Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University.

C. Physiology & Molecular Biology journal is one of the series issued twice by the Egyptian Academic Journal of Biological Sciences, and is devoted to publication of original papers that elucidate important biological, chemical, or physical mechanisms of broad physiological significance.

http://eajbsc.journals.ekb.eg/

Egypt. Acad. J. Biolog. Sci., 11(2): 85-102 (2019) Egyptian Academic Journal of Biological Sciences

C. Physiology & Molecular Biology ISSN 2090-0767 http://eajbsc.journals.ekb.eg

Potential Anti-Inflammatory Effects of the Egyptian Scorpion (Androctonus amoreuxi) Venom in Rheumatoid Rat Model

Ahmad k. Hassan¹, Eslam M. Elfeky², Osama A. Abbas¹, and Mohamed A. Hefny³.

1-Zoology Department, Faculty of Science, Port Said University, Egypt.
 2-Clinical Pathology Department, Manzala General Hospital, Dakahlya, Egypt.
 3-Rheumatology Department, Faculty of Medicine, Suez Canal University, Egypt.
 [#]E.Mail: ahassan@sci.psu.edu.eg

ARTICLE INFO

Article History Received:9/4/2019 Accepted:15/5/2019

Keywords: Scorpion venom; CFA; rheumatoid arthritis; antiinflammatory

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disorder, which takes place in the synovial tissues. This study aims to assess the possibility of using the Egyptian scorpion Androctonus amoreuxi venom (SV) on the treatment and management of RA. The venom was collected from scorpions using electrical stimulation then processed to get crude which was subcutaneously injected to arthritis induced rats. RA was induced in the rats by a single injection of 0.1 ml of Complete Freund's Adjuvant (CFA) at the footpad of the right hind paw of 32 adult male albino rats. Animals were divided into five groups, normal control, RA none treated, SV treated with low and high doses, and methotoxate treated. Results exhibited that SV (0.24 and 0.48 mg/kg) treatment relived pain, improved movement and reduced paw edema and joint swelling volume in arthritic rats. SV had diminished tissue damage in which malondialdehyde (MDA), lactate dehydrogenase (LDH), and creatine kinase (CK) were significantly decreased compared to arthritic rats without side effects in liver, blood, and kidney parameters. Histological examination showed marked improvement in the joint structure after SV treatment. Immunohistochemical staining showed a significant decrease in the expression of nuclear factor-kappa B Cell 65 (NFkB-p65), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the arthritic joint after treatment with SV. In conclusion, SV possesses therapeutic properties in RA treatment and management due to its analgesic, antioxidant, and anti-inflammatory effects without noticeable side effects.

INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune disease associated with chronic inflammation, the primary expression of which occurs in the synovial membranes and can lead to gradual joint and bone destruction (Erickson *et al.*, 2017). So, RA is related to functional disability, increasing depression and death rate, all of which showing an increase in social burden. The disease is characterized by pain, swelling and redness of the affected joints, and stiffness of the surrounding muscles that causes damage to the cartilages and bones with substantial loss of functioning and mobility (Bellucci *et al.*, 2016). RA is a complicated chronic disease affecting approximately

0.25-1% of the general population worldwide (Wedekind et al., 2017). Most immunological and inflammatory components have a vital role in the disease management as T and B lymphocytes, neutrophils, monocytes and endothelium of vessels (Turner et al., 2014). Rodent models of RA act as important tools to estimate the underlying mechanisms early, at intermediate and late stages of RA (Williams, 1998).

Scorpion predatory is a arthropod animal belonging to order Scorpionida in Arachnida's class. Androctonus amoreuxi (A. amoreuxi) is a scorpion which is widely spread in Egypt (Balozet et al., 1975). Scorpion venoms are recognized as a source of inhibitor peptides, some of these peptides are able to depolarize human T cells, inhibiting inflammatory and proliferating responses, and thus might play an important role in the treatment of autoimmune diseases (Balozet et al., 2013). Therefore, there is an urgent need to develop a new potent antiinflammatory agent for RA treatment with no or less adverse effects. The current study aimed to assess the potential role of A. amoreuxi scorpion venom treatment in the control and management of induced RA in rat model.

MATERIALS AND METHODS

Collection of A. *amoreuxi* and Venom (30 days). **Preparation:** RA

Two hundred *A. amoreuxi* scorpions were collected from the Western Mediterranean Coastal Desert of Alexandria, Egypt in August 2016. Each scorpion was kept separately in a container containing sand and fed on cockroaches once a week. The venom was collected by using electrical stimulation of the scorpion telson and then milked (Al-Asmari *et al.*, 2016). The venom was lyophilized (Lab Conco Freeze Dry System, model 77500) and the obtained crude was stored at -10°C until used.

Determination of Subcutaneous Lethal Dose 50 (LD₅₀) and Treatment Doses of *A. amoreuxi* Venom:

The LD₅₀ of A. amoreuxi venom for subcutaneous injection to the rats was calculated according to the method described by Meier and Theakston (Barsante et al., 2005). The obtained LD₅₀ was 2.4 mg/kg, 1/5 and 1/10LD50 were chosen as subcutaneous treatment doses into induced arthritic rats.

Animals and Experimental Design:

Forty adult male albino rats (180-200 g) were purchased from the Animal Unit, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt and were housed in plastic cages at Animal House. Zoology Department, Faculty of Science, Port Said University, and kept at room temperature (12 hrs light/dark cycle). All procedures on care and maintenance of the experimental animals were in accordance with the International Guiding Principles for Animal Research. The rats were divided into 5 groups (8 rats for each group) according to the following design:

Group I: Negative control or normal group, was injected subcutaneously with an isotonic saline solution (0.9% NaCl) until the end of the study period (30 days).

RA was induced in the other four groups (II, III, IV, and V) by injection of a single dose 0.1 ml of Complete Freund's Adjuvant CFA (Sigma-Aldrich, St. Louis, MO, USA) in the footpad of the right hind paw of rats (Barsante et al., 2005). Treatment was subcutaneously initiated on the12th day after CFA injection unless the of were clinical signs arthritis obviously detected, three times weekly till the 30th day (Makhlouf et al., 2013).

Group II: Arthritic group (positive control), left untreated, just was injected subcutaneously three times weekly with (0.9% NaCl). Group III: SV low dose treated group, was subcutaneously treated three times weekly at a dose of 1/10 LD₅₀ (0.24 mg /kg). Group IV: SV high dose treated group was treated subcutaneously three times weekly at a dose of 1/5 LD₅₀ (0.48 mg/kg). Group V: Methotrexate (MTX) treated group was treated subcutaneously with MTX (Orion Pharma, Espoo, Finland) three times weekly at a dose of 0.3 mg/kg (Bauerova et al., 2010).

Body Measurements and Behavioral Tests:

Assessing Swelling of the Right Hind Paw:

Swelling assessment of the right hind paws was done by measuring their mean thickness once a week by the electric caliper, paws were photographed on the first and last day of the experiment.

Scoring of Arthritic Dorsal Flexion Pain Test:

The ankle joint was gently flexed dorsally until toes touched the front of the leg for 5 times with an inter-test interval of 5 seconds. The pain was scored (0) when the animal showed neither squeaking nor quick leg-withdrawal, scored (1) when either reaction appeared and scored (2) if both reactions appeared. A total score between 0-10 was obtained for each test session (Wang *et al.*, 2000).

Motility Test:

The motility patterns of rats were observed for a period of 5 minutes and scored (0) if the rat walked with difficulty and avoided touching the toes of the inflamed paw to the floor, scored (1) if walked with little difficulty when toes touching floor and scored (2) if walked easily (Amdekar *et al.*, 2012). Observations were scored once a week each 6th day; the day prior treatment (Shen *et al.*, 2017), observation time was fixed at 8.00 - 12.00 A.M. at room temperature $(25 \pm 5 \text{ C}^\circ)$.

Biochemical Assays and Heamatological Parameters:

Blood samples were collected retro-orbital sinus from via heparinized capillary tubes under light isoflurane anesthesia into two tubes. The first tube was contained anticoagulant EDTA as an for hematological assays, the second was plain gel tube and were centrifuged at 5000 rounds per minute for 10 min, serum was pipetted off then stored at -20°C until used for estimation of biochemical parameters.

Estimation of Biochemical Parameters:

Serum alanine transferase (ALT) and aspartate transferase (AST) activities, albumin, creatinine, urea and uric acid levels were measured in plasma using the colorimetric method described by the manufacturer as (EGY- CHEM for Lab Technology, Egypt). Serum alkaline phosphatase (ALP), creatine kinase (CK) and lactate dehydrogenase (LDH) activities protein total content and were estimated according to the commercial kit purchased from (AMS, U.K, Ltd., Galgorm, Co.Antrim). Serum catalase activity and MDA tissue content were estimated by colorimetric methods described with the manufacturer (Bio Diagnostic Co., Egypt).

Estimation of Hematological Parameters:

Hematological parameters were determined by using cell counting equipment (HumaCount 5L, HUMAN Gesellschaft für Biochemica und Diagnostica mbH, Germany).

Histological Studies:

Tissues Collection and Specimen's Preparation:

All animals were sacrificed by a cervical decapitation on the 30th day of the experiment after light isoflurane anesthesia. Hind paws of the right limbs were removed from 5 rats of each group and routinely processed to produce paraffin blocks. Ankle joints were isolated and fixed in10% buffered formalin, decalcified with 5% nitric acid, dehydrated, cleared and embedded in paraffin wax. Obtained

blocks were sectioned by a microtome at 5 μ m thickness, stained with hematoxylin and eosin (H&E) and examined under the light microscope.

Immunohistochemical Staining of Nuclear Factor-Kappab-p65 (NFkBp65), Inducible Nitric Oxide Synthase (iNOS) and Cyclooxygenase-2 (COX-2):

Paraffin sections of right joints were dewaxed with xylene, hydrated with gradient ethanol. Sections were blocked with an appropriate reagent and incubated with antibodies against NF- kBp65, iNOS and COX-2 according to the methodology steps of Chou *et al.*, (2011) and Wang *et al.*, (2013).

All obtained histopathological and immunohistochemical sections were examined by digital microscope camera (Tucsen ISH1000) using Olympus® CX21microscope, with a resolution of 10 MP (megapixels) "IS Capture" software for capture and image enhancements. All slides were captured at 400 x magnifications, UIS optical system (Universal Infinity System, Olympus®, Japan).

Statistical Analysis:

The result values were expressed as means \pm standard error (SE) for eight rats (n=8) of each group. Tabulation and graphics were designed using Microsoft Excel software. Data were statistically analyzed using the Statistical Package for Social Science (SPSS) version 18 software. One-Way Analysis of variance (ANOVA) test was performed for determining the statistically significant differences between groups followed by t-test. Data were considered statistically significant when the P values were <0.05.

RESULTS

Body Measurements and Behavioral Tests:

Swelling Test of the Right Hind Paw, Dorsal Flexion Pain Score and Motility Score:

The swelling of the right hind rat paw was significantly increased (P<0.05) in all RA induced groups before treatment compared to the normal control group. In the SV low and high doses and MTX treated groups, swelling was significantly decreased (P<0.001) compared to nontreated arthritic group. The dorsal significantly flexion pain was increased (P<0.001) in the rheumatoid induced rats compared to the normal and significantly control group decreased (P<0.001) after treatment with SV and MTX when compared with the non-treated arthritic group. Motility was significantly score decreased (P<0.001) after rheumatoid induction compared to the normal rats and significantly increased (P<0.001) after treatment with SV and MTX when compared with the non-treated arthritic group. Data were summarized in Table (1).

Scorpion venom has a potent analgesic anti-inflammatory and antioxidant properties.

Table (1) Effect of SV and MTX treatments on the rat paw swelling volume, dorsal flexion pain and motility score in different treated groups on 6th, 12th, 18th, 24th and 30th days of experiment.

Days Groups	б th day	12 th day	18 th day	24 th day	30 th day
Normal control					
Swelling volume	3.75± 0.19	3.81± 0.15	3.78 ± 0.17	3.9 ± 0.16	3.82 ± 0.19
Flexion pain	9.61± 0.38	9.58± 0.41	9.71± 0.43	9.3 ± 0.39	9.54± 0.41
Motility	1.33± 0.19	1.33 ± 0.21	1.32 ± 0.18	1.31 ± 0.19	1.36± 0.17
Arthritic control					
Swelling volume	7.5 ± 0.39	8.6 ± 0.59	8.7 ± 0.59	8.8 ± 0.62	9.14± 0.54*
Flexion pain	9.7 ± 0.40	9.41 ± 0.42	8.50 ± 0.42	8.33 ± 0.27	8.16 ± 0.11*
Motility	1.33 ± 0.21	0.83 ± 0.16	0.5 ±0.22	0.5± 0.22	0.33± 0.21*
SV low dose					
Swelling volume	7.49 ± 0.3	8.0 ± 0.28	7.1 ± 0.26	6.5 ± 0.62	6.13± 0.49**
Flexion pain	9.58±0.30	9.16 ± 0.28	7.3± 0.26	6.6 ± 0.62	4.0 ±0.49**
Motility	1.33±0.21	0.66 ± 0.21	0.8± 0.22	1.2 ± 0.16	1.66 ±0.21**
SV high dose					
Swelling volume	8.12 ± 0.26	8.47 ± 0.29	7.38 ± 0.51	6.6 ± 0.39	6.06± 0.41**
Flexion pain	9.58 ± 0.27	8.5 ± 0.42	6.25± 0.30	5.1± 0.32	2.91 ± 0.5**
Motility	1.33 ± 0.21	0.5 ± 0.22	0.83 ± 0.16	1.5±0.22	1.66 ±0.2**
Methotrexate					
Swelling volume	7.17 ± 0.24	8.05 ± 0.37	6.5 ± 0.39	6.3 ± 0.43	5.9 ± 0.43**
Flexion pain	9.58± 0.44	9.16±0.51	7.66 ± 0.51	5.2 ± 0.21	2.5 ± 0.32**
Motility	1.33 ± 0.21	0.66 ± 0.21	1.16 ± 0.16	1.6 ± 0.21	1.83± 0.16**

Values are represented as means \pm SE (n=8).

* refers to the significant difference compared with the non-treated arthritic group when (P<0.05).

** refers to the significant difference compared with the normal control group when (P<0.05).

Biochemical assays and Heamatological Parameters : *Effect of SV on Serum Alkaline Phosphatase (ALP) Activity*:

Regarding ALP activity, table (2), it was significantly increased (P<0.001) in the non-treated arthritic group as compared with the normal control rats, significantly decreased (P<0.001) after treatment with SV two doses and MTX compared with the non-treated arthritic group.

Tissue Damage and Oxidative Stress Parameters:

Effect of SV Treatment on Serum LDH Activity and Synovial Tissue MDA Level.

Results are given in table (2) revealed a significant increase

(P<0.001) in LDH activity and MDA level in the non-treated arthritic group compared with the normal control group, a significant decrease (P<0.001) in SV low and high doses and MTX treated groups compared with the nontreated arthritic group.

Effect of SV Treatment on Serum Catalase Activity:

Data presented in the table (2) indicated a significant decrease (P<0.001) in catalase activity in the non-treated arthritic group in comparison to the control group, a significant increase (P<0.001) in SV low and high doses and MTX treated group compared to the arthritic non-treated control group.

Table (2) Effect of SV and MTX treatments on serum ALP, LDH, CAT, CK activities and the synovial tissue MDA content in the control and different treated groups after 30 days of the experiment.

Groups	Control	Arthritic	SV low	SV high	MTX
Parameter			dose	dose	
ALP (U/L)	54.1±4.5	203±6.6*	97±3.2**	76.3±8.7*	82.5±5.6*
LDH (U/L)	1998±35	4924±265*	3100±177**	2950±218	2311±153*
MDA	18±1.2	65±3.7*	24±1.1**	22±0.5**	28±1.9**
Catalase (U/L)	878±54	399±49*	761±56**	659±29**	635±51**
CK (U/L)	448 ±82	1837±130*	1051±160**	849±105*	1192±160*

Values are represented as means \pm SE (n=8).

* refers to the significant difference compared with the non-treated arthritic group when (P<0.05).

** refers to the significant difference compared with the normal control group when (P<0.05).

Liver Function Parameters:

Effect of SV Treatment on Serum Total Protein and Albumin Contents and Liver Enzymes ALT and AST Activities.

There were no significant differences (P>0.05) between the non treated arthritic group and the normal control group in AST and ALT activities, significant changes (P>0.05) in SV low dose treated group compared with the arthritic group. Conversely, there was a significant increase (P<0.01) in serum AST and ALT in the high dose SV and MTX treated groups compared with the control group. No significant

differences (P>0.05) in serum total protein and albumin contents between control, non-treated arthritic groups, and all treated groups were reported, table (3).

Kidney Function Parameters:

Effect of SV Treatment on Serum Creatinine, Urea and Uric Acid Concentrations:

As shown in the table (3), there were no significant changes (P>0.05) in creatinine, urea and uric acid levels between the control group, non-treated arthritic group, and all treatment groups.

Table (3) Effect of SV and MTX treatments on serum AST, ALT, total protein, albumin, creatinine, urea, and uric acid concentrations in different treated groups after 30 days of the experiment.

Groups Parameters	Control	Arthritic	SV low dose	SV high dose	мтх
AST (U/L)	22±1.5	32.2±2.6	24.7±2.7	46.8±3.0*	63.2±3.0*
ALT (U/L)	20.5±2.05	31.3±2.5	29.8±1.7	44.5±3.2*	60.9±3.3*
Total protein (g/dl)	9.3±0.8	8.8±0.4	8.7±0.2	7.5±0.15	9.4±0.7
Albumin (g/dl)	3.9±0.15	3.5±0.14	3.3±0.52	3.08±0.12	2.7±0.25
Creatinine(mg/dl)	0.45±0.03	0.43±0.02	0.41±0.02	0.53±0.02	0.51±0.03
Urea (mg/dl)	43±2.5	45±4.1	43±2.5	54±3.2	79±2.5
Uric acid (mg/dl)	2.7±0.34	3.1±0.47	2.5±0.27	2.1±0.26	2.8±0.38

Values are represented as means \pm SE (n=8).

* refers to the significant difference compared with the non-treated arthritic group when (P<0.05). ** refers to the significant difference compared with the normal control group when (P<0.05).

Effect of SV Treatment on Hematological Parameters:

No significant differences (P>0.05) was reported in the red blood cells (RBCs) count and hemoglobin (Hb) level between non treated arthritic, normal control, SV low and high doses treated groups. Conversely, there was a significant decrease (P < 0.001) in RBCs count and Hb level between MTX treated group and non-treated arthritic group, table (4). Scorpion venom has a potent analgesic anti-inflammatory and antioxidant properties.

White blood cells (WBCs) count was significantly increased (P<0.05) in the non-treated arthritic group compared with the normal control group, no significant difference (P>0.05) in WBCs count in SV low and high doses and MTX treated groups compared with the non-treated arthritic group. Nevertheless, monocytes and granulocyte percentages revealed significant increase (P<0.001) in the non-treated arthritic group compared with the normal control group, conversely, significantly decreased (P<0.01) in SV low and high doses and MTX treated groups compared with the non-treated arthritic group. Lymphocyte percentage showed a significant decrease (P<0.001) in the arthritic group compared with the normal control group, while, significantly increased (P<0.01) after treatment with SV low and high doses and MTX compared with arthritic group, table (4).

	0 1		• 1		
Groups Parameters	Control	Arthritic	SV low dose	SV high dose	МТХ
WBCs x(10 ³ /ml)	6.68± 0.90	11.8±1.91*	11.0 ± 0.5	10.6 ± 1.72	9.5 ± 0.35
Lymphocytes %	91. 7 ± 0.96	7 5.3 ±1.63*	85.6 ± 2.24**	88±1.29**	91.9 ± 1.02**
Monocytes %	6.58 ± 0.40	17.3±1.23*	9.93± 0.80**	8.63±0.78**	$6.5 \pm 0.69^{**}$
Granulocytes %	2.01 ± 0.27	7.3±0.53*	4.36± 0.72**	3.66 ± 0.66**	$2.0 \pm 0.33^{**}$
Platelets x (10 ³ /ml)	388 ±56	572 ±54	866 ±122	671 ±76	900 ±213
RBCs x(10 ⁶ /ml)	7.71±0.36	7 .75 ±0.35	6.93 ±0.25	7 .11 ±0.41	4.18±0.67*,**
Hb (g/dl)	13.0±0.58	12.1±0.33	12.9±0.32	13.0±0.50	7.7±1.09*,**

 Table (4) Effect of SV and MTX treatments on hematological parameters in the different treated groups after 30 days of the experiment.

Values are represented as means \pm SE (n=8).

* refers to the significant difference compared with the non-treated arthritic group when (P<0.05).

** refers to the significant difference compared with the normal control group when (P<0.05).

Histopathological Examination:

Sections microscopic examination revealed that joints of the normal control group as shown in figure 1 (A) have a uniform mature bone surface covered by hyaline cartilage with smooth surfaces. The connective tissue underlying had adipocytes, capillaries, and some collagen fibers. Arthritic group (B) showing a presence of pannus, composed of diffused inflammatory infiltrate, macrophages, and lymphocytes with scattered blood vessels in a fibrous stroma. SV low dose treated group (C) showing a loss on the surface of the articular cartilage with irregularity and erosions. In SV high dose treated group (D) the joint restored space was with little inflammatory exudate and the articular cartilage had a uniform smooth outer surface with few scattered degenerated

chondrocytes. MTX treated group (E) showing synovial fibroblastic proliferation with mild inflammatory cell infiltrate and restored joint space.

Immunohistochemical Examination:

Immunohistochemical staining for iNOS, NFkB-p65 and Cox2 were illustrated in figures (2,3 and 4 respectively). The normal control showed negative group a immunostaining expression for the three inflammatory mediators while non treated arthritic group showed a significant expression when compared with the normal control group. The SV low and high doses groups showed a weak positive reaction for iNOS while MTX group showed a negative reaction. On the other hand, the SV low dose group showed a weak positive reaction for Cox2 while the SV high dose and MTX groups showed a negative reaction for Cox2.

Fig (1). Histopathological effects of scorpion venom and MTX treatments on the articular joints in CFA induced rats. A) Normal control. B) Arthritic non treated group, black arrows indicates pannus, which is composed of diffuse chronic inflammatory infiltrate, scattered blood vessels (red arrows) and fibrous stroma (arrow heads). C) SV low dose treated group. D) SV high dose treated group. E) MTX treated group.

Hematoxylin and eosin (H&E) stain, 5µm thickness at magnification X400

Fig. (2). Immunohistochemical staining for iNOS in the joint sections of normal control, arthritic, and different treated groups. (A) Normal control group, (B) non treated arthritic group, (C) SV low dose treated group, (D) SV high dose treated group and (E) MTX treated group.

Fig. (3). Immunohistochemical staining for NFκB-p65 in the joint sections of normal control, arthritic, and different treated groups.. (A) Normal control group, (B) Non treated arthritic group, (C) SV low dose treated group, (D) SV high dose treated group and (E) MTX treated group.

Fig. (4). Immunohistochemical staining for Cox2 in the joint sections of normal control, arthritic, and different treated groups.. (A) Normal control group, (B) Non treated arthritic group, (C) SV low dose treated group, (D) SV high dose treated group and (E) MTX treated group.

DISCUSSION

Treatment of RA may be efficient if starts early, at the same time early and accurate diagnosis may protect the patients from aggressive potential therapies with toxicity (Arnett et al., 1988). The induction of RA with CFA enhances **T**lymphocytes to trigger a strong immune response in the rat paws (Billiau and Matthys, 2001). Hence, CFA rheumatoid induction in rats has been commonly used to evaluate possible therapeutic methods that can be used in RA treatment (Asquith et al., 2009). Many studies have been demonstrated that scorpion venom is a rich source of polypeptides and enzymes in addition to a variety of other biologically active components (Garcia et al., 1994). Different species of scorpions contain many peptide toxins that block potassium channels in T lymphocytes that could treat a variety of diseases associated with the autoimmune system in animal models (Garcia et al., 1994).

Inflammation in RA could be documented by measuring swelling in diseased rat's paws that reflects impairment in synovial membrane, joints, and bones (Cai et al., 2007). The present study showed that treatment with SV in RA induced rats at low and high doses showed a marked reduction in right hind paw swelling volume when compared with the non treated RA induced group. These findings may be due to that SV may suppress the migration and accumulation of of leucocytes to inflamed joints arthritic rats (Nipate et al., 2014). The dorsal flexion pain score and motility test depend on the movement of joints which more greatly affected by arthritis. Treatment with SV and MTX have significantly diminished the pain sensation and improved motility. Scorpion α -toxins are belonging to the sodium channel inhibitor family, thereby blocking neuronal transmission (Nipate et al., 2014). A study by Shao

et al. (2014) demonstrated that scorpion neurotoxins have a strong analgesic and anti-tumor activities against both visceral and somatic pain.

Synovial tissue is a possible source of ALP, especially bone-type so it considered as ALP, а characteristic feature of RA persistent synovitis (Nanke et al., 2002). In the current study, the RA non-treated group showed an enormous elevation in ALP activity compared with the control group. normal Increased activity of ALP may be due to the inflammatory effect of cytokines (Thompson et al., 1990). On the other hand. ALP activity showed а significant decrease after treatment with SV and MTX, which explains their therapeutic role in the depletion of inflammatory cytokines.

The synovial fluid of the inflamed joints in RA is swarmed with inflammatory cells such as activated neutrophils, which produce large amounts of highly reactive radicals leading to an increase of oxidative stress, lipid peroxidation and tissue damage (Gutteridge et al., 1981). In the current study, a massive elevation in MDA content in joint tissues of RA induced rats accompanied by depletion in plasma CAT activity was reported. Treatment with SV high and low doses addition to MTX showed in ิล significant decrease in MDA content in synovial tissues with a significant increase in CAT activity compared with the non-treated arthritic rats. Elevated CAT activity in venominjected experimental animals was reported with Da Silva et al. (2011). In the fact, CAT is an effective enzyme that plays an important role in the enzymatic antioxidant defense system via the decomposition of hydrogen peroxide (H_2O_2) to water and oxygen to protect cells against O'2 toxicity and lipid peroxidation (Kalpakcioglu and Senel,2008).

CK is an enzyme identified in many tissues like brain, heart and

skeletal muscles. Elevated levels of CK in blood may indicate inflammation and muscle damage (Callegari et al., 2017). In the present study, CK, LDH and AST levels were elevated in RA non-treated rats in a comparison with the normal control group. These enzymes may be liberated into the bloodstream following muscle damage (Howell et al., 2018). Moreover, LDH is elevated in the disease progression and in acute or chronic tissue damage as joints of patients with rheumatoid arthritis (Dawes et al., 1986).

AST is an enzyme found in the liver and heart at high concentration while ALT considered to be a specific liver enzyme. The current study revealed that SV high dose only slightly increases AST and ALT levels. On another hand, liver enzymes were significantly increased in the MTX treated group compared to the group. This elevation control considered to be a side effect during MTX treatment and this finding was in agreement with Kasper et al. (2015) who reported that the most serious side effect in patients receiving MTX therapy is liver toxicity.

Α statistically significant increase in WBCs count in RA nontreated group was reported in the current study in a harmony with the study of Ahmadi et al. (2009). They demonstrated a moderate rising in WBC count in the arthritis conditions that could be due to the release of IL-IB inflammatory response which the production increases of granulocytes and macrophages colonystimulating factor. MTX, an immunomodulatory drug, has many reported hematological commonly adverse effects such as leukopenia, pancytopenia, anemia, megaloblastic anemia (Chan and Cronstein, 2002). In the present study, RBCs count was in normal range values in all groups except for MTX treated group, there was a significant decrease in RBCs count and Hb level. MTX is retained within cells as polyglutamates which inhibit folate metabolism then blocking the enzymes dihydrofolic reductase and thymidylate acid thereby inhibiting synthase, the synthesis of purines and pyrimidines decreasing DNA and RNA and synthesis, subsequently decreases RBCs production (Tunali-Akbay et al., 2010). MTX also increases bone marrow adiposity in both short and long term of MTX therapy (Georgiou et al., 2012).

Infiltration by immune cells as macrophages and **PNLs** was considered to be an early manifestation of adjuvant-induced arthritis (Kennedy et al., 2010). In the present study, histological examination of the arthritic non-treated rat joint tissues showed a proliferation of the synovial tissues with variety of inflammatory polymorphonuclear cells. mainly leukocytes (PNLs), and infiltration with macrophages, lymphocytes, and irregular multinucleated cells, this finding was in agreement with Bauerova et al. (2010) and Makhlouf et al. (2013). These cells can discharge a great amount of ROS into the tissue, leading to deterioration of cartilage and damage to joints (Xie et al., 2013). Pannus is a mass of synovium that rich in numerous inflammatory cells and synovial fibroblasts that can grow over the articular cartilage, promote its destruction and causing ankylosis (Căpitănescu al., 2011). et Angiogenesis is reported in RA, and this process facilitates the activated monocytes that attack the synovial tissues and spread into the pannus, to cartilage and leading bone deterioration (Nanke et al., 2002). Treatment with SV plays an important role in the inhibition of angiogenesis by inhibiting vascular endothelial growth factor (VEGF) (Sadick et al., 2005) which enhances many other events fundamental for angiogenesis (Cao et al., 2013).

In the current work, the pannus formation was observed in the RA

non-treated group, and osteoclasts were detected in the interface between synovium and bone. Treatment with SV and MTX has markedly reduced the infiltration of inflammatory cells into synovial membranes, improved joint architecture and protected cartilage from destruction and bone erosion, these results were in a harmony with the study of Nipate *et al.* (2014).

NO is a singling molecule which plays a vital role in various physiological pathological and processes. iNOS is one of the NO synthase group that has a role in NO synthesizes from 1-arginine (Zamora et al., 2000). High levels of NO lead to the formation of reactive nitrogen oxide species NO•, which has a role in chronic inflammatory disorders (Ersoy et al., 2002) NO levels in serum and synovial fluid have been reported to be increased in patients with RA (Mohan et al., 2013). Likewise, NO might be responsible also for synovial hyperplasia through stimulating of hypoxia via reducing cell respiration by binding to cytochrome c oxidase (Natarajan et al., 2003). Hypoxia, in turn, promotes synovial angiogenesis that subsequently guides proinflammatory cytokines into the synovium along with the newborn blood vessel (Ng et al., 2010). Suppression of NO production by blocking iNOS expression may be a strategy for the treatment of chronic inflammation (Yap and Lim, 2015). In the present work, immunohistochemical observations in joint sections showed a strong positive reaction for iNOS in the RA nontreated group. This finding was in a line with Chou *et al.* (2011). Overexpression of iNOS is associated with an increase of apoptotic cells in the articular cartilage of RA patients (Narendhirakannan and Limmy, 2012).

 $NF\kappa B$ -p65 is a key transcription factor that regulates the expression of plenty of genes that activated in RA and produce proinflammatory mediators such as cytokines, chemokines and angiogenic factors leading to pannus formation and arthritic joint destruction (Bottini and Firestein, 2013). In the present study, SV and MTX treatments inhibited NFkB-p65 expression which was observed in RA induced rats. These results were in a line with Al Khan (2016)Asmari and who that scorpion demonstrated venom inhibited NFkB-p65 activation in rat models.

Prostaglandins play important roles in the inflammatory response, they are produced by the effect of enzymes COX and leukotrienes (Capdevila et al., 1990). There are two COX isoforms. COX-1 and COX-2. Moreover, COX-1 is abundant in the gastric mucosa, kidney, platelets, and vascular endothelial cells while COXduring expressed mainly 2 especially inflammation, in macrophages and monocytes (Dubois et al., 1998). In the present study, immuonohistochemical results showed a massive expression of COX-2 in joint tissues of RA the non-treated group. This result was also reported with Doss et al. (2016). On the other hand, it was significantly inhibited after treatment with SV high dose and MTX, while weakly expressed after treatment with SV low dose. Depletion in COX-2 activity inhibits synovial inflammation and joint degradation and inhibited pannus formation in arthritis induced animal models (Lai et al., 2008). Several studies reveal that arthropods venom extracts play an effective role in the control of different inflammatory chronic diseases. rheumatoid arthritis is one of them, through immune suppression of many inflammatory cofactors, such as TNF, COX-2, cytokines and NO reactive species (Gomes et al., 2011).

Conclusion:

This study concluded that the Egyptian scorpion (*Androctonus amoreuxi*) venom possesses an anti-inflammatory effect due to its ability in

Scorpion venom has a potent analgesic anti-inflammatory and antioxidant properties.

inhibiting the expression of NF-kB p65, COX-2 and INOS in addition to its antioxidant properties. SV also was dimensioned the cardinal symptoms of inflammation in RA induced rats, this was supported by the biochemical and histopathological findings. In the future, further studies could provide of the underlying more details mechanisms to determine the most effective peptides or molecules in SV that could have these therapeutic activities with minimum side effects.

"All applicable international, national, and/or institutional guidelines for the care and use of animals were followed."

REFERENCES

- Ahmadi M, Zare Mirakabadi A, Hashemlou M, Hejazi M (2009) Study on antiinflammatory effect of scorpion (Mesobuthus eupeus) venom in adjuvant-induced arthritis in rats. Archives of Razi Institute 64(1):51-56.
- Al Asmari AK, Khan AQ (2016) Investigation of in vivo potential of scorpion venom against skin tumorigenesis in mice via targeting markers associated with cancer development. Drug design, development and therapy 10: 3387-3397.
- Al-Asmari AK, Riyasdeen A, Abbasmanthiri R, Arshaduddin Al-Harthi M. FA (2016)Scorpion (Androctonus bicolor) venom exhibits cytotoxicity and induces cell cycle arrest and apoptosis in breast and colorectal cancer cell lines. Indian journal of pharmacology 48(5):537-543. DOI https://10.4103/0253-7613.190742.
- Amdekar S, Roy P, Singh V, Kumar A, Singh R, Sharma P (2012) Anti-inflammatory activity of lactobacillus on carrageenaninduced paw edema in male wistar rats. International

journal of inflammation Article ID 752015. https://doi:10.1155/2012/75201 5.

- Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis and Rheumatology 31(3):315-324.
- Asquith DL, Miller AM, McInnes IB, Liew FY, (2009) Animal models of rheumatoid arthritis. European journal of immunology 39(8):2040-2044.
- Balozet L, Bucherl W, Buckley E (1975) Scorpionism in the Old World. Invenomous Animals and their Venoms. Academic Press New York, pp349-371
- Balozet VL, Navarro LB, Possani LD (2013) Therapeutic use of scorpion venom. Mol Asp Inflamm 9:209-231.
- Barsante, MM, Roffê E, Yokoro CM, Tafuri WL, Souza DG, Pinho V, Castro MS, Teixeira MM (2005) Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvantinduced arthritis. European journal of pharmacology 516(3):282-289.
- Bauerova K, Paulovicova E, Mihalova D, Drafi F, Miriam S, Mascia C, Biasi F, Rovensky J, Kucharska J, Gvozdjakova A, Ponist S (2010) Combined methotrexate and coenzyme adjuvant-010 therapy in induced arthritis evaluated using parameters of inflammation and oxidative stress. Acta **Biochimica** Polonica 57(3): 347-354.
- Bellucci E, Terenzi R, La Paglia G, Gentileschi S, Tripoli A, Tani C, Alunno A (2016) Pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol (34): 793-801.

- Billiau A, Matthys P (2001) Modes of action of Freund's adjuvants in experimental models of autoimmune diseases. Journal of leukocyte biology 70(6):849-860.
- Bottini N, Firestein GS (2013) Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nature Reviews Rheumatology 9(1):24-33.
- Cai X1, Zhou H, Wong YF, Xie Y, Liu ZQ, Jiang ZH, Bian ZX, Xu HX, Liu L (2007) Suppression of the onset and progression of collagen-induced arthritis in rats by QFGJS, a preparation from an anti-arthritic Chinese herbal formula. Journal of ethnopharmacology 110(1):39-48. DOI: https://10.1016/j.jep .2006.09.008.
- Callegari GA, Novaes JS, Neto GR, Dias I, Garrido ND, Dani C (2017) Creatine Kinase and Lactate Dehydrogenase Responses after Different Resistance and Aerobic Exercise Protocols. Journal of human kinetics, 1(58):65-72. doi:10.1515/hukin-2017-0071.
- Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q (2013) Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochimica et **Biophysica** Acta (BBA) Reviews on Cancer 1836:273-286.
- Capdevila JH, Falck J, Dishman E, Karara A (1990) Cytochrome P-450 arachidonate oxygenase, Methods in enzymology Elsevier 385-394.
- Căpitănescu B, Simionescu C, Mărgăritescu C, Stepan A, Ciurea R (2011) Clinical and morphological aspects of sinovitis in early rheumatoid

arthritis. Current health sciences journal 37(1):17-20.

- Chan ES, Cronstein BN, (2002) Molecular action of methotrexate in inflammatory diseases. Arthritis Research & Therapy (4): 266.
- Chou LW, Wang J, Chang PL, Hsieh YL (2011)Hyaluronan accumulation modulates of hypoxia-inducible factor-1 alpha, inducible nitric oxide synthase, and matrix metalloproteinase-3 the in synovium of rat adjuvantinduced arthritis model. Arthritis research and therapy, 13(3) R90. doi: https://10.1186/ ar3365.
- da Silva JG, da Silva Soley B, Gris V, do Rocio Andrade Pires A, Caderia SM, Eler GJ, Hermoso AP, Bracht A, Dalsenter PR, (2011) Effects of the Crotalus durissus terrificus snake venom on hepatic metabolism and oxidative stress. Journal of biochemical and molecular toxicology 25(3):195-203.
- Dawes P, Fowler P, Jackson R, Collins M, Shadforth M, Stone R, Scott D (1986) Prediction of progressive joint damage in patients with rheumatoid arthritis receiving gold or Dpenicillamine therapy. Annals of the rheumatic diseases 45(11): 945-949.
- Doss HM, Ganesan R, Rasool M (2016) Trikatu, an herbal compound ameliorates rheumatoid arthritis by the suppression of inflammatory immune responses in rats with adjuvant-induced arthritis and cultured fibroblast like on synoviocytes via the inhibition of signaling the NFκB pathway. Chemico-biological interactions 258:175-186.
- Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998)

Cyclooxygenase in biology and disease. The FASEB journal (12):1063-1073.

- Erickson AR, Cannella AC, Mikuls TR (2017) Clinical features of rheumatoid arthritis. Kelley and Firestein's Textbook of Rheumatology. Elsevier, 20th Edn. pp1167-1186.
- Ersoy, Y, Özerol E, Baysal Ö, Temel I, MacWalter R, Meral Ü, Altay Z, (2002) Serum nitrate and nitrite levels in patients with rheumatoid arthritis, ankylosing spondylitis, and osteoarthritis. Annals of the rheumatic diseases 61:76-78.
- Garcia ML, Garcia-Calvo M, Hidalgo P, Lee A, MacKinnon R, (1994) Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var hebraeus venom. Biochemistry 33(22): 6834-6839.
- Georgiou KR, King TJ, Scherer MA, Zhou H, Foster BK, Xian CJ (2012)Attenuated Wnt/βcatenin signalling mediates chemotherapymethotrexate induced bone loss and marrow adiposity in rats. Bone 50 (6):1223-1233. doi: http://10.1016/j.bone.2012.03.0 27.
- Gomes A, Alam M, Bhattacharya S, Dasgupta SC, Mukherjee S, Bhattacharya S, Gomes A (2011) Ethno biological usage of zoo products in rheumatoid arthritis. Indian J Exp Biol 49(8):565-73.
- Gutteridge JM, Rowley DA, Halliwell (1981) В Superoxidedependent formation of hydroxyl radicals in the presence of iron salts. Detection of 'free'iron in biological systems by using bleomycin-dependent degradation DNA. of Biochemical Journal 199(1)

:263-265.

- Han S, Yil H, Yin SJ, Chen ZY, Liu H, Cao ZJ, Wu YL, Li WX (2008) Structural basis of a potent peptide inhibitor designed for Kv1. 3 channel, a therapeutic target of autoimmune disease. Journal of Biological Chemistry 283(27):19058-19065.
- Howell LS, Ireland L, Park BK, Goldring CE (2018) MiR-122 and other microRNAs as potential circulating biomarkers of drug-induced liver injury. Expert review of molecular diagnostics 18(1):47-54. doi: 10.1080/14737159.2018.14151 45.
- Kalpakcioglu B, Şenel K (2008) The interrelation of glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6phosphate in the pathogenesis of rheumatoid arthritis. Clinical rheumatology 27(2):141-145.
- Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J, (2015) Harrison's principles of internal medicine. McGraw Hill Education Medical, 19th Edn.New York,ID:101643730.
- Kennedy A, Ng CT, Biniecka M, Saber T, Taylor C, O'sullivan J, Veale DJ, Fearon U, (2010) Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis & Rheumatology 62 (3): 711-721. doi: http://10.1002/art.27287.
- Lai WQ, Irwan AW, Goh HH, Howe HS, David TY, Valle-Oñate R, McInnes IB, Melendez AJ, Leung BP (2008)Antiinflammatory effects of sphingosine kinase modulation in inflammatory arthritis. The Immunology Journal of 181:8010-8017.
- Makhlouf NA, Khalil WF, Farghaly LM (2013) The possible

therapeutic effect of 'Chaetomium globosum'fungal extract on experimentally induced rheumatoid arthritis. Egyptian Journal of Histology 36(4):964-978.

- Mohan G, Perilli E, Parkinson I, Humphries J, Fazzalari N. (2013) Kuliwaba J Preemptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: effect subchondral on trabecular bone microarchitecture and cartilage degradation of the tibia. bone/cartilage turnover, and joint discomfort. Osteoarthritis and cartilage 21:1595-1604.
- Nanke Y, Kotake S, Akama H, Kamatani N (2002) Alkaline phosphatase in rheumatoid arthritis patients: possible contribution of bone-type ALP to the raised activities of ALP in rheumatoid arthritis patients. Clinical rheumatology 21(3):198-202.
- Narendhirakannan R, Limmy T (2012) Anti-inflammatory and antioxidant properties of Sida rhombifolia stems and roots in adjuvant induced arthritic rats. Immunopharmacology and immunotoxicology 34: 326-336.
- Natarajan R, Fisher BJ, Fowler AA (2003) Regulation of hypoxia inducible factor-1 by nitric oxide in contrast to hypoxia in microvascular endothelium. FEBS letters 549:99-104.
- Ng CT, Biniecka M, Kennedy A, et al. (2010) Synovial tissue hypoxia and inflammation in vivo. Ann Rheum Dis 69(7):1389-1395.
- Nipate S, Soni V, Ghaisas M, (2014) Anti-arthritic effect of Indian red scorpion (Mesobuthustamulus) venom in freund's complete ad-juvant and collagen type II induced arthritis. J Clin Toxicol 4:192.

doi: https://10.4172/2161-0495.1000192.

- Sadick H, Naim R, Gössler U, Hörmann K., Riedel F (2005) Angiogenesis hereditary in hemorrhagic telangiectasia: VEGF165 plasma concentration in correlation to the VEGF expression and density. microvessel International journal of molecular medicine 15(1):15-9.
- Shao JH, Cui Y, Zhao MY, Wu CF, Liu YF, Zhang JH (2014) Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch. Peptides 4 53):89-96. doi: https://10.1016/j.peptides.2013. 10.023.
- Shen XF, Zeng Y1, Li JC, Tang C, Zhang Y, Meng XL (2017) The anti-arthritic activity of total glycosides from Pterocephalus hookeri, a traditional Tibetan herbal medicine. Pharmaceutical biology 55(1):560-570.
- Thompson PW, Houghton BJ, Clifford C, Jones DD, et al. (1990) The and significance of source serum raised enzymes in arthritis. rheumatoid An International Journal of 76(2):869-Medicine 879. https://doi.org/10.1093/ oxford journals .qjmed.a068491.
- Tunalı-Akbay T, Sehirli O, Ercan F, Sener G (2010) Resveratrol protects against methotrexateinduced hepatic injury in rats. Journal of Pharmacy & Pharmaceutical Sciences13 (2):303-310.
- Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta

Scorpion venom has a potent analgesic anti-inflammatory and antioxidant properties1

(BBA) Molecular Cell Research 1843:2563-2582.

- Wang Q, Kuang H, Su Y, Sun Y, Feng J, Guo R, Chan K (2013) Naturally derived antiinflammatory compounds from Chinese medicinal plants. Journal of ethnopharmacology 146: 9-39.
- Wang Y, Huang C, Cao Y, ShengHan J (2000) Repeated administration of low dose ketamine for the treatment of monoarthritic pain in the rat. Life Sciences 67(3):261-267.
- Wedekind KJ, Ruff KJ2, Atwell CA1, Evans JL3, Bendele AM (2017) Beneficial effects of natural eggshell membrane (NEM) on multiple indices of arthritis in collagen-induced arthritic rats. Modern rheumatology 27(5):838-848.
- Williams R, (1998) Rodent models of arthritis: relevance for human disease. Clinical and experimental immunology 114:330-332.
- Xie C, Ma, L, Liu J, Li X, Pei H, Xiang M, Chen L (2013)

SKLB023 blocks joint inflammation and cartilage destruction in arthritis models via suppression of nuclear factor-kappa B activation in macrophage. PloS one 8 edn5 p6349.

- Yap WH, Lim YM (2015) Mechanistic perspectives of maslinic acid in targeting inflammation. Biochemistry research international.http://dx.doi.org/ 10.1155/2015/279356
- Zamora R, Vodovotz Y, Billiar TR (2000) Inducible nitric oxide synthase and inflammatory diseases. Molecular medicine (5):347-373.
- Zou X, He Y, Qiao J, Zhang C, Cao Z (2016) The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells. Toxicon 109:33-41. doi: https://10.1016/j.toxicon.2015. 11.005.

ARABIC SUMMARY

التأثيرات المضادة للالتهاب المحتملة لسم العقرب المصري أندروكتونص أموريوكسي في نموذج للجرذان المصابة بالروماتويد

أحمد خلف حسان*1، اسلام محمد الفقى 1، أسامة أحمد عباس1, محمد أحمد حفنى2

. قسم علم الحيوان - كلية العلوم- جامعة بورسعيد- مصر. 2. قسم الروماتيزم- كلية الطب- جامعة قناة السويس - الأسماعيلية- مصر.

التهاب المفاصل الروماتويدي (RA) هو أحد أمراض المناعة الذاتية، والذي يحدث في الأنسجة الزليلية. تهدف هذه الدراسة إلى تقييم إمكانية استخدام سم العقرب المصري Androctonus amoreuxi (SV) في علاج والتغلب على أعراض التهاب المفاصل الروماتويدي. تم جمع السم من العقارب وحلبها باستخدام التحفيز الكهربائي ثم تجفيده ثم حقنه تحت الجلد في الجر ذان المسستحثة الاصابة بالتهاب المفاصل الروماتويدي عن طريق حقنها بجرعة واحدة 0.1 مل من معامل فرويند الكامل Complete Freund's (Adjuvant CFA) في وسادة القدم الخلفي الايمن للجرذان. تم استخدام عدد 40 من ذكور الجرذان البالغين في هذه الدراسة. تم تقسيم الحيوانات إلى خمس مجموعات كل منها يتكون من ثمانية جرذان وتم تقسيمها كالتالي. الضابطة الطبيعية، المصابة والغير معالجة، المصابة والمعالجة بسم العقرب بجرعة منخفضة المصابة والمعالجة بالجرعة العالية، و المصابة والمعالجة بعقار الميثوتروكسات. أظهرت النتائج أن العلاج بسم العقرب بالجرعتين المنخفضة والعالية (0.24 و 0.48 ملجم / كجم) تحسنا في الاحساس بالألم وتحسّن الحركة وخفض تورم المفاصل. كما أن SV قلل من تلف الأنسجة من خلال انخفاض تركيز المونديالديهايد (MDA) بشكل ملحوظ، و انزيمات (LDH)، والكرياتين كيناز (CK) مقارنة بالجرذان المصابة بالروماتويد الغير معالجة وقد تم ذلك بدون حدوث أثار جانبية في دلالات وظائف الكبد والكلي و أيضا مكونات الدم. كما أظهر الفحص النسيجي تحسنا ملحوظا في بنية المفاصل بعد العلاج بسم العقرب. كما أظهر الفحص النسيجي المناعي انخفاضًا كبيرًا في ظهور العامل النووي (NFKB-p65)، (COX-2) ومخلق أكسيد النيتريك (iNOS) في المفاصل بعد العلاج بسم العقرب. وعلى ذلك فان لسم العقرب SV خصائص علاجية في علاج التهاب المفاصل الروماتويدي والحد من أثاره نتيجة لخصائصه المضادة للأكسدة وتأثيره المضاد للالتهاب وذلك دون حدوث آثار جانبية ملحوظة.