A Comparative Study Between Grape (*Vitis vinifera*) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khedr and Alaa H. Nofal

Department of Nutrition and Food Sciences, Faculty of Home Economics, Menoufia University, Shibin El- Kom, Egypt

ABSTRACT

The consumption of fruits has an important role in health protection. Grape juice is considered a healthy protecting beverage due to its high content of bioactive phenolic compounds and their antioxidant capacity. The present study was designed to compare the potential effects of three types of grape juice (Green or white-red and black) against the toxicity and tissues damage induced by sodium fluoride (NaF) in rats liver. Rats were randomly divided into five groups. The first: negative control group (6 rats) fed standard diet. From 2 to 5 group received a single oral dose 10.3 mg Naf/kg body weight for six weeks, the second group served as positive control group (6 rats), the third, fourth and fifth groups (12 rat /each) were fed standard diet and each of them was divided into two sub groups (6 rats /each) and given a daily oral dose 5 and 10 μ L/g body weight for 6 weeks of the green (white), red and black grape juice respectively. After the end of the experimental period, lipids profile, liver functions, Malonaldehyde (MDA) levels, reduced glutathione (GSH Rd) and catalase (CAT) activities and histological examination of liver tissues were performed. Results showed that NaF treated rats caused elevation in lipid profile, liver functions in the serum and MDA levels with reduction in the activity of GSH Rd and CAT in liver tissues. However, treatment sodium fluoride rats with red and black grape juice reduced the levels of lipid profile, liver enzymes and MDA with enhanced activity of GSH Rd, CAT and histopathological changes in the liver tissues. While, treated rats with black grape juice $(10\mu l/g BW)$ was more effective in alleviating the harmful effects of NaF in rats. In conclusion, red and black grape juice has a potent effect against NaF induced hepatotoxicity in rats and this effect might be correlated with grape antioxidant capacity.

Key words: liver toxicity, sodium fluoride, red and black grape juice, liver functions,.

INTRODUCTION

Fluorinated compounds such as sodium fluoride, sodium fluorosilicate and cryalite (a fluoride - containing mineral) are used in various insecticide formulations and wood preservatives (Nabavi et al., 2012). Fluoride, an essential element is trace widely distributed in nature its as compounds or free ions. Fluorosis in human beings is mainly caused by drinking water, toothpaste, mouth rinses, burning cool, NaF dust and fumes from industries using NaFcanting salt and hydrofluoric acid, and drinking tea (Liu et al., 2003). Fluoride easily distributes in the body through blood circulation. crosses the cellular membrane and its subsequent accumulation leads to impairment in the soft tissues (Bouaziz et al., 2010). Excessive intake of fluoride causes adverse health effects such as fluorosis in mammals and other toxic effects on cultured tissues (He and Chen, 2006 and GAO et al., 2009b). Also the excessive exposure to fluoride can lead to some

toxicological risks as fluoride intoxication is associated with severe damage to different tissues (**Nabavi** *et al.*, 2012 ab).

Chronic fluorosis may induce hyperlipidemic effect (Khudiar and Aldabaj, 2014) functional metabolic. and structural damages in many including tissues kidney (Nabavi et al., 2013) and liver (Grucka - Mamczar et al., 2009). Fluoride induced _ hepatotoxicity is associated with an imbalance in the oxidant antioxidant systems of hepatic tissues causes hepatic dysfunction through free radicals mediated lipid peroxidation, DNA damage, inflammation. mitochondrial dysfunction and necrotic / apoptotic cell death (Wang et al., 2000 and Nabavi et al., 2012c).

The human diet, which contains natural manv compounds in essential in protecting the body against the development of diseases. Human diet rich in vegetables and fruits have been associated with reduced rate of liver diseases (Alimi et al., 2012). Grapes are of the valued one most conventional fruits in the world

(Yang and Xian, 2013) and contain various nutrient elements such as vitamins. minerals, carbohydrates, edible fibers and phytochemicals. Grape juice is a fresh and nutritional beverage, highly appreciated worldwide, which its production significantly is increasing every year (Koyama 2014). et al., Phenolic compounds of the grape juice flavonoids, such as anthocyanins, tannins, phenolic acids, among others, are the main responsible for the effects beneficial healthy observed (Capanoglu et al., 2013). Montvale (2002) showed that red grape juice has hepatoprotective effect. Also, it is protective or therapeutic agent to attenuate organs damage and dysfunction in response to chemical toxins (Alnahdi and Avaz, 2012). Black grape can provide protection against toxic effects (Lakshmi et al, 2013). Grape juices which are rich in polyphenol compounds with important antioxidant activity have protective effect against oxidative damage in the liver (Rodrigues et al., 2013).

Therefore, the present study was carried out to evaluate the protective effects of grape juice varieties on liver toxicity induced by sodium fluoride in rats.

MATERIALS & METHODS Materials:

Grape fruit (vitis vinifera): The fresh green (white), red and black grape used in this study were purchased from the local market Shiben El-Kom City Menoufia Government, Egypt. Sodium Fluoride (Naf) was obtained from sigma Chemical Co. (St. Louis, Mo. USA). Kits for estimating biochemical analysis were purchased from Alkan Medical Company, St. El-Doky, Cairo, Egypt.

Animals: Forty eight adult male albino rats, Sprague Dawley stain, weighing $160 \pm 5g$ were purchased from Medical Insects Research Institute, Doki, Cairo, Egypt.

Methods:

Preparation of grape juice

Fresh grape was washed with running water. Grape juice was prepared using National juicer (MJ - 176N Japan) without adding water. The pure filtrated juice was stored at -20 °C until used.

Experimental design

Forty eight rats were housed separately in well aerated cages hygienic under laboratory conditions and fed standard diet days for for 7 adaptation according to AIN - 93 guidelines (Reeves et al., 1993). Then rats were randomly divided into five groups; the first: negative control group (6 rats) was fed standard diet. From 2 to 5 groups received the standard diet and a single oral dose of 10.3 mg Naf /kg body weight for six weeks as described by Blaszczyk et al., (2011), the second group served as positive control group (6 rats), the third, fourth and fifth groups (12 rats /each) on the standard diet were divided into two sub groups (6 rats /each) and given a daily oral dose 5 and 10 μ L/g body weight for 6 weeks of green (white), red and black grape juice respectively. The doses of green (white), red and juice black grape was determined according to Park et

al., (2003). .At the end of the experimental period rats were anesthetized after fasting for 12h non-heparinized and blood samples were collected from the hepatic portal vein. Liver was taken and washed in saline solution until all blood was removed. The serum was collected from the blood samples by centrifugation and both serum and liver were kept frozen at -20°C till used for analysis.

Chemical analysis:

Total phenolics were determined according to the Folin - Ciocalteau method as described by Kaškonienė et al., (2009).Total phenolic compounds were expressed as mg gallic acid equivalents /100 ml grape juice extract. Total Flavonoid was determined using a method described by Xu and chang (2007). Anthocyanin was determined according to Lako et al., (2007).

Biochemical analysis:

The serum levels of total lipids, total cholesterol (TC), triglyceride (TG) and high density lipoprotein (HDL.c) were determined by using methods of Frings and Dunn (1979), Allain et al., (1974), Fossati and Prencipe (1982) and Demacker et al., (1980) respectively. The determination of low density lipoprotein cholesterol (LDL.c) and very density lipoprotein low cholesterol (VLDL.c) were carried out according to the methods of lee and Nieman (1996) as follows:

LDL.c = Total cholesterol - (HDL.c + VLDL.c).

VLDL.c = TG/5

Serum levels of alanine aninotransferase (ALT) and aspartate aminotransferase (AST) enzymes were assayed by the methods of Moss and Henderson (1999). The activity of alkaline phosphatase (Alp), gamma glutamine transferase (GGT) and total bilirubin (TB) were determined by the methods of Varley et al., (1980), Rosalki et al., (1970); Pearlman and lee (1974) respectively. Malonaldehyde (MDA), reduced glutathione (GSH Rd) and catalase (CAT) were assayed according to the methods described by Ohkawa et al., (1979), Moron et al., (1979) and sinha (1972) respectively.

Histopathology examinations:

Small specimens of the organs liver were taken from each experimental group, fixed in neutral buffered formalin, dehydrated in ascending concentration of ethanol (70, 80 and 90%), cleared in zylene and embedded in paraffin. Sections of 4–6 µm thickness were and stained with prepared hematoxylin and eosin according to Bancroft et al., (1996).

Statistical analysis:

Results were expressed as the mean \pm SD. Data for multiple variable comparisons were analyzed by one-way analysis of variance (ANOVA). For the comparison of significance between groups, Duncan's test was used as a post according hoc test to the statistical package program (Artimage and Berry, 1987).

RESULTS & DISCUSSION

Total phenolics, total flavonoids and anthocyanins of fresh green (white), red and black grape juice is presented in Table (1). Black grape juice had the highest ($P \le 0.05$) total

phenolic, total flavonoids and anthocyanin contents followed by red grape juice, while green (white) grape juice was lowest $(P \le 0.05)$ in its content of total phenolic, total flavonoids and anthocyanin.. Grapes contain amounts of phenolic. high flavonoids and anthocyanins and acts as antioxidant (Yildirim et al., 2005). Liang et al., (2014) reported that the content of Vitis vinifera grape cultivars of total phenolics ranged from 95.3 to 686.5 mg/100g and flavonoids from 94.7 to 1055 mg/100g .Also Mitic et al., (2011)showed that red fruit juices contain a high content of a different group of polyphenols, which have a potent antioxidant capacity and found that black grape juice had total phenolic (2230.4)gallic acid mg (GAE)/Lequivalent total flavonoids (368.48 mg catechin equivalent (CE)/Land anthocyanins (208.67)mg cyaniding-3-glucosides equivalent (C3GE)/L). Toaldo et al., (2015) found that white grape juice had lower total phenolic content compared with red grape juice, whereas red grape juice was higher in

anthocyanins content than white grape juice. The content of total phenolic of the grape juices was 1151 mg GAE/L reported by Ishimoto *et al.*, (2006). Kulcan *et al.*, (2015) showed that total anthocyanin of extracted raw grape juice was 48.46 mg/L. Moreover, total anthocyanin content varied from 181.2 to 716.4 mg/100g fresh weight in grape varieties (Nile *et al.*, 2015).

Data in Table (2) shows effect of green (white), red and black grape juice on serum lipid profile of hepatotoxicated rats. The results indicated that the levels of total lipids, cholesterol, triglyceride, VLDL.c and LDL.c significant showed (P≤0.05) increase, while the level of HDL.c significantly (P<0.05) decreased in the sodium fluoride groups compared to negative control group. Similar results were obtained by Abdel-Wahab (2013) reported that oral administration of NaF induced a significant increase in the level of total lipids, triglycerides and total cholesterol. Also, Hassan and Yousef (2009) found that the treatment with NaF caused significant increase in plasma

levels of total lipid, total cholesterol. triglyceride and LDL.c and decrease in HDL.c. The obtained results in the present study may be attributed to high levels of NaF lead to its accumulation in the liver leading disturbance of to lipid metabolism and in turn to the reported elevation the lipid profile (Grucka - Mamczar et al., 2004).

fluoride Sodium intoxicated rats treated with green (white), red and black significant grape juice had (P<0.05) reduction in cholesterol. triglyceride, VLDL.c LDL.c levels and compared to positive control group. Shanmuganayagam et al., (2007) reported that the daily consumption of grape juice at 70 ml/kg/day decreased TC by 24% in rabbits. Administration of 10 μ l/g BW of green (white), 5,10 µl/g BW of red and black grape juice caused significant а reduction ($P \le 0.05$) in total lipids level in sodium fluoride intoxicated rats, while HDL.c had an opposite trend. On the other hand, the levels of total lipids and LDL.c were lower (P<0.05) in sodium fluoride intoxicated rats treated with red and black grape juice than that of rats treated with green (white) grape juice. The study of Castilla et al., (2006) on healthy volunteers reported that concentrated red grape juice decreased LDL.c and increased HDL.c as well as in hemodialysis patients. polyphenol from red grape might lead to a possible modifying effect of lipoprotein metabolism through hepatic removal of cholesterol and an increase in its fecal excretion. Also, the present study showed that cholesterol, triglyceride and VLDL.c levels were significantly decreased $(P \le 0.05)$ in sodium fluoride intoxicated rats treated with 10 μ l/g BW of red and 5,10 μ l/g BW of black grape juice compared with rats treated with green (white) grape iuice. Vinson et al., (2001) found that grape juice decreased both TC and LDL.c in hamesters. However, treatments with 10 µl/g BW of black grape juice was more effective ($P \le 0.05$) in reducing total lipids, cholesterol, triglyceride, VLDL.c and LDL.c in fluoride levels sodium intoxicated rats than those

treated with 10 µl/g BW of green (white) grape juice, 5,10 µl/g BW of red grape juice and 5 μ l/g BW of black grape juice. Moreover. there were no significant differences (P>0.05) cholesterol, in triglyceride, VLDL.c and LDL.c levels between black grape juice (10 μ /g BW) and negative control group. These results may due to high level of polyphenols (total flavonoids phenolic, and anthocyanin) present in grape The juices. action of polyphenols is associated with modulation of important physiological parameters such as plasma lipid profile, as a result of improved resistance towards oxidative stress, inflammation endothelial and dysfunction reported by Van Duynhoven et al., (2010). Also, Alnahdi and Ayaz (2012) reported that phytochemical constituents of the grape iuice have hypolipidemic potential action.

Effect of green (white), red and black grape juice on liver functions of hepatotoxicity rats is illustrated in Table (3). From the table it can be observed that treated rats with sodium fluoride caused significant increased ($P \le 0.05$) in the activities of AST. ALT. ALP. GGT and TB. These results agreed with the findings of Abdel -Wahab (2013) who found that exposure to NaF (10) mg/kg/day) for 4 weeks resulted in impairment in liver functions through significant increase in the activity of AST, ALT, ALP and total bilirubin by 73.1%, 131.8%, 63.2% and 310.4% respectively. Also, Shanthakumari *et al.*, (2004) recorded a significant increase in plasma ALT, AST and ALP of rats treated with 25 ppm of fluoride for 8 and 16 weeks. The increased activities of serum AST. ALT and ALP indicate that the liver is susceptible to NaF induced toxicity. This increase could be attributed to hepatic damage resulting either in increased release of functional enzymes from biomembranes, or the increased synthesis as reported by Muthumani and Prabu (2012).Milton The elevation in the concentration of serum bilirubin in NaF - treated rats is consistent with the presence of hepatic damage (Nabavi et al., 2012c).

On the other hand, this studv showed significant reduction ($P \le 0.05$) of AST, ALT, GGT, ALP and TB in sodium fluoride intoxicated rats after treating them with green(white) (10µl/g BW), red and black grape juices (5, 10 μ l/g BW). These results are in accordance with **Pirinccioglu** et al., (2012) who reported that Okuzgozu juice grape significantly reduced the elevated activities of AST, ALT, ALP and TB and the improved the functional status of the liver. Administration of red grape juice (2ml/rat) daily for 4 week by Alnahdi and Ayaz (2012) ameliorated the alteration in ALT and AST. However, in this study treated sodium fluoride intoxicated rats with black grape juice (10 μ l/g BW) showed $(p \le 0.05)$ low values of AST, ALT, GGT, ALP and TB compared to black grape juice $(5\mu l/g BW)$ and red grape juice (5.10)µl/g BW). The procyanidins found in grapes can inhibit the apoptosis and damage of cells by oxygen free radicals (Li and Zhong, 2004). Therefore, the potent effect of grape juice may be the potent

antioxidant effect of its polyphenols, including phenolic anthocyanins acids, and flavonoids (eg. proanthocyanidins), whereas phenolic compounds and flavonoids possess hepatoprotective activity in various experimental models as reported by Monagas et al, (2003) and sharma et al., (2012).

The results in Table (4) show effect of green (white), red and black grape juice on MDA, GSH.Rd and catalase activity in homogenates of liver hepatotoxicated rats. А significant elevation in the level of MDA and reduction in the activities GSH.Rd of and catalase in the liver were observed in sodium fluoride intoxicated rats when compared with negative control group (p < 0.05). Similar results were obtained by Abdel-Wahab (2013) and Nabavi et al, (2013) who reported that NaF intoxication resulted in а significant increase in lipid peroxidation as evidenced by the increased MDA level, whereas activities of reduced the glutathione (GSH.Rd) and

catalase (CAT) were reduced in hepatic tissues. Naf is known to produce oxidative damage in the liver by enhancing peroxidation of membrane lipids, а deleterious process solely carried out by free radicals (Pieta et al., 2012). Impairment of the antioxidant defense system is considered to be critically involved in NaFinduced toxic effects. This impairment interferes with the elimination of lipid peroxidation and causes their products accumulation in the cells leading to the damage of cell membranes reported by Abdel-Wahab (2013).

On the other hand. sodium fluoride intoxicated rats treated with red and black grape juice (5,10 μ l/g BW) had lower MDA in the liver than those rats treated with green(white) grape juice (10 μ l/g BW) (P<0.05). Also, treatment with 10 μ l/g BW of black grape juice was more effective in reducing MDA by 47,691% compared with positive control group (P<0.05). No Significant differences (P>0.05) was found in the levels of MDA among sodium fluoride intoxicated rats treated with 10 µl/g BW of black grape juice and negative control group. The present results were in the same trend with Toaldo et al., (2015) who found that grape juice ingestion promoted a significant decrease in thiobarbituric acid reactive substances (TBARS) levels compared to the control intervention, demonstrating the effect protective of juice consumption against lipid peroxidation. Also, the reduction in MDA levels after treating Okuzgozu grape juice may be due to its high content of flavonoids and anthocyanin (Pirinccioglu et al., 2012) Furthermore, the activities of GSH Rd CAT and were significantly increased ($P \le 0.05$) in livers of sodium fluoride intoxicated rats treated with green (white) grape juice (10 µl/g BW), red and black grape juice (5, 10 μ l/g BW) as compared with positive control group. However. sodium fluoride intoxicated rats treated with 10µl/g BW of black grape juice had high activity of GSH Rd and CAT compared to other concentrations of different types grape juice (P≤0.05). Lakshmi et al., (2013) reported that black

grape extract showed significant increase in GSH Rd and CAT activities as well as decrease in MDA levels in rat liver compared with lead control group. Treatment with organic and conventional purple grape conferred protection juices lipid against and protein damage oxidative through limited increase in TBARS levels and inhibited reduction of catalase activity in the liver (Rodrigues et al., 2013).. All of these results are in accordance with the content of bioactive polyphenol compounds in grape juice, which could play a role against lipid peroxidation. Gris et al., (2013) showed that the the improvement of antioxidative defense was promoted by grape juice ingestion due to the capacity of phenolic compounds that eliminate free radicals and prevent lipid peroxidation bv scavenging radicals peroxyl in phospholipids membrane of the cells. Black grape juice was capable of reducing carbonyl and lipid peroxidation levels in the liver and induced better antioxidant effects because of its

content of anthocyanin (Dani et al., 2008).

Photo (1) shows effect of green (white), red and black grape juices on histological examination of liver tissues in rats. hepatotoxicity Histopathological examination of the liver of normal control rats revealed normal histological without structure any lesions pathological (H&EX (Photo1A). While 400) the examination of sodium fluoride intoxicated rats liver tissues showed congestion of the control veins and hepatic blood vessels with sinusoidal dilatation. The parenchymal hepatocytes showed various degenerative mostly centrilobular changes including granular and vacuolar degeneration with activated kupffer cells and necrosis of the hepatocytes without any nuclear structure (Photo 1B). Histological sections of livers in Naf treated rats revealed hepatic manifested injury by mononuclear cell aggregation around the congestive blood vessel and bile duct in the buccal area together with dilatation of the sinusoid reported by Khudiar and Aldabaj (2015).

Also, **Atmaca** *et al.*, (2014) showed that fluoride intoxication was associated with severe histopathological changes in liver tissues.

As shown in (Photo 1C) portal area in liver of sodium fluoride intoxicated rats treated with 5μ /g BW of green (white) showed mild grape juice fibroplasia, mild bile duct hyperplasia and inflammatory cells infiltration. The changes in rats treated with 5µl/g BW of red grape juice were focal area of necrotic hepatocytes replaced by mononuclear inflammatory cells (Photo 1D). However, only sinusoidal dilatation and mild hepatocellular degeneration were observed in liver of sodium fluoride intoxicated rats treated with 5µl/g BW of black grape juice (Photo 1E). On the other hand, fluoride rats treated with 10 μ l/g BW of green (white) grape juice revealed mild hyperplasia of the bile duct with few inflammatory cells infiltration (Photo 1F).. Moreover, the liver of sodium fluoride rats treated with 10µl/g BW of red and black grape juice showed mild kupffer cell activation and few necrotic cells

but with normal organization of the hepatic cords (Photo 1G and So H). the histological examination of liver tissues of sodium fluoride intoxicated rats treated with 10µl/g BW of green (white), red and black grape juices had nearly the same moderate degree of restorative effect on the hepatic structure against the harmful effect of NaF. Pirinccioglu et al., (2012) found that administration of grape juice resulted in the restoration of the pathology of the liver tissue to some extent. Grape juices present important hepatic and systemic protection effects against oxidative damages in rats (Rodrigues et al, 2013). Quercetin (the most abundant flavonoids in black grape juice) was reported as a protective agent against oxidative damage in rat hepatocytes reported by Liu et al., (2009), Whereas flavonoids effectively prevent lipid peroxidation and protein oxidation in liver rats mitochondria (Londhe et al., 2009).

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

CONCLUSION

These results have suggested that red and black grape juice contain a high content of different group of polyphenols, which have а potent antioxidant capacity and potent effects against the toxicity of NaF through inhibition of the development of fluoride induced hepatotoxicity in rats. Accordingly, care must be taken account to ovoid into mammalian and human exposure to NaF and attention should be paid to sources of it in foods and water as well as occupational sources.

References

Abdel-Wahab WM (2013):

Protective effect of thymoquinone on sodium fluoride-induced hepatotoxicity and oxidative stress in rats, *The Journal of Basic and Applied Zoology, 66:263-270.*

Alimi H; Hfaeidh N; Mbarki S; Bouoni Z; Sakly M

and Ben Rouma K (2012):

Evaluation of Opuntia ficus indica f. inermis fruit juice hepatoprotective effect upon ethanol toxicity in rats. *Gen Physiol Biophys.*, *31(3): 335-342*.

Allain CC; Richmond Nand Rosechloy P (1974):

Cholesterol enzymatic colorimetric test, *Chem. Clin.*, *19*(20): *1350-1361*.

Alnahdi H S and Ayaz N O (2012):

Beneficial impact of red grape juice against tissue damage induced by ethanol toxicity in rats, *Zoology, 31A (2):51-64.*

Artimage GY and Berry WG (1987):

Statistical Methods 7th Ed.Ames,IowaUniversity Press, 39-63.

Atmaca N; Atmaca HT; Kanici A and Anteplioglu T (2014):

Protective effect of resveratrol on sodium

fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats. *Food Chem. Toxico.*, 70:191-197.

Bancroft D; Steven A and Turner R (1996):

> Theory and Practice of Histological Techniques 4th Churchill Livingstone, Edinburgh, London, Melbourne.

Blaszczyk I; Birkner E and Kasperczy S (2011):

> Influence of methionine on toxicity of fluoride in the liver of rats. *Biol. Trace Elem. Res.*, 139: 325–331.

Bouaziz H; Ben Amara I; Essefi M; Croute F and Zeghal N (2010):

> Pesticide *Biochemistry and Physiology* .96: 24– 29.

Capanoglu E; Vos RCHD; Hall RD; Boyacioglu D and Beekwilder J (2013): Changes in polyphenol content during production of grape juice concentrate. *Food Chemistry*, 139: 521-526.

Castilla P; Echarri R; Dávalos A; Cerrato F; Ortega H; Teruel J L; Lucas MF; Gomez-Coronado D; Ortuno J and lasuncion M (2006):

> Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. *Am. J. Clin. Nutr.*, 84:252e62.

- Dani C; Oliboni LS; Pasquali MA; Oliveira MR; Umezu FM; Salvador M; Moreira JC and Henriques J A (2008): Intake of purple grape juice as a hepatoprotective agent in Wistar rats, J. Med Food, 11: 127-132
- Demacker PM; Von-Janssen HE; Hifman AM; Vant's Lear A and Jansen AP (1980):

Measurement of high density lipoprotein cholesterol in serum. Comparison of six

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

isolation methods combined with enzymatic cholesterol analysis. *Clin. Chem.* 26: 1780-1789.

Fossati P and Prencipe I (1982):

Serum triglycerides determination colorimetrically with an enzyme that produce hydrogen peroxide, *Clin. Chem.* 28: 2077-2083.

Frings CS and Dunn RT (1979):

Colorimetric method for determination total serum lipids based on the sulphopospho vanillin reaction. *Am. J. Clin. Pathol., 53: 89-91.*

Gao Q; Liu Y J and Guan Z Z (2009b):

Decreased learning and memory ability in rats with fluorosis: increased oxidative stress and reduced cholinesterase activity in the brain. *Fluoride 42: 277–285*

Gris EF; Mattivi F; Ferreira EA; Vrhovsek U; Filho

DW; Pedrosa RC and Bordignon-Luiz MT (2013):

Phenolic profile and effect of regular consumption of Brazilian red wines on in vivo antioxidant activity, *Journal of Food Composition and Analysis, 31: 31–40.*

Grucka-Mamczar E; Birkner E; Kasperczyk S; Kasperczyk A; Chlubek D and Samujlo D (2004): Lipid balance in rats with fluoride induced hyperglycemia. *Fluoride*. 37:195-200.

Grucka-Mamczar E: Zalejska-Fiolka J; Chlubek D; Kasperczyk S; Błaszczyk Kasperczyk U: A: Swietochowska E and **Birkner E (2009):** Tea influence of sodium fluoride and caffeine on activity of the antioxidative enzymes and the concentration of malondialdehyde in rat liver, Fluoride. 42: 105-

109.

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Hassan HA and Yousef MI (2009):

Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced hepatotoxicity and oxidative stress in rats. *Food Chem. Toxico.*, 47:2332-2337.

He LF and Chen JG (2006):

DNA damage, apoptosis and cell cycle changes induced by fluoride in rat oral mucosal cells and hepatocytes, *World J. Gastroenterol.* 12:1144– 1148.

Ishimoto EY; Ferrari CK; Bastos DH and Torres EA (2006):

In vitro Antioxidant activity of Brazilian wines and grape juices. *J. Wine Res.*, *17*(2): 107-115.

Kaškonienė V; Maruška A; Kornyšova O; Charczun N; Ligor M and Buszewski B (2009):

Quantitative and qualitative determination of phenolic compounds in

honey. Chemine Technologija, 3: 74-80.

Khudiar KK and Aldabaj AMA (2014):

Effect of high concentration of sodium fluoride on serum lipid profile of male rabbits: Hypolipidemic effect of grape seed oil. *Online Int. Interdisciplin. Res. J.* 5:17-24.

Khudiar KK and Aldabaj AMA (2015):

Effect of grape seed oil on hepatic function in adult male rabbits treated with sodium fluoride (Part-II). Advances in Animal and Veterinary Sciences, 3(10): 550-558.

Koyama R; de Assis AM; Yamamoto LY; Borges WF; de Sa Borges R; Prudencio SH and Roberto SR (2014):

> Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from 'Isabel' grapes (Vitis labrusca L.). *Hort Science*, 49: 460-464.

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Kulcan AA; Öziyci HR; Tetik N and Karhan M (2015): Changes in turbidity, total

Changes in turbidity, total phenolic and anthocyanin contents of clear red grape juice during processing. *GIDA.*, 40(6): 311-317.

Lako J; Trenerry VC; Wahlqvist M; Wattanapenpaiboon N; Sotheeswaran S and Premier R (2007):

Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. *Food Chemistry, 101:* 1727–1741.

Lakshmi BV; Sudhakar M and Aparna M (2013):

Protective potential of black grapes against lead induced oxidative stress in rats. Environmental Toxicology and pharmacology, 35:61-68.

Lee R and Nieman D (1996):

Nutrilional. Assessment. 2 nd, Mosby, Missouri, USA.

Li L and Zhong J (2004):

Effect of grape procyanidins on the apoptosis and mitochondrial transmembrane potential of thymus cells, Journal of Hygiene research, 33: 191–194.

Liang Z; Cheng L; Zhong GY and Liu R H (2014):

Antioxidant and Antiproliferative activities of twenty- four Vitis vinifera grapes. *J. Pone.* 9(8): 105-146.

Liu G; Chai C and Cui L (2003):

Fluoride causing abnormally elevated serum nitric oxide levels in chicks. Environ. *Toxicol. Pharmacol.* 13: 199–204.

Liu S; Hou W; Yao P; Zhang B; Sun S; Nussler A K and Liu L (2009):

Quercetin protects against ethanol-induced oxidative

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

damage in rat primary hepatocytes. *Toxicol In Vitro*.

Mitic MN; Obradovic MV; Kostic DA; Naskovic DC and Micic R J (2011):

> Phenolics content and antioxidant capacity of commercial red fruit juices. *Hem. Ind.*, 65(5): 611-619.

Monagas M; Gomez-Cordoves C; Bartolome B; Laureano O; Ricardo DA and Silva JM (2003):

> Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem., 51: 6475-6481

Montvale NJ (2002):

PDRforHerbalMedicines,seconded.MedicalEconomics,PP.362–363.

Moron MS; Despierre JW and Minnervik B (1979):

Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. *Biochim. Biophys. Acta.*, 582:67–78.

Moss DW and Henderson AR (1999):

Clinical enzymology. in: Burtis CA, Ashwood, E.R., editors. Tietz textbook of clinical chemistry. 3rd ed. Philadephia: WB Saunders company; PP. 617-721.

Muthumani M and Milton Prabu S (2012):

Silibinin potentially protects arsenic induced oxidative hepatic dysfunction in rats. *Toxicol. Mech. Methods*, 22: 277-**288.**

Nabavi SF; Moghaddam AH; Eslami S and Nabavi S M (2012):

Biological Trace Element *Research.* 145:369–374.

Nabavi SF; Nabavi SM; Abolhasani F;

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Moghaddam AH and Eslami S (2012a):

Cytoprotective effects of curcumin on sodium fluoride-induced intoxication in rat erythrocytes. *Bull. Environ. Contam. Toxicol.,* 88:486–490

Nabavi SF; Habtemariam S; Jafari M; Sureda A and Nabavi S M (2012b.):

> Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. *Bull. Environ. Contam. Toxicol., doi:10. 1007/s00128-012-0645-4*

Nabavi SM; Nabavi SF; Eslami S and Moghaddam A H (2012c):

> In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. *Food Chem., 132: 931–935.*

Nabavi SF; Nabavi SM; Habtemariam S; Moghaddam AH; Suredo

A; Daglia M; Jafari M and Latifi AM (2013):

Hepatoprotective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride – induced oxidative stress. *Industrial Crops and products, 44: 50-55.*

Nile SH; Kim DH and Keum YS (2015):

Determination of anthocyanin content and antioxidant capacity of different grape varieties. *Ciência Téc. Vitiv. 30(2):* 60-68.

Ohkawa H; Ohishi N and Yagi K (1979):

Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. *Anal Biochem.*, 95:351-358.

Park YK; Park E; Kim JS and Kang MH (2003):

Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans.

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Mutation Research, 529: 77–86.

Pearlman FC and Lee RTY (1974):

Detection and measurement of total bilirubin in serum, with of surfactants use as solubilizing agents. Clinical Chemistry 20, 447-453.

Pieta BS; Bielec B; Birkner K and Birkner E (2012):

The influence of vitamin E and methionine on the activity of enzymes and the morphological picture of liver of rats intoxicated with fluoride. *Food Chem. Toxicol.*, *50*:972-978.

Pirinccioglu M; Kızıl G; Kızıl M; Ozdemir G; Kanay Z and Ketani MA (2012):

Protective effect of Okuzgozu (Vitis vinifera L. cv.) grape juice against carbon tetrachloride induced oxidative stress in rats. *Food Funct.*, 3:668-673.

Reeves PG; Nielsen FH and Fahey GC (1993):

AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition adhoc writing committee on the reformulation of the AIN-76 A rodent diet. *J. Nutr.*, *123: 1939–1951.*

Rodrigues AD; Scheffel TB ; Scola G; Dos Santos M T; Fank B; Dani C; Vanderlinde R; Henriques JA; Coitinho AS and Salvador M (2013):

Purple grape juices prevent pentylenetetrazolinduced oxidative damage in the liver and serum of wistar rats. *Nutri. Research, 33: 120-125.*

Rosalki SB; Rav D; Lchman D and Prentice M (1970):

Determination of serum gamma-glutamyl transpeptidase activity and its clinical applications. *Ann Clin Biochem* 7:143–7

Shanthakumari D; Srinivasalu

S and Subramanian S (2004):

Effect of fiuoride intoxication on lipidperoxidation and antioxidant status in experimental rats. *Toxicology, 204: 214-228.*

Shanmuganayagam D;

Warner TF; Krueger CG; Reed JD and Folts J (2007):

Concord grape juice attenuates platelet aggregation, serum cholesterol and development of atheroma in hypercholesterolemic rabbits, *Atherosclerosis*, 190:135–142.

Sharma A; Sangameswaran B; Mahajan SC and Manmeet Singh Saluja

MS (2012):

Protective effects of Sidaveronicaefoliaagainstethanolinducedhepatotoxicityinexperimentalanimals.Phytopharmacol.,3(1):137-144.3(1):

Sinha AK (1972):

Colorimetric assay of catalase. *Ann Biochem* 47:389–94.

Toaldo IM; Cruz FA; Alves T; de Gois JS; Borges DL; Cunha HP; da Silva EL and Bordignon-Luiz MT (2015) :

> Bioactive potential of Vitis labrusca L. grape juices from the southern region of Brazil: Phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. *Food Chemistry*, *173: 527-535*.

Van Duvnhoven JP; Vaughan EE; Jacobs DM: Kemperman RA; Van Velzen EJJ; Gross G; **Roger LC; Possemiers S;** Smilde A K: Doré J: Westerhuis JA and Wiele TV (2010): Microbes and Health Sackler Colloquium: Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Sciences of the United States of America, 108: 4531–4538.

Varley H; Gewenlock A and Bell M (1980):

Practical clinical biochemistry, Vol. 1, 5th ed. Pp.741:897. London; Williams Heinemen Medical books, Ltd

Vinson JA; Teufel K and Wu N (2001):

Red wine, dealcoholized red wine, and especially grape juice, inhibit atherosclerosis in a hamster model, *Atherosclerosis 2001, 156,* 67–72

Wang Y N; Xiao KQ; Liu J L ; Dallner G and Guan Z Z.(2000):

Effect of long term fluoride exposure on lipid composition in rat liver. *Toxicology*, 146, 161–169.

Xu BJ and Chang SKC (2007):

A comparative study on phenolic profiles and

antioxidant activities of legumes as affected by extraction solvents. *J. Food Sci.*, 72: 159-166.

Yang J and Xiao XY (2013):

Grape phytochemicals and associated health benefits. *Critical Reviews in Food Science and Nutrition*, 53(11): 1202–1225

Yildirim H K; Akçay YD; Güvenç U; Altindisli A and Sözmen EY (2005):

Antioxidant activities of organic grape, pomace, juice, must, wine and their correlation with phenolic content. Int. J. Food Sci. Technol., 40, 133-142.

Table (1): Total phenolic, total flavonoids and anthocyanins of freshgreen(white), red and black grape juice.

Parameters	Green (white) grape juice	Red grape juice	Black grape juice
Total phenolic	50.41 ⁶ + 0.01	105 ch . 0.0	172 08 . 2.01
(mg gallic acid/100ml)	$53.41^{\circ} \pm 2.81$	$125.6^{\circ} \pm 2.8$	$1/2.8^{-} \pm 3.01$
Total Flavonoids		ee e ha a ae	
(mg catechin/100 ml)	$14.75^{\circ} \pm 0.75$	$22.74^{\circ} \pm 1.87$	$32.42^{\circ} \pm 3.49$
Anthocyanins (mg cyanidin-3- glucoside/100ml)	0.89 ± 0.34	$72.47^{b} \pm 2.65$	$95.34^{a} \pm 0.79$

Each value in the table is the mean \pm standard deviation of three replicates.

Groups	Negative control	Sodium Fluoride groups						
		Positive control	Green (white) grape juice		Red grape juice		Black grape juice	
Parameters			(5µl/g BW)	(10 µl/g BW)	(5µl/g BW)	(10 µl/g BW)	(5µl/g BW)	(10 µl/g BW)
Total lipids (mg/dl)	421.96 ^f <u>+</u> 11.03	604.71 ^a <u>+</u> 10.24	595.5 ^a <u>+</u> 14.49	569.67 ^b <u>+</u> 9.42	540.5 [°] <u>+</u> 9.65	$502.08^{d} \pm 10.12$	493.5 ^d <u>+</u> 8.67	440.17 ^e <u>+</u> 9.54
Cholesterol (mg/dl)	97.38 ^f <u>+</u> 1.34	170.33 ^a <u>+</u> 7.5	162.67 ^b <u>+</u> 6.15	140.83 ^c <u>+</u> 9.02	134.17 ° <u>+</u> 7.63	109.33 ° <u>+</u> 5.47	117.67 ^d <u>+</u> 5.2	$101.33^{\text{ f}} \pm 6.02$
Triglyceride (mg/dl)	$66.86^{f} \pm 2.18$	114.03 ^a <u>+</u> 3.96	104.42 ^b <u>+</u> 4.91	93.47 ° <u>+</u> 3.66	91.95 ° <u>+</u> 5.32	77.33 ° <u>+</u> 3.78	84.46 ^d ± 2.24	70.21 ^f <u>+</u> 1.84
HDL.c (mg/dl)	56.97 ^a <u>+</u> 1.67	13.75 ^g <u>+</u> 1.33	20.92 ^f <u>+</u> 2.87	26.25 ° <u>+</u> 4.19	28.17 ^e <u>+</u> 4.49	42.38 ° <u>+</u> 4.47	36.39 ^d <u>+</u> 3.94	52.38 ^b <u>+</u> 4.47
VLDL.c (mg/dl)	$13.37^{\rm f} \pm 0.44$	22.81 ^a ± 0.79	20.88 ^b <u>+</u> 0.98	18.69 ° <u>+</u> 0.73	18.39 ° <u>+</u> 1.06	15.47 ° <u>+</u> 0.76	$16.89^{d} \pm 0.45$	14.04 ^f <u>+</u> 0.36
LDL.c (mg/dl)	27.04 ^g <u>+</u> 0.77	133.77 ^a <u>+</u> 7.79	120.87 ^b <u>+</u> 7.25	95.89 ^c <u>+</u> 7.79	87.61 ^d + 7.77	51.48 ^f <u>+</u> 6.16	64.39 ^e <u>+</u> 4.93	34.91 ^g <u>+</u> 8.31

Table (2): Effect of green (white), red and black grape juice on serum lipid profile of hepatotoxicity rats

Values in the table were expressed as means \pm SD. Different letters in the same now were significantly different ($p \le 0.05$).

HDL.c : high density lipoprotein cholesterol, VLDL.c : very low density lipoprotein cholesterol, LDL.c : low density lipoprotein cholesterol.

Table (3): Effect of green (white), red and black grape juice on liver function of hepatotoxicity rats.

Groups	Negative control	Sodium Fluoride groups						
		Positive control	Green (white) grape juice		Red grape juice		Black grape juice	
Parameters			(5µl/g BW)	(10 µl/g BW)	(5µl/g BW)	(10 µl/g BW)	(5µl/g BW)	(10 µl/g BW)
AST (U/I)	70.83 ^g <u>+</u> 2.4	125.33 ^a ± 12.08	$120.33^{a} \pm 2.8$	109.5 ^b ± 2.43	103 ^c ± 2.61	93.83 ^d ± 3.06	86.17 ^e ± 3.19	77.5 ^f <u>+</u> 1.87
ALT (U/I)	$30.09^{\text{f}} \pm 2.35$	67.5 ^a <u>+</u> 3.62	56.5 ^b <u>+</u> 3.08	55.17 ^b <u>+</u> 3.54	48.5 ° <u>+</u> 4.28	$42.62^{d} \pm 2.42$	41.5 ^d ± 2.43	36.17 ° <u>+</u> 3.76
GGT (U/I)	33.67 ^f <u>+</u> 2.88	80.02 ^a <u>+</u> 2.64	78.33 ^a <u>+</u> 3.14	72.11 ^b <u>+</u> 2.54	63.67 ^c <u>+</u> 2.16	51.17 ^d <u>+</u> 2.93	53.5 ^d <u>+</u> 3.83	40.31 ° <u>+</u> 3.48
ALP (U/I)	116.13 ^g ± 2.58	182.88 ^a ± 2.91	178.83 ^a ± 3.19	166.33 ^b ± 5.65	161.5 [°] ± 4.09	150.17 ^d ± 3.97	$142.88^{e} \pm 3.4$	$128.44^{\text{ f}} \pm 2.02$
TB (mg/dl)	$0.42^{d} \pm 0.1$	0.99 ^a <u>+</u> 0.3	0.93 ^a <u>+</u> 0.36	0.85 ^{ab} <u>+</u> 0.04	0.74 ^{bc} <u>+</u> 0.31	$0.69^{\circ} \pm 0.02$	$0.62^{\circ} \pm 0.03$	$0.48^{\text{d}} \pm 0.04$

Values in the table were expressed as means \pm SD. Different letters in the same now were significantly different ($p \le 0.05$).

AST: aspartate aminotransferase, ALT : alanine aminotransferase, ALP : alkaline phosphatase, GGT : gamma glutamine transferase, TB : total bilirubin.

Table (4): Effect of green (white), red and black grape juice on MDA, GSH and Catalase activity in liver homogenate of

Groups	Negative control	Sodium Fluoride groups						
		Positive control	Green (white) grape juice		Red grape juice		Black grape juice	
Parameters			(5µl/g BW)	(10 µl/g BW)	(5µl/g BW)	(10 µl/g BW)	(5µl/gBW)	(10 µl/g BW)
MDA (Mmol / g.tit)	27.16 ^e <u>+</u> 8.93	61.14 ^ª <u>+</u> 3.44	59.24 ^a <u>+</u> 2.71	54.19 ^b <u>+</u> 3.04	49.26 ^c <u>+</u> 3.38	43.26 ^d <u>+</u> 3.71	39.72 ^d <u>+</u> 1.57	31.98 [°] <u>+</u> 2.11
GSH Rd (Mg / g.tit)	17.45 ^a <u>+</u> 1.49	7.86 ^f <u>+</u> 1.28	8.01 ^f <u>+</u> 0.64	9.49 ^e <u>+</u> 1.31	11.02 ^d <u>+</u> 0.85	12.55 ^c <u>+</u> 1.14	12.28 ^{cd} <u>+</u> 1.48	14.95 ^b <u>+</u> 1.15
CAT (Mmol/g.tit)	80.7 ^a <u>+</u> 1.8	47.2 ^f <u>+</u> 3.04	49.35 ^f <u>+</u> 1.91	52.09 [°] <u>+</u> 2.78	54.73 ^e <u>+</u> 1.8	61.09 ^d <u>+</u> 1.58	65.64 ^c <u>+</u> 2.1	75.09 ^b <u>+</u> 3.03

hepatotoxicity rats

Values in the table were expressed as means \pm SD. Different letters in the same Raw were significantly different ($p \le 0.05$). MDA: malonaldehyde, GSH.Rd : reduced glutathione, CAT: catalase.

A: negative control, B: positive control (sodium fluoride group untreated), c: sodium fluoride group treated with 5μ /g BW of green (white) grape juice, D: sodium fluoride group treated with 5μ /g BW of red grape juice, E: sodium fluoride group treated with 5μ /g BW of black grape juice, F: sodium fluoride group treated with 10μ /g BW of green (white) grape juice, G: sodium fluoride group treated with 10μ /g BW of red grape juice H: sodium fluoride group treated with 10μ /g BW of red grape juice.

Photo (1): Effect of green (white), red and black grape juice on histological examination of liver tissues in hepatotoxicity rats.

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2016 (48) 27

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

دراسة مقارنة بين أنواع مختلفة من عصير العنب على تسمم الكبد الناجم عن فلوريد الصوديوم في الجرذان البالغة

نجلاء على الشيخ – عبير أحمد خضر – الآء حازم نوفل

قسم التغذية وعلوم التغذية بكلية الاقتصاد المنزلي جامعة المنوفية ، شبين الكوم، مصر

الملخص العربى

استهلاك الفواكه يلعب دورا هاما كعامل حماية للصحة ، ويعتبر عصبير العنب مشروب وقائي صحى نظرا لمحتواه العالي من المركبات الفينوليه الفعالة ونشاطها المضاد للأكسدة . لذا فقد صممت الدر اسة الحالبة لمقارنة التأثير ات المحتملة لثلاثة أنواع من عصير العنب [الأخضر (الأبيض) ، الأحمر و الأسود] ضد تسمم وتلف الأنسجة الناجم عن فلوريد الصوديوم في كبد الجرذان. تم تقسيم الجرذان إلى خمس مجموعات ، المجموعة الأولى كانت بمثابة المجموعه الضابطة السالبة (٦ جرذان) تغذت على الوجبة الضابطة ، المجموعات من الثانية للخامسة تتناول جرعة واحدة عن طريق الفم ١٠,٣ ملجم/كجم من وزن الجسم من فلوريد الصوديوم لمدة ستة أسابيع والمجموعة الثانية كانت بمثابة المجموعة الضابطة الموجبة (٦ جرذان) ، المجموعة الثالثة ، الرابعة والخامسة (١٢ جرذ بكل منها) تغذت على الوجبة الضابطة وتم تقسيم كل مجموعة منها إلى مجموعتين فرعيتين (٦ جرذان بكل منها) وأعطيت جرعة يومية عن طريق الفم ٥، ١٠ ميكروليتر/جرام من وزن الجسم لمدة ٦ أسابيع من عصبير العنب الأخضر (الأبيض)، الأحمر والأسود على التوالي. بعد انتهاء فترة التجربة ، تم تقييم صورة دهون الدم ، وظائف الكبد ، مستوى المالوندالدهيد (MDA) ، نشاط الجلوتاثيون المختزل (GSH.Rd) والكتاليز (CAT) والفحص النسيجي لأنسجة الكبد. وقد أظهرت النتائج أن معاملة الجرذان بفلوريد الصوديوم أدى إلى ارتفاع دهون الدم ، وظائف الكبد في السيرم ومستويات المالوندالدهيد(MDA) مع انخفاض نشاط الجلوتاثيون المختزل (GSH.Rd) والكتاليز(CAT) في أنسجة الكبد ، في حين أن معاملة الفئران المصابة بالتسمم بفلوريد الصوديوم بعصبير العنب الأحمر والأسود قد خفضت من مستويات دهون الدم ، انزيمات الكبد و المالوندالدهيد (MDA) مع تحسن نشاط الجلوتاثيون المختزل (GSH.Rd) والكتاليز (CAT) والتغيرات الهستوباثولوجية. في أنسجة الكبد ، بينما معاملة الجرذان بعصبير العنب الأسود بجرعه (١٠ ميكروليتر/ جرام من وزن الجسم) كانت أكثر فاعلية في التخفيف من الأثار الضارة لفلوريد الصوديوم في الفئران. وقد خلصت الدراسة إلى أن عصير العنب الأحمر والأسود له تأثير فعال ضد تسمم الكبد الناجم عن فلوريد الصوديوم في الجرذان وأن هذا التأثير قد برتبط بنشاط عصبر العنب المضاد للأكسدة

الكلمات الكشافة : تسمم الكبد – فلوريد الصوديوم – عصير العنب الأحمر والأسود – وظائف الكبد.