of reduction between the 
maximum case and minimum case which gives an indication of the need of path 
optimization. The effect of the number of positions on the ratio of the max total distance 
divided by min total distance is presented in Fig. 6. 

Method Min Distance Max Distance

Manual 25.1725 50.625 

GA 25.1725 50.625 
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Table 3. Description of the numerical case studies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Effect of the no. of positions on the ratio of the 
max total distance divided by min total distance 
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Fig. 7. Path selected by GA method for 
case study I-50 (Total dist.= 1233.33 mm) 
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6. COMPARISON BETWEEN GA AND BRANCH & BOUND TECHNIQUES 
 
The comparison between two different optimization techniques namely the GA and B&B 
methods applied to some different case studies (table 4) and (Figs. 7 to 12). The Branch 
and Bound method has been programmed in Mat Lab 7.0. The program has been run 
on a personal computer Pentium III, 1.7 GHz processor, and 128 MB RAM. Each case 
study has been plotted for the two methods to show the difference in the path length.  
 

Table 4. Comparison between GA and Branch and Bound techniques 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Path selected by Branch & Bound method for 
case study I-50 (Total dist.= 1342.3 mm) 
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Fig. 10. Effect of the number of positions  
on the min path length determined by GA and 
 Branch & Bound techniques (10:50 positions) 
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7. PROBABILITY TO REACH THE MIN PATH THROUGH USUAL CNC 
PROGRAMMING  
 
The usual practice of planning the path is applied to case study I-50 by means of twenty-
five CNC programmers (Table 5). A comparison between the obtained results and the 
optimum GA result is presented. The aim is to find out how far CNC programmers 
deviate from the minimum path. The probability that those programmers would attain the 
optimum path for a certain number of positions (50) is determined. 
 
 
 
 
 
 
 

Fig. 11. Effect of the number of positions  
on the min path length determined by GA and  
Branch & Bound techniques (75:150 positions) 

Fig.12. Effect of the number of positions  
on the min path length determined by GA and  

Branch & Bound techniques (150:250 positions) 

Fig. 9. Comparison between GAmin and Branch 

 and bound techniques (10 : 250 positions) 



Proceeding of the 12th AMME Conference, 16 -18 May 2006 Paper  PT-04 225 
 

 

0

2

4

6

8

10

12

1200 1300 1400 1500 1600 1700 1800

Total distance 

N
o.

 o
f p

ro
gr

am
m

er
s .

 

(mm)

 

Fig. 14. Distribution of the programmers’ results and the 
probability to obtain the optimum solution 
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From the shown distribution Fig. 14. it has deduced statistically that the majority is so far 
from the optimum solution with probability of 4.26 % to get the optimum value ± 1.5 % it 
is expected that the probability will be reduced as the no. of position increased. 
 
8. DISCUSSION 
 
From the experimental results of the case studies results it is noticed that the measured 
times are not equal to calculated times, since a constant speed is used to calculate the 
theoretical time for each path by dividing the total distance by the constant rapid 
traverse speed. Due to the acceleration-deceleration profile of the machine feed drive; 
the actual time has been estimated by modifying the theoretical times by taking the 

Serial 
no. 

Total distance 
(mm) 

Serial 
no. 

Total 
distance(mm) 

1 1270.449 14 1660.752 
2 1275.491 15 1597.794 
3 1314.831 16 1482.583 
4 1331.661 17 1425.188 
5 1355.576 18 1422.634 
6 1368.262 19 1382.495 
7 1380.543 20 1379.642 
8 1422.829 21 1367.599 
9 1439.41 22 1344.921 
10 1486.239 23 1323.416 
11 1565.535 24 1304.121 
12 1675.106 25 1292.299 
13 1822.211   

Fig. 13. Distribution of the programmers 
results for case study I-50 results  

Table 5. Total distance for case study I-50 done by CNC programmers 
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accel. / deccel. time into consideration using equation (6). The actual time thus obtained 
is found to be in good agreement with the measured values with a maximum deviation of 
2%. The results of the practical experiments carried out on the different case studies are 
given in table 6. 
 

Table 6. Theoretical, calculated and measured times for the different case studies 
 

 
 
 
9. CONCLUSION 
 
1. In the present work a program for tool path optimization of multi position hole 

machining, using the Genetic Algorithm has been developed, which is capable to 
deal with G-code files as input data for any component to be machined on CNC 
machining centres. 

2. The results of the GA method that has been applied to the simple case of given 
locations are compared to those determined by the manual determination of all of the 
possible paths, and hence the minimum thereof. Both methods gave exactly the 
same results which prove the validity of the developed GA program. 

 
3. Comparing the results of the GA and the branch and bound methods for (12) different 

case studies, the GA has proved to give better results than the Branch & Bound 
method in the cases of irregular patterns of positions and equal results in the cases 
of regular patterns of positions.  

 
4. The optimization of free travel path has a great effect in reducing the cycle time which 

appears in the comparison between the optimum path and the maximum path. From 
the experiments it is noticed that the ratio of maximum path to the optimum path 
increases with the increase of total path distance and the amount of reduction 
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increases by increasing the number of positions and the amount of reduction multiply 
when optimizing a multi-process path which has several processes for the same 
positions like (center drilling, drilling, hole enlarging, boring, counter boring, counter 
sinking, reaming and tapping… etc.). 

 
5. The actual path time is greater than the theoretical path time because of the 

acceleration deceleration profile of the machine tools which should be taken into 
consideration. 

 
6. The field experiments results of a case study of 50 positions carried out by twenty five 

CNC programmers’ proves that the human programmers have the probability of only 
(4.26 %) to reach the optimum solution which confirms the importance of using the 
developed optimization techniques. 
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