Alleviation of Salt Stress in *Nigella Sativa* L. By Gibberellic Acid and Rhizobacteria

Nahed, M. Rashed ¹, Awad. Y. Shala², Mahmoud A. Mahmoud³

ABSTRACT

Salinity is one of the extremely serious abiotic stresses for plants, affecting other subsequent consequences such as oxidative stress, which finally leads to cell death. A pot experiment was performed during 2014 / 2015 and 2015/ 2016 at Sakha Agricultural Research Station, to elucidate the alleviation of salinity effects by spraying gibberellic acid (GA₃), Azospirillum sp. and Azotobacter sp. Rhizobacteria (PGPR) and the combination between GA₃+(PGPR) and their effects on the vegetative growth, yield characters, chemical composition and fixed oil percentage of black cumin plant. Salinity concentrations were 1000, 2000, 3000 and 4000 ppm sea water diluted compared with fresh water as control, GA₃ was used at 100 ppm and PGPR at10%. Salinity treatments significantly decreased plant height, number of branches, plant dry weight, number of capsules, number of roots per plant, root volume, roots fresh and dry weights, capsules yield, seed yield /plant and 1000 seeds weight compared with control. Salinity also decreased chlorophyll content, fixed oil percentage and relative water content. However, proline content, peroxidase and catalase activities, membrane permeability and total soil soluble salts were increased relative to the control. GA3 or PGPR treatments alleviated the above mentioned undesirable effects of salinity. The increment of enzymes activities and proline accumulation due to GA3 or PGPR treatments are suggested to involve as part of the defense versus salinity on Nigella sativa L plants. To reduce the unfavorable salinity influences, treatment of GA₃ at 100 ppm or PGPR at10% was recommended.

Keywords: Salinity, *Nigella sativa* L., gibberellic acid, *Rhizobacteria*, Seed yield, Fixed oil.

INTRODUCTION

Nigella sativa L. (black cumin) is an aromatic and medicinal plant from Ranunculaceae family. This plant is customarily utilized as a flavor and as a characteristic cure in the treatment of a few diseases (Cheikh-Rouhou *et al.*, 2007). It exhibited an extensive pharmacological actions (Bourgou *et al.*, 2008, 2010) which due to its abundance in a few secondary metabolites including

seed volatile oil (Bourgou *et al.*, 2010), seed fixed oil which, contain linoleic acid (40.3–58.9%), oleic (18.7–28.1%), palmitic (10.1–12.5%) and stearic (2.6–3.1%) acids (Ramadan, 2007 and Matthaus and Ozcan, 2011) and phenolic compounds in the shoots and the roots (Bourgou *et al.*, 2008). The previous both organs are chiefly rich in vanillic acid. This plant has been expanded as a usual remedy for illnesses for example, asthma, irritation, diabetes, tumor, gastrointestinal unsettling influences, hypertension, and gynecological disorders for over several years (Ramadan, 2007).

Egyptian economy depends on a great degree on agriculture. The rapidly rising population and variations in the way of life require judicious advancement in agricultural production. Thus, the prominent goal of the Egyptian policy is to rise the land production through better land usage, improvement of agricultural techniques and bring new land areas to cultivation. The Egyptian budget of the Nile freshwater is low and its quantity approximately 55.5 milliard m³. Looking at the upcoming of stressing water demands, it is quite obvious, that a very careful use of accessible water sources and expansion of new resources such as drainage, well, sewage and sea water should be contemplated. Irrigation by saline water may decrease crops yield. Although, using sea water in irrigation may save the fresh water resources for the other usages but, what about the effect of using sea water in agriculture?

Plants grown in farming systems are subjected to numerous abiotic and biotic stresses which reduce their quality and revenue potential. Salinity remains the basic reason which, decreasing plant growth then productivity worldwide. It influences around 7% of the world's whole land area (Flowers *et al.*, 1997 and Zhu, 2002). Salinity stress influences growth besides metabolic activities of plant species (Baghalian *et al.*, 2008 and Oueslati *et al.*, 2010). Upon observing environmental stresses plants enact a range of resistance mechanisms which might also be made artificially or boosted by

¹Vegetable and Floriculture Dept., Fac. of Agric. Damietta Univ., Damietta, Egypt.

E-mail address: rashed nahed@du.edu.eg

²Medicinal and Aromatic Plants Research Department, Horticulture Research Institute. Agricultural Research Center, Giza, Egypt.

E-mail address awad.shala@yahoo.com

³Water Requirements and Field Irrigation Department, Soils,

Water and Environment Research Institute. Agricultural Research Center, Giza, Egypt.

E-mail address mahmoud_abdalla96@yahoo.com

Received October 16,2017, Accepted November29, 2017

using specific chemicals (Rajasekaran and Blake, 1999). These days consideration has been directed to practical and environment-friendly substitutes for example, biological ways to improve and encourage plant growth. Beneficial bacteria, particularly in plants rhizosphere have been examined and established to have growth-promoting activities. The impact of PGPR on the alleviation of salinity has been stated (Weyens *et al.*, 2009 and Yang *et al.*, 2009)

Also, other attempts have been made to alleviate deleterious effects of salinity; different types of phytohormons are being used. Of these, gibberellic acid is an essential phytohormone able to impart stress tolerance involving salinity, in several plants (Hoque and Haque, 2002). The GA₃ has significantly impact the procedures of seed germination, leaf extension, stem stretching, bloom and trichome origination, and fruit development (Yamaguchi, 2008). Through their impact on photosynthetic enzymes, GA₃ is identified to increase the photosynthetic efficacy of plants, leaf area index, light capture, the efficiency of nutrients and assume an essential part in regulating various processes through plant development (Khan, et al. 2010). GA3 has been accounted to reduce the undesirable consequences of salinity plant water relationships in addition water use efficiency (Yamaguchi, 2008). The effect of GA₃ on salinity mitigation has been previously reported (Maggio et al., 2010) on tomato plants, (Saeidi-Sar et al., 2013) on (Phaseolus vulgaris L. cv. Naz) otherwise (Khan, et al. 2010) on (Linum usitatissimum L.).

Under stress, plants established compound mechanisms to combat against these oxidative stresses via the synchronous activity of various antioxidants. Of these, superoxide dismutase (SOD) which changes superoxide to H₂O₂, peroxidase (POD) which changes H_2O_2 to water and catalase (CAT) eliminates H_2O_2 . Also, plants adjust osmotic stress by gathering some compatible solutes for example, proline, glycinebetaine, polyols and trehalose (Ghoulam et al., 2002 and Sakamoto and Murata, 2002). Proline plays a key role in keeping plants from osmotic stress. Thus, antioxidants besides compatible solutes could supply approach to boost plants salt tolerance. Concerning Nigella sativa L. the effect of salinity on leaves fatty

EC_e

 $(dS m^{-1})$

3.73

CO3 ---

acid content has been studied by (Bourgou *et al.*, 2012) . However, no data have been collected regarding seeds fatty acid (fixed oil) content under saline sea water. Nevertheless, to the best of our insight, no published literature exists about sea water salinity effects on fatty acid content. Therefore, this study attempted to investigate for the first time the effect of PGPR and GA_3 on growth attributes and biochemical characters under different concentrations of saline sea water, in order to use of *Nigella sativa* L.as an economic substitute for field crops and to save freshwater.

MATERIALS AND METHODS

Field site description

A pot experiment was carried out at Sakha Agricultural Research Station (31° 07' N Latitude, 30° 05' E Longitude), Kafr El-Sheikh Governorate, North Nile Delta of Egypt during 2014 / 2015 and 2015/ 2016 growing seasons to study the impact of irrigation with sea-fresh mixed water, of increased salinity levels. The experiment was performed using complete randomized blocks design with four replications. Plastic pots with a top diameter of 30 cm and a depth of 18 cm were filled with 5-kilogram clayey soil. Physical and chemical soil properties of the experimental site was showed in Table (A). Black cumin seeds were acquired from Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center, Egypt. Ten seeds were sown on December 1st, 2014 and 2015 in every pot and after six weeks then they were thinned to five healthy seedlings per pot.

Experimental treatments:

Salinity treatments

The plants irrigated with freshwater 289 ppm (0.45ds/m) from sowing until 60 days, then salinity treatments were applied after the seedlings started their growth and development until harvesting on May 1st for both seasons. The plants were given water requirements plus 20% as leaching requirements for all treatments through all seasons until harvest. The salinity levels were obtained by addition of appropriate quantity of sea water to freshwater and were adjusted through a portable Ec meter instrument.

Cations concentration meq/L

 Na^+

22.47

Mg⁺⁻

8.11

 \mathbf{K}^+

0.33

<u>experimenta</u>	l growth season							
Field capacity (%)	Wilting point (%)	Bulk density (mg m ⁻³)	Total porosity (%)	Sand (%)	Silt (%)	Clay (%)	Texture class	рН
44.62	22.83	1.16	56.23	19.16	26.52	54.32	Clayey	8.21

Cl

16.48

 SO_4^{--}

17.18

Ca⁺⁺

7.35

Inions concentration meq/L

HCO₃

4.60

Table A. Some physical and chemical soil properties of the used medium as mean values of the two experimental growth season

The treatments were as the following

1-Control (0.45ds/m). 2- 1000 ppm (1.562ds/m). 3- 2000 ppm(3.125ds/m). 4-3000 ppm (4.69ds/m).

5-4000 ppm (6.25ds/m).

Spraying treatments

Gibberellic acid (GA₃)

Gibberellin 100 ppm was sprayed twice in the morning during the vegetative stage, the first one was on February 15^{th} and 17^{th} in both seasons, respectively. So, this means that after one week from the beginning of the saline irrigation treatments, while the second spray was on March 4^{th} and 6^{th} in both seasons, respectively

Rhizobacteria inoculants (PGPR)

Selected strains of Rhizobacteria (PGPR) were *Azospirillum* sp. and *Azotobacter* sp. both cultures were kindly supplemented by Microbiology Department, Sakha Agricultural Research Station in modified tryptone yeast extract and glucose (TYG) (Jensen, 1951 and Bashan *et al.*, 2002) both media with cell density 4 x 10^{11} and 9 x 10^{9} for *Azospirillum* sp and *Azotobacter* sp respectively. Rhizobacteria were sprayed twice as mentioned in GA₃ at a concentration of 10%.

Gibberellic acid (GA₃) plus Rhizobacteria inoculants(PGPR)

 GA_3 and PGPR were dissolved separately in distilled water as a solution and added as a foliar application using a sprayer and conical bowl which was putted on top of the pots to concentrate spraying on treated plants and prevents spraying other plants. Gibberellic acid was sprayed on the early morning then after two hours, the microbial (PGPR) was sprayed twice in the meantime of the previous treatments (GA₃).

Freshwater

Tap water (0.45ds/m) was sprayed twice in the meantime of the previous treatments as a control.

Harvest time

The plants were gathered at full maturity stage on May 1^{st} in the two seasons.

Collected data

Growth and yield characters

Vegetative growth and yield characters

The height of plants was measured in centimeters of the main stem from ground level to the plant top by measuring tape. The number of branches/plant was determined by counting the number of reproductive branches that appeared within growing season from each plant. Plant dry weight (g): The plants mentioned above were cut, then placed in an envelope and dried naturally in the lap. Capsules were picked randomly from plants, put in a small envelope bag and weighted (g), then determined average capsules number and weight per plant. Seeds yield /plant (g) capsules were picked randomly from plants, shelling the seeds from capsules after physically, drying in the lap their seeds were added to their respective seeds of the capsules in the small bags and weighted, and dry weight of 1000 seeds (g) was estimated by counting 1000-seeds randomly from each pot five times and weighted using a sensitive balance for both seasons.

Root characters

Roots length, roots number, fresh and dry weight and root volume. Plant samples of each plant were taken at harvesting time, washed with distilled water, then spread roots and shoots. Main roots were counted as a number and the length of the main root was measured using scale ruler. Root weighted as fresh using sensitive balance, oven dried at 70 °C even weight stability, dry weight was recorded, ground and kept for analyses. Root volume was determined by water relocation methods, the measuring was prepared in a unique container with an overflow spout. This container is loaded with water until it floods from the spout. Then fresh washed roots which have been carefully dried with a soft cloth are immersed and the flood water volume is measured in a graduated cylinder (Bohm, 2012).

Biochemical characters

Chlorophyll Content

Randomly samples of new leaves April1st were grabbed from the central part of the stem for chlorophyll determination. Chlorophyll a and b mg/g F.W were determined by the method defined by (Moran, 1982) by using spectrophotometer (Pharmacia, LKB-Novaspec II)

Relative Water Content of Leaves (RWC)

The relative water content of leaves (RWC) was estimated by the method of (Whetherley, 1950). Leaf material was balanced (0.5 g) to establish fresh weight (FW) and located in double-distilled water for 4 h, subsequently this time turgid weight (TW) was recorded. Subsequently, the samples were saved in a hot air oven at 65 °C for 48 h and their dry weights (DW) were recorded. RWC was calculated as:

 $(W_{\text{fresh}} - W_{\text{dry}}) / (W_{\text{turgid}} - W_{\text{dry}}) \times 100.$

Membrane permeability (Mb)

Membrane permeability of the excised leaves was measured at the completion of the experiment (Yan *et al.*, 1996) fresh portion from the center of leaves was balanced into a glass beaker comprising reverse osmosis water. The beakers were dipped at $30 \pm 1^{\circ}$ C for 3 h, and subsequently the conductivity of the solution was calculated with a conductivity meter. The conductivity was determined again next boiling the samples for 2 min. once the solution was air-conditioned to room temperature. The percentage of electrolyte leakage was considered by implementation of the formula, EC % = (C1/C2) X 100, since C1 and C2 are the electrolyte conductivities evaluated before and after boiling, respectively.

Fixed oil content

The air dried seeds balanced (50 g) were powdered mechanically and extracted with light petroleum ether (60 - 80 °C) for 4h in a Soxhlet apparatus. Removal of the solvent was done under reduced pressure gave the fixed oils (Horwitz *et al.*, 1970).

Proline

The free proline content was determined according to (Bates *et al.*, 1973). Frozen leaf tissue (0.5g) was homogenized with 10 ml of 3% sulfosalicylic acid at 4 °C. Then, the acquired extract was clarified with Whatman No. 2. A mixture of 2 ml of the filtrate, 2 mL from acid-ninhydrin, and 2 mL of glacial acetic acid was mixed inside a test tube and incubated at 100 °C for 1 h. The reaction was done on the ice, and the reaction combination was then separated with 4 mL of toluene. The chromophore-containing toluene was removed from the hydrated stage. The absorbance at 520 nm was spectrophotometrically defined with toluene as the blank. The proline concentration was calculated established on a standard curve and was communicated as µmol g⁻¹ F.W.

Antioxidant Enzyme Activity

To obtain the enzyme extract for antioxidant enzymes determination, the method formerly described by (Hassan and Mahfouz, 2012) was used. The subsequent supernatant was consumed as an enzyme extract to determine peroxidase (POX) and catalase (CAT) activities. Soluble protein contents of the enzyme extract were assessed according to (Bradford, 1976).

Peroxidase activity

was tested according to (Shannon *et al.*, 1966). Sodium acetate buffer (0.1M) and 0.5% guaiacol were added to the enzyme extract. The reaction was commenced with 0.1% H_2O_2 . The rate of variation in absorbance was spectrophotometrically measured at 470 nm and quantity of enzyme activity was communicated as μ mol min⁻¹ mg⁻¹ protein.

Catalase activity

was spectrophotometrically evaluated by (Claiborne, 1985) following the disappearance of H_2O_2 at 240 nm. The amount of enzyme activity was stated as μ mol min⁻¹ mg⁻¹ protein.

Total soluble salts

At the completion of the experiments soil samples were taken from every pot and chemically analyzed, total soluble salts were measured by electrical conductivity (EC) apparatus in the saturated soil paste extract (Page *et al.*, 1982).

Statistical analysis

Data for each season were evaluated by the method defined by (Steel *et al.*, 1980) and differences between the means were investigated by Duncan's Multiple Range Test (Snedecor and Cochran, 1980) using COSTAT computer program.

RESULTS

Growth and yield characteristics

Vegetative growth characteristics

Salinity treatments adversely affected on plant height, branches number, plant dry weight and capsules number compared to control in both seasons (Table 1). Plants received freshwater (without salinity) gave the highest significant mean values for plant height, branches number, plant dry weight and capsules number for both seasons. Expanding salinity levels gradually decreased all previously mentioned characters. Generally, the overall mean values for this characters can be descended in order 1000ppm >2000ppm >3000ppm > 4000ppm in most cases for the two seasons. The decline in plant height, branches number, plant dry weight and capsules number by salinity was alleviated when GA₃ or PGPR or GA₃ + PGPR were applied. Application of GA3 positively improved plant height better than PGPR or $GA_3 + PGPR$. Moreover, applying PGPR enhanced the branches number which led to increasing plant dry weight and capsules number for both seasons. The interaction among different saline water and exogenous GA3 application recorded the highest plants under different saline water concentrations. Among all treatments applied, the tallest black cumin plants were recorded by GA₃ with 1000 ppm or control treatment without significant variations among them in the first season and GA₃ with 2000 ppm in the second season. Applied PGPR with salinity at 2000 ppm in the first season and PGPR with salinity at 1000ppm in the subsequent season recorded the highest branches number per Nigella sativa L. plant. Additionally, using PGPR with 1000 ppm saline water achieved the heaviest dry weight plus the highest capsules number for both seasons.

Root growth characteristics

All root characters (root length, roots number, root volume, root fresh and dry weight) were significantly influenced by salinity and salinity alleviators treatments **aving by GA₃ and PGPR on plant height, branches**

s 1 st Season 2015 2 nd Season 2016							16		
Fresh	GA ₃	PGPR	GA ₃ +	Mean	Fresh	GA ₃	PGPR	GA ₃ +	Mean
water			PGPR		water			PGPR	
	Pla	nt height (c	cm)			Plan	t height (ci	n)	
44.67f-j	67.00a	49.33d-f	56.67bc	54.41a	37.67fg	50.00ab	43.00de	48.33b	44.75a
42.67h-j	65.33a	46.67e-i	52.67cd	51.83b	35.67g	49.33b	43.33d	47.67bc	44.00ab
48.00de-g	58.67b	42.00h-j	51.33de	50.00bc	44.33d	52.67a	36.00g	44.33d	44.33ab
40.67j	56.67bc	47.33e-h	48.67d-g	48.33cd	36.33g	50.67ab	40.00ef	44.33d	42.83b
40.67j	51.67cde	43.67g-j	51.67с-е	46.92d	36.00g	44.67cd	38.33fg	43.00de	40.50c
43.33d	59.87a	45.80c	52.2b		38.00d	49.47a	40.13c	45.53b	
	Bra	anches nun	nber			Bra	nches num	ber	
5.00b	6.00a	6.00a	5.00b	5.75a	7.00ab	6.67a-c	7.00ab	5.33ef	6.5a
6.00a	4.67cd	6.00a	4.00ef	4.92b	7.00ab	6.33b-d	7.33a	5.00fg	6.42ab
5.00b	5.00b	6.00a	3.67f	4.92b	6.67a-c	5.67d-f	7.00ab	5.33ef	6.17bc
6.00a	4.33de	5.33b	4.00ef	4.92b	6.00cde	6.33b-d	7.00ab	4.33g	5.92c
4.00ef	6.00a	6.00a	4.00ef	5.00b	5.00fg	7.00ab	7.00ab	5.00fg	6.00c
5.20b	5.20b	5.87a	4.13c		6.33b	6.40b	7.07a	5.00c	
		lry weight	(g /plant)					g /plant)	
6.49cd		6.89bc	6.45cd	6.78a	5.61a		5.63a	5.75a	5.72a
6.91bc	4.94fg	8.11a	4.28hi	6.06b	5.28a	3.51a	6.15a	3.65a	4.64b
5.21ef	4.82fgh	6.26d	5.55e	5.46c	4.63a	4.07a	5.42a	4.60a	4.68b
4.52gh	3.81i	5.66e	4.70fgh	4.67d	3.82a	3.10a	4.87a	3.61a	3.85c
3.89i	3.70i	7.42b	4.71fgh	4.93d	3.30a	3.12a	6.39a	3.49a	4.08c
5.41b	4.91d				4.53b	3.94d	5.69a	4.22c	
		Capsules number							
12.67bc	13.33b	17.67a	12.00bc	13.92a	11.00c	10.00d-1	13.33a	8.33h	10.67a
13.00bc	12.00bc	17.00a	12.00bc	13.50a	10.00d-f	10.33c-¢	13.33a	9.33fg	10.67a
									9.75c
	13.33b		13.00bc	12.33bc	9.67e-g			9.00g	10.17b
12.67bc	12.67bc	13.33b	8.67e	11.83c	6.00i		11.00c	6.33i	8.50d
12.07bc	12.67b	15.60a	11.33c		9.53c		12.20a	7.87d	
	water 44.67f-j 42.67h-j 48.00de-g 40.67j 40.67j 40.67j 43.33d 5.00b 6.00a 4.00ef 5.20b 6.49cd 6.91bc 5.21ef 4.52gh 3.89i 5.41b 12.67bc 13.00bc 12.67bc 9.33de 12.67bc 12.07bc	Fresh water GA_3 water44.67f-j 42.67h-j67.00a 65.33a48.00de-g 40.67j58.67b 56.67bc40.67j 40.67j51.67cde 43.33d43.33d59.87a 5.00b6.00a 6.00a6.00a 6.00a6.00a 6.00a4.67cd 5.00b6.00a4.67cd 5.00b6.00a4.33de 4.00ef4.00ef 6.91bc6.00a 4.94fg 5.21ef4.82fgh 4.52gh3.81i 3.89i 3.70i 5.41b3.89i 13.00bc12.00bc 12.67bc12.67bc 9.33de13.33b 12.67bc12.67bc 12.07bc12.67bc 12.67bc	Fresh waterGA3 PGPRPlant height (c $44.67f$ -j $67.00a$ $49.33d$ -f $42.67h$ -j $65.33a$ $46.67e$ -i $48.00de$ -g $58.67b$ $42.00h$ -j $40.67j$ $56.67bc$ $47.33e$ -h $40.67j$ $51.67cd\epsilon$ $43.67g$ -j $43.33d$ $59.87a$ $45.80c$ Branches num $5.00b$ $6.00a$ $6.00a$ $6.00a$ $4.67cd$ $6.00a$ $6.00a$ $4.67cd$ $6.00a$ $6.00a$ $4.67cd$ $6.00a$ $6.00a$ $4.67cd$ $6.00a$ $6.00a$ $4.33de$ $5.33b$ $4.00ef$ $6.00a$ $6.00a$ $6.00a$ $4.33de$ $5.33b$ $4.00ef$ $6.00a$ $6.00a$ $6.00a$ $4.94fg$ $8.11a$ $5.20b$ $5.20b$ $5.87a$ Plant dry weight $6.49cd$ $7.28b$ $6.91bc$ $4.94fg$ $8.11a$ $5.21ef$ $4.82fgh$ $6.26d$ $4.52gh$ $3.81i$ $5.66e$ $3.89i$ $3.70i$ $7.42b$ $5.41b$ $4.91d$ $6.87a$ $Capsules num12.67bc13.33b13.00bc12.00bc16.33a9.33de13.33b13.67b12.67bc12.67bc13.33b12.67bc12.67bc13.67b12.67bc12.67bc13.67b12.67bc12.67bc13.67b$	Fresh waterGA3 PGPRPGA3+ PGPRPlant height (cm) $44.67f$ -j $67.00a$ $49.33d$ -f $56.67bc$ $42.67h$ -j $65.33a$ $46.67e$ -i $52.67cd$ $48.00de$ -g $58.67b$ $42.00h$ -j $51.33de$ $40.67j$ $56.67bc$ $47.33e$ -h $48.67d$ -g $40.67j$ $51.67cd\epsilon$ $43.67g$ -j $51.67c$ -e $43.33d$ $59.87a$ $45.80c$ $52.2b$ Branches number $5.00b$ $6.00a$ $6.00a$ $5.00b$ $6.00a$ $4.00ef$ $5.00b$ $6.00a$ $3.67f$ $6.00a$ $4.67cd$ $6.00a$ $4.00ef$ $5.00b$ $5.00b$ $6.00a$ $4.00ef$ $5.00b$ $5.00b$ $6.00a$ $4.00ef$ $5.00b$ $5.00b$ $6.00a$ $4.00ef$ $6.00a$ $4.02ef$ $4.33de$ $5.33b$ $4.00ef$ $6.00a$ $4.00ef$ $5.20b$ $5.87a$ $4.13c$ Plant dry weight (g /plant) $6.49cd$ $7.28b$ $6.89bc$ $6.45cd$ $6.91bc$ $4.94fg$ $4.11a$ $4.28hi$ $5.21ef$ $4.82fgh$ $6.26d$ $5.55e$ $4.52gh$ $3.81i$ $5.41b$ $4.91d$ $6.87a$ $5.14c$ Capsules number $12.67bc$ $13.33b$ $17.67a$ $12.00bc$ $16.33a$ $11.00cd$ $9.33de$ $13.33b$ $13.67b$ $13.00bc$ $12.67bc$ $12.67bc$ $12.67bc$ $12.67bc$ $13.33b$ <	Fresh waterGA3 BPGPR PGPRGA3+ PGPRMeanPlant height (cm)44.67f-j $67.00a$ $65.33a$ $46.67e-i$ $56.67bc$ $52.67cd$ $54.41a$ $42.67h-j$ 42.67h-j $65.33a$ $46.67e-i$ $52.67cd$ $51.33de$ $50.00bc$ $40.67j$ 40.67j $56.67bc$ $56.67bc$ $47.33e-h$ $48.67d-g$ $48.33cd$ $48.00de-g$ $40.67j$ $51.67cdc$ $43.67g-j$ $51.67cdc$ $43.67g-j$ $51.67c-e$ $46.92d$ 43.33d $59.87a$ $45.80c$ $52.2b$ $46.92d$ $4.33d$ 59.87a $4.00a$ $6.00a$ $4.67cd$ $6.00a$ $4.00ef$ $4.92b$ $5.00b$ $5.00b$ $5.00b$ $6.00a$ $4.67cd$ $6.00a$ $4.00ef$ $4.92b$ $4.00ef$ $4.92b$ 6.00a $4.67cd$ $6.00a$ $4.67cd$ $6.00a$ $4.00ef$ $4.92b$ $4.00ef$ $4.92b$ 6.00a $4.67cd$ $6.00a$ $4.67cd$ $6.00a$ $4.00ef$ $4.92b$ $4.00ef$ $4.92b$ 6.00a $4.67cd$ $4.33de$ $5.33b$ $4.00ef$ $4.00ef$ $4.92b$ 6.00a $4.00af$ $4.00af$ $4.92b$ 6.00a $4.92b$ 6.00a $4.67cd$ $5.20b$ $5.20b$ $5.87a$ $4.13c$ Plant dry weight (g /plant) $6.49cd$ $5.21ef$ $4.82fgh$ $6.26d$ $5.55e$ 6.45cd $6.78a$ $6.91bc$ $4.94fg$ $8.11a$ $4.28hi$ $6.06b$ 5.21ef $4.82fgh$ $6.26d$ $5.55e$ 6.45cd $4.67d$ $3.89i$ $3.70i$ $7.42b$ $4.71fgh$ $4.93d$ 5.41b $4.91d$ $6.87a$ $5.14c$ 12.67bc $12.00bc$ $13.33b$ $13.67b$ $13.00bc$ $12.33bc$ 12.67bc $12.$	Fresh waterGA3 PGPRPGPR PGPRMean PGPRFresh water $44.67f$ -j $67.00a$ $49.33d$ -f $56.67bc$ $54.41a$ $37.67fg$ $42.67h$ -j $65.33a$ $46.67e$ -i $52.67cd$ $51.83b$ $35.67g$ $48.00de$ -g $58.67b$ $42.00h$ -j $51.33de$ $50.00bc$ $44.33d$ $40.67j$ $56.67bc$ $47.33e$ -h $48.67d$ -g $48.33cd$ $36.33g$ $40.67j$ $51.67cd\epsilon$ $43.67g$ -j $51.67c$ -e $46.92d$ $36.00g$ $43.33d$ $59.87a$ $45.80c$ $52.2b$ $38.00d$ $33dc$ $59.87a$ $45.80c$ $52.2b$ $38.00d$ $6.00a$ $6.00a$ $5.00b$ $5.75a$ $7.00ab$ $6.00a$ $4.67cd$ $6.00a$ $4.00ef$ $4.92b$ $7.00ab$ $6.00a$ $4.67cd$ $6.00a$ $4.00ef$ $4.92b$ $6.00cde$ $4.00ef$ $6.00a$ $6.00a$ $4.00ef$ $4.92b$ $6.00cde$ $4.00ef$ $6.00a$ $6.00a$ $4.00ef$ $4.92b$ $6.00cde$ $4.00ef$ $6.00a$ $6.00a$ $4.00ef$ $5.00b$ $5.00fg$ $5.20b$ $5.87a$ $4.13c$ $6.33b$ $5.28a$ $5.21ef$ $4.82fgh$ $6.26d$ $5.55e$ $5.46c$ $4.63a$ $4.52gh$ $3.81i$ $5.66e$ $4.70fgh$ $4.67d$ $3.82a$ $3.89i$ $3.70i$ $7.42b$ $4.71fgh$ $4.93d$ $3.30a$ $5.41b$ $4.91d$ $6.87a$ $5.14c$ $4.53b$ Cap	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Means designed by the same letter at each cell are not significantly different at the 5% level according to Duncan's multiple range tests.

(Table 2). While, salinity treatments significantly decreased (root length, root number, root volume, root fresh and dry weight). Using GA₃ or PGPR or GA₃ + PGPR significantly increased them when applied or minimized the reduction occurred by salinity. The most efficient treatment in this concern was GA₃ which promoted root length, root volume, root fresh and dry weight for both seasons. Otherwise, GA₃ + PGPR significantly boosted roots number. Moreover, a combination between GA₃ with salinity mostly caused a noticeable root length increment and root volume in the two seasons. Also, the inhibitory impact of salinity stress was completely ameliorated generally at low salinity level (1000 ppm) with GA₃ especially in root fresh and dry weight for both seasons.

Yield characteristics

From Table 3 and Fig 1, a gradual reduction in capsules dry weight, seeds yield/plant and 1000 seeds weight with increasing of salinity levels could be noticed; the least values in this concern were obtained from the elevated level (4000ppm) for all parameters in both seasons. Otherwise, salinity treatments caused more reduction in seeds yield/plant reached 67.39 and 80.37% at 4000ppm for both seasons, respectively. Although GA₃, PGPR and GA₃+ PGPR alleviated the adverse salinity influences on capsules dry weight, seeds yield/plant and 1000 seeds weight. Applying PGPR enhanced capsules dry weight and seeds yield/plant. Moreover,

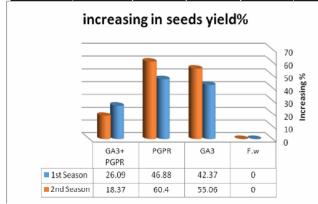

increasing of seeds yield/plant by applying PGPR reached to 46.88 and 60.40% in both seasons, respectively while, using GA₃ increased 1000 seeds weight. The highest capsules dry weight was obtained

Table 2. Effect of saline irrigation water levels and tr
for both growth seasons. A promotion effect on seeds
from plants treated with GA3+ PGPR without salinity

yield/plant and 1000 seeds weight was also noticed

 Table 2. Effect of saline irrigation water levels and treatment with GA3 or PGPR on root length, root number, root volume, root fresh and dry weights of N. sativa L. plants

Seasons		1 st	Season 20	15	-	2 nd Season 2016						
	Fresh	GA ₃	PGPR	GA ₃ +	Mean	Fresh wate	GA ₃	PGPR	GA ₃ +	Mean		
Spraying	water			PGPR					PGPR			
Salinity			ot length (c					oot length (cr				
Control	13.00e	17.00a	14.00d	14.00d	14.50a	11.00e	15.00a	13.00c	12.00d	12.75a		
1000ppm	14.00d	17.00a	14.00d	13.00e	14.50a	13.00c	13.00c	14.00b	11.00e	12.75a		
2000ppm	16.00b	12.00f	15.00c	12.33f	13.83b	11.00e	11.00e	14.00b	12.00d	12.00b		
3000ppm	12.67e	14.00d	13.00d	13.00e	13.42b	13.00c	12.00d	11.00e	10.67e	11.67c		
4000ppm	13.00e	12.00f	13.00e	13.00e	12.75c	12.00d	11.70d	10.00f	11.00e	11.18d		
Mean	13.73b	14.40a	13.80b	13.07c		12.00b	12.54a	12.40a	11.33c			
			oot Numbe					Root Number				
Control	5.00d	6.00c	5.00d	8.00a	6.00a	6.00b	6.00b	5.00c	7.00a	6.00a		
1000ppm	5.00d	6.00c	5.00d	7.00b	5.75b	6.00b	5.00c	5.00c	5.00c	5.25b		
2000ppm	6.00c	6.00c	5.00d	6.00c	5.75b	6.00b	5.00c	5.00c	5.00c	5.25b		
3000ppm	5.00d	6.00c	6.00c	6.00c	5.75b	4.00d	5.00c	5.00c	5.00c	4.75c		
4000ppm	6.00c	5.00d	5.00d	5.00d	5.25c	5.00c	5.00c	5.00c	4.00d	4.75c		
Mean	5.40c	580b	5.20c	6.40a		4.80c	5.20b	5.00b	5.40a			
			ot volume(c		Root volume (cm^3)							
Control	3.6cde	4.5a	4bc	4bc	4.03a	2.27b-e	3.27a	2.9ab	2.5bcd	2.73a		
1000ppm	3fg	3fg	4bc	4.17ab	3.54b	2.43bcd	2.17cde	2.90ab	2.67abc	2.54ab		
2000ppm	3.27ef	4.5a	3fg	2.5h	3.32b	2.27b-e	3.17a	2.4bcd	1.73ef	2.39b		
3000ppm	3fg	3.27ef	2.67gh	3.50de	3.11c	2.17с-е	2.43bcd	2def	2.5bcd	2.28b		
4000ppm	3.70cd	4bc	3fg	2i	3.18c	2def	2.7abc	1.67ef	1.5f	1.97c		
Mean	3.31b	3.85a	3.33b	3.23b		2.23bc	2.75a	2.37b	2.18c			
		Root fre	sh weight (g/ plant)			Root fresh weight (g/ plant)					
Control	2.43b-d	2.17cde	2.9ab	2.67a-c	2.54ab	2jk	2.06ijk	3.06b-d	2.78с-е	2.48b		
1000ppm	2.27b-e	3.27a	2.9ab	2.5b-d	2.73a	2.54e-i	3.66a	2.66c-g	3.29ab	3.04a		
2000ppm	2.27b-e	3.17a	2.4b-d	1.73ef	2.39b	1.93jk	2.77cde	1.73k	2.19f-k	2.16c		
3000ppm	2.17с-е	2.43b-d	2def	2.5b-d	2.28b	2.17g-k	2.69c-f	2.39e-j	2.56d-i	2.45b		
4000ppm	2def	2.7a-c	1.67ef	1.5f	1.97c	2.39e-j	3.07bc	2.58c-h	2.13h-k	2.54b		
Mean	2.22bc	2.75a	2.37b	2.18c		2.21c	2.85a	2.49b	2.59b			
	Root dry weight (g/ plant)					Root dry weight (g/ plant)						
Control	1.53g-i	2.76a	2.17b-d	1.92d-f	2.10a	1.28fg	1.18g-i	1.85a	1.71c	1.51b		
1000ppm	1.97c-e	2.82a	1.77efg	2.32b	2.22a	1.50d	1.86a	1.28fg	1.80abc	1.61a		
2000ppm	1.55g-i	2.85a	1.37i	1.93d-f	1.93b	1.16g-i	1.37ef	1.01jk	1.85ab	1.35c		
3000ppm	1.44hi	1.75e-g	1.73e-g	2.22bc	1.79c	1.07ij	1.47de	1.36ef	1.28fg	1.29cd		
4000ppm	1.77e-g	1.34i	1.67f-h	1.87ef	1.66c	1.13hi	1.73bc	1.22gh	0.94k	1.25d		
Mean	1.65d	2.31a	1.74c	2.05b		1.23c	1.52a	1.34b	1.52a			

Reduction in seeds yield%

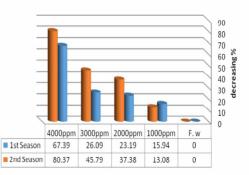
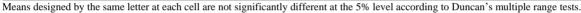
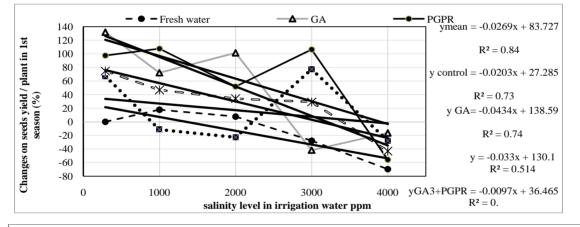




Figure.1. Reduction and increasing % in seeds yield /plant as affected by salinity irrigation water levels and foliar application in the two seasons

Seasons		1 ^s	t Season 20)15		2 nd Season 2016					
Spraying	Fresh wat	eı GA ₃	PGPR	GA ₃ + PGPR	Mean	Fresh water	GA ₃	PGPR	GA ₃ + PGPR	Mean	
Salinity		Capsules	dry weight	t /plant (g)			Capsules	dry weight	/plant (g)		
Control	2.45g	3.03de	3.54a-c	4.02a	3.26a	1.95de	2.46bc	2.44bc	3.01a	2.47a	
1000ppm	1.65h	2.77d-g	3.74ab	3.26b-d	2.85bc	1.09h	1.64e-g	3.03a	2.63ab	2.10bc	
2000ppm	1.83h	2.67e-g	2.92d-g	3.75ab	2.79c	1.49f-h	1.56e-g	2.19cd	2.77ab	2.00cd	
3000ppm	2.50g	3.02d-f	3.58a-c	3.09с-е	3.05ab	1.89d-f	1.71e-g	2.82ab	2.44bc	2.21b	
4000ppm	2.51fg	2.48g	3.72ab	2.42g	2.78c	1.60e-g	1.61e-g	2.72ab	1.45gh	1.85d	
Mean	2.19d	2.79c	3.50a	3.31b		1.60d	1.80c	2.64a	2.46b		
		Seed	s yield/pla	nt (g)		Seeds yield/plant (g)					
Control	0.79h	1.83a	1.56c	1.32e	1.38a	0.58ef	1.46a	1.35b	0.88d	1.07a	
1000ppm	0.93g	1.36de	1.64b	0.70i	1.16b	0.61e	1.21c	1.41ab	0.50fg	0.93b	
2000ppm	0.85h	1.59bc	1.20f	0.61jk	1.06c	0.42gh	1.15c	0.87d	0.23jk	0.67c	
3000ppm	0.57	0.461	1.63bc	1.40d	1.02d	0.28ij	0.29ij	1.17c	0.58ef	0.58d	
4000ppm	0.24n	0.66ij	0.35m	0.57k	0.45e	0.121	0.34-i	0.23jk	0.24jk	0.21e	
Mean	0.68d	1.18b	1.28a	0.92c		0.40d	0.89b	1.01a	0.49c		
	Weight of 1000 seed (g)					Weight of 1000 seed (g)					
Control	3.07b	3.59a	2.61c	2.34d-g	2.90a	2.65b	2.83a	2.22c	2.23c	2.48a	
1000ppm	2.45	2.47с-е	2.49cd	2.25f-h	2.42b	2.17cd	2.22c	2.17cd	2.13cd	2.17b	
2000ppm	2.37d-g	2.44de	2.33e-g	2.14h	2.32c	2.11cd	2.14cd	2.13cd	2.08d	2.11c	
3000ppm	2.23gh	2.39d-f	2.18h	2.15h	2.24d	2.06d	2.13cd	2.08d	1.91e	2.05d	
4000ppm	1.12k	1.53j	1.73i	1.83i	1.56e	1.12h	1.42g	1.46g	1.59f	1.40e	
Mean	2.25b	2.49a	2.27b	2.15c		2.02b	2.15a	2.01b	1.99b		

Table 3. Effect of saline irrigation water levels and spraying by GA₃ and PGPR on capsules dry weight, seeds yield/plant (g) and weight of 1000 seed of *Nigella sativa* L. plants

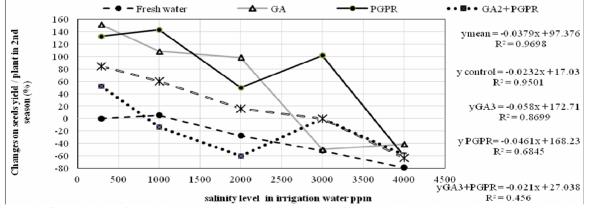


Figure 2. Correlation of seeds yield /plant of black cumin as affected by salinity irrigation water levels and foliar application of GA₃ and PGPR

	Seasons	sons 1 st Season 2015 2 nd Season 2016											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Spraying	Fresh	GA ₃	PGPR	GA ₃ +	Mean	Fresh wat				Mean		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Salinity	water			PGPR					PGPR			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Chlorop	hyll(a) m	g/g F. W			Chlorophy	ll(a) mg/g	g F. W			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Control	1.50f	1.70a	1.51fg	1.60cd	1.58a	1.46ef	1.32i	1.45ef	1.53a	1.44a		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
4000ppm 1.49g 1.51fg 1.50fg 1.46hi 1.49d 1.33i 1.49bc 1.45ef 1.35i 1.41c Mean 1.48c 1.55ab 1.54b 1.55a 1.40c 1.42b 1.43b 1.46a Control 0.71e 0.90a 0.75cd 0.76c 0.78a 0.68de 0.77a 0.63g 0.74b 0.71a 1000ppm 0.73de 0.66f 0.65f 0.80b 0.71b 0.76a 0.67ef 0.40m 0.71c 0.64b 2000ppm 0.82b 0.76c 0.47i 0.81b 0.71b 0.69d 0.46l 0.56i 0.74b 0.61c 3000ppm 0.44j 0.74cd 0.61g 0.80b 0.65c 0.67f 0.40m 0.50k 0.72c 0.57d 4000ppm 0.71e 0.43j 0.58h 0.81b 0.63d 0.39m 0.61h 0.53j 0.71c 0.56e Mean 0.68c 0.70b 0.61d 0.80a 0.64b 0.58c 0.52d 0.72a Control 77.66e 86.56b 81.38c			•					0	U				
Mean 1.48c 1.55ab 1.54b 1.55a 1.40c 1.42b 1.43b 1.46a Chlorophyll(b) mg/g F. W Chlorophyll(b) mg/g F. W Chlorophyll(b) mg/g F. W Chlorophyll(b) mg/g F. W Control 0.71e 0.90a 0.75cd 0.76c 0.78a 0.68de 0.77a 0.63g 0.74b 0.71a 1000ppm 0.73de 0.66f 0.65f 0.80b 0.71b 0.76a 0.67ef 0.40m 0.71c 0.64b 2000ppm 0.82b 0.76c 0.47i 0.81b 0.71b 0.69d 0.461 0.56i 0.74b 0.61c 3000ppm 0.44j 0.74cd 0.61g 0.80b 0.65c 0.67f 0.40m 0.50k 0.72c 0.57d 4000ppm 0.71e 0.43j 0.58h 0.81b 0.63d 0.39m 0.61h 0.53j 0.71c 0.56e Mean 0.68c 0.70b 0.61d 0.80a 0.64b 0.58c 0.52d 0.72a Relative water content (RWC)% Relative water content (RWC)% Relative water content (RWC)% 71.44d <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	4000ppm	1.49g				1.49d		1.49bc			1.41c		
Control 0.71e 0.90a 0.75cd 0.76c 0.78a 0.68de 0.77a 0.63g 0.74b 0.71a 1000ppm 0.73de 0.66f 0.65f 0.80b 0.71b 0.76a 0.67ef 0.40m 0.71c 0.64b 2000ppm 0.82b 0.76c 0.47i 0.81b 0.71b 0.69d 0.461 0.56i 0.74b 0.61c 3000ppm 0.44j 0.74cd 0.61g 0.80b 0.65c 0.67f 0.40m 0.50k 0.72c 0.57d 4000ppm 0.71e 0.43j 0.58h 0.81b 0.63d 0.39m 0.61h 0.53j 0.71c 0.56e Mean 0.68c 0.70b 0.61d 0.80a 0.64b 0.58c 0.52d 0.72a Relative water content (RWC)% Relative water content (RWC)% Relative water content (RWC)% Relative water content (RWC)% 1.000pm 65.46m 74.10h 77.70e 73.33i 72.64c 64.41m 73.15h 76.41e 72.48i	Mean	1.48c	1.55ab	1.54b	1.55a		1.40c	1.42b	1.43b	1.46a			
1000ppm 0.73de 0.66f 0.65f 0.80b 0.71b 0.76a 0.67ef 0.40m 0.71c 0.64b 2000ppm 0.82b 0.76c 0.47i 0.81b 0.71b 0.69d 0.461 0.56i 0.74b 0.61c 3000ppm 0.44j 0.74cd 0.61g 0.80b 0.65c 0.67f 0.40m 0.50k 0.72c 0.57d 4000ppm 0.71e 0.43j 0.58h 0.81b 0.63d 0.39m 0.61h 0.53j 0.71c 0.56e Mean 0.68c 0.70b 0.61d 0.80a 0.64b 0.58c 0.52d 0.72a Relative water content (RWC)% Relative water content (RWC)% Relative water content (RWC)% Relative water content (RWC)% 85.44b 80.59c 89.41a 82.99a 1000ppm 66.451 76.34f 78.42d 75.33g 74.14b 65.30l 75.40e 77.44d 74.41g 73.14b 2000ppm 65.46m 74.10h 77.70e 73.33i 72.64c 64.41m 73.15h 76.41e 72.48i 71.61c <			Chlorop	hyll(b) m	g/g F. W			Chloro	phyll(b) n	ng/g F. W			
2000ppm 0.82b 0.76c 0.47i 0.81b 0.71b 0.69d 0.461 0.56i 0.74b 0.61c 3000ppm 0.44j 0.74cd 0.61g 0.80b 0.65c 0.67f 0.40m 0.50k 0.72c 0.57d 4000ppm 0.71e 0.43j 0.58h 0.81b 0.63d 0.39m 0.61h 0.53j 0.71c 0.56e Mean 0.68c 0.70b 0.61d 0.80a 0.64b 0.58c 0.52d 0.72a Relative water content (RWC)% Relative water content (RWC)% Relative water content (RWC)% Relative water content (RWC)% 82.99a 1000ppm 66.451 76.34f 78.42d 75.33g 74.14b 65.30l 75.40e 77.44d 74.41g 73.14b 2000ppm 65.46m 74.10h 77.70e 73.33i 72.64c 64.41m 73.15h 76.41e 72.48i 71.61c 3000ppm 63.61o 72.60j 78.42d 64.54n 69.74d 62.52o 71.26j 77.41d 63.40n 68.65d 4000ppm 56.48q <td< td=""><td>Control</td><td>0.71e</td><td>0.90a</td><td>0.75cd</td><td>0.76c</td><td>0.78a</td><td>0.68de</td><td>0.77a</td><td>0.63g</td><td>0.74b</td><td>0.71a</td></td<>	Control	0.71e	0.90a	0.75cd	0.76c	0.78a	0.68de	0.77a	0.63g	0.74b	0.71a		
3000ppm 0.44j 0.74cd 0.61g 0.80b 0.65c 0.67f 0.40m 0.50k 0.72c 0.57d 4000ppm 0.71e 0.43j 0.58h 0.81b 0.63d 0.39m 0.61h 0.53j 0.71c 0.56e Mean 0.68c 0.70b 0.61d 0.80a 0.64b 0.58c 0.52d 0.72a Relative water content (RWC)% Control 77.66e 86.56b 81.38c 90.46a 84.02a 76.52e 85.44b 80.59c 89.41a 82.99a 1000ppm 66.451 76.34f 78.42d 75.33g 74.14b 65.30l 77.44d 74.41g 73.14b 2000ppm 63.61o 72.60j 78.42d 64.54n 69.74d 62.52o 71.26j 77.41d 63.40n 68.65d 4000ppm 56.48q 68.58k 77.46e 62.57p 66.27e 55.55q 67.45k 76.37e 61.33p 65.18e <tr< td=""><td>1000ppm</td><td>0.73de</td><td>0.66f</td><td>0.65f</td><td>0.80b</td><td>0.71b</td><td>0.76a</td><td>0.67ef</td><td>0.40m</td><td>0.71c</td><td>0.64b</td></tr<>	1000ppm	0.73de	0.66f	0.65f	0.80b	0.71b	0.76a	0.67ef	0.40m	0.71c	0.64b		
4000ppm 0.71e 0.43j 0.58h 0.81b 0.63d 0.39m 0.61h 0.53j 0.71c 0.56e Mean 0.68c 0.70b 0.61d 0.80a 0.64b 0.58c 0.52d 0.72a Relative water content (RWC)% Control 77.66e 86.56b 81.38c 90.46a 84.02a 76.52e 85.44b 80.59c 89.41a 82.99a 1000ppm 66.451 76.34f 78.42d 75.33g 74.14b 65.30l 75.40e 77.44d 74.41g 73.14b 2000ppm 65.46m 74.10h 77.70e 73.33i 72.64c 64.41m 73.15h 76.41e 72.48i 71.61c 3000ppm 63.61o 72.60j 78.42d 64.54n 69.74d 62.52o 71.26j 77.41d 63.40n 68.65d 4000ppm 56.48q 68.58k 77.46e 62.57p 66.27e 55.55q 67.45k 76.5a 72.21c Mean 65.89d 73.81h 43.311 32.05m 54.37e 56.96j 70.34f 40.471 <	2000ppm	0.82b	0.76c	0.47i	0.81b	0.71b	0.69d	0.461	0.56i	0.74b	0.61c		
Mean $0.68c$ $0.70b$ $0.61d$ $0.80a$ $0.64b$ $0.58c$ $0.52d$ $0.72a$ Relative water content (RWC)%Relative water content (RWC)%Relative water content (RWC)%Control $77.66e$ $86.56b$ $81.38c$ $90.46a$ $84.02a$ $76.52e$ $85.44b$ $80.59c$ $89.41a$ $82.99a$ 1000ppm 66.451 $76.34f$ $78.42d$ $75.33g$ $74.14b$ 65.301 $75.40e$ $77.44d$ $74.41g$ $73.14b$ 2000ppm $65.46m$ $74.10h$ $77.70e$ $73.33i$ $72.64c$ $64.41m$ $73.15h$ $76.41e$ $72.48i$ $71.61c$ 3000ppm $63.61o$ $72.60j$ $78.42d$ $64.54n$ $69.74d$ $62.52o$ $71.26j$ $77.41d$ $63.40n$ $68.65d$ 4000ppm $56.48q$ $68.58k$ $77.46e$ $62.57p$ $66.27e$ $55.55q$ $67.45k$ $76.37e$ $61.33p$ $65.18e$ Mean $65.89d$ $75.64b$ $78.68a$ $73.25c$ $64.86d$ $74.54b$ $77.65a$ $72.21c$ Membrane permeability (MP) %Membrane permeability (MP)%Membrane permeability (MP)%Membrane permeability (MP)%Control $68.28j$ $73.81h$ 43.311 $32.05m$ $54.37e$ $56.96j$ $70.34f$ 40.471 $32.11m$ $49.97d$ 1000ppm $72.79h$ $91.21b$ $63.61k$ $77.01g$ $76.15d$ $60.93i$ $80.04d$ $60.19i$ $69.85f$ $67.76c$ 2000ppm $89.03c$ $91.63b$ $73.99h$ $88.57c$ <td>3000ppm</td> <td>0.44j</td> <td>0.74cd</td> <td>0.61g</td> <td>0.80b</td> <td>0.65c</td> <td>0.67f</td> <td>0.40m</td> <td>0.50k</td> <td>0.72c</td> <td>0.57d</td>	3000ppm	0.44j	0.74cd	0.61g	0.80b	0.65c	0.67f	0.40m	0.50k	0.72c	0.57d		
Relative water content (RWC)%Relative water content (RWC)%Control77.66e86.56b81.38c90.46a84.02a76.52e85.44b80.59c89.41a82.99a1000ppm66.45176.34f78.42d75.33g74.14b65.30l75.40e77.44d74.41g73.14b2000ppm65.46m74.10h77.70e73.33i72.64c64.41m73.15h76.41e72.48i71.61c3000ppm63.61o72.60j78.42d64.54n69.74d62.52o71.26j77.41d63.40n68.65d4000ppm56.48q68.58k77.46e62.57p66.27e55.55q67.45k76.37e61.33p65.18eMean65.89d75.64b78.68a73.25c64.86d74.54b77.65a72.21cMembrane permeability (MP) %Membrane permeability	4000ppm	0.71e	0.43j	0.58h	0.81b	0.63d	0.39m	0.61h	0.53j	0.71c	0.56e		
Control77.66e86.56b81.38c90.46a84.02a76.52e85.44b80.59c89.41a82.99a1000ppm66.45176.34f78.42d75.33g74.14b65.30l75.40e77.44d74.41g73.14b2000ppm65.46m74.10h77.70e73.33i72.64c64.41m73.15h76.41e72.48i71.61c3000ppm63.61o72.60j78.42d64.54n69.74d62.52o71.26j77.41d63.40n68.65d4000ppm56.48q68.58k77.46e62.57p66.27e55.55q67.45k76.37e61.33p65.18eMean65.89d75.64b78.68a73.25c64.86d74.54b77.65a72.21c72.21cMembrane permeability (MP) %Membrane permeability (MP) %Membrane permeability (MP) %Membrane permeability (MP) %2000ppm72.79h91.21b63.61k77.01g76.15d60.93i80.04d60.19i69.85f67.76c2000ppm89.03c91.63b73.99h88.57c85.81b63.70h89.89a67.92g86.28b76.95b	Mean	0.68c	0.70b	0.61d	0.80a		0.64b	0.58c	0.52d	0.72a			
1000ppm66.45176.34f78.42d75.33g74.14b65.30l75.40e77.44d74.41g73.14b2000ppm65.46m74.10h77.70e73.33i72.64c64.41m73.15h76.41e72.48i71.61c3000ppm63.61o72.60j78.42d64.54n69.74d62.52o71.26j77.41d63.40n68.65d4000ppm56.48q68.58k77.46e62.57p66.27e55.55q67.45k76.37e61.33p65.18eMean65.89d75.64b78.68a73.25c64.86d74.54b77.65a72.21c65.18eMembrane permeability (MP) %Membrane permeability (MP) %2000ppm72.79h91.21b63.61k77.01g76.15d60.93i80.04d60.19i69.85f67.76c2000ppm89.03c91.63b73.99h88.57c85.81b63.70h89.89a67.92g86.28b76.95b			Relative w	ater conten	nt (RWC)	%	Relative water content (RWC)%						
2000ppm 65.46m 74.10h 77.70e 73.33i 72.64c 64.41m 73.15h 76.41e 72.48i 71.61c 3000ppm 63.61o 72.60j 78.42d 64.54n 69.74d 62.52o 71.26j 77.41d 63.40n 68.65d 4000ppm 56.48q 68.58k 77.46e 62.57p 66.27e 55.55q 67.45k 76.37e 61.33p 65.18e Mean 65.89d 75.64b 78.68a 73.25c 64.86d 74.54b 77.65a 72.21c Membrane permeability (MP) % Membrane permeability (MP)% Control 68.28j 73.81h 43.311 32.05m 54.37e 56.96j 70.34f 40.471 32.11m 49.97d 1000ppm 72.79h 91.21b 63.61k 77.01g 76.15d 60.93i 80.04d 60.19i 69.85f	Control	77.66e	86.56b	81.380	90.46	a 84.02a	76.52e	85.44b	80.59c	89.41a	82.99a		
3000ppm 63.61o 72.60j 78.42d 64.54n 69.74d 62.52o 71.26j 77.41d 63.40n 68.65d 4000ppm 56.48q 68.58k 77.46e 62.57p 66.27e 55.55q 67.45k 76.37e 61.33p 65.18e Mean 65.89d 75.64b 78.68a 73.25c 64.86d 74.54b 77.65a 72.21c 65.18e Membrane permeability (MP) % Membrane permeability (MP)% Control 68.28j 73.81h 43.311 32.05m 54.37e 56.96j 70.34f 40.471 32.11m 49.97d 1000ppm 72.79h 91.21b 63.61k 77.01g 76.15d 60.93i 80.04d 60.19i 69.85f 67.76c 2000ppm 89.03c 91.63b 73.99h 88.57c 85.81b 63.70h 89.89a 67.92g	1000ppm	66.451	76.34f	78.420	1 75.33	g 74.14b	65.301	75.40e	77.44d	74.41g	73.14b		
4000ppm 56.48q 68.58k 77.46e 62.57p 66.27e 55.55q 67.45k 76.37e 61.33p 65.18e Mean 65.89d 75.64b 78.68a 73.25c 64.86d 74.54b 77.65a 72.21c Membrane permeability (MP) % Membrane permeability (MP)	2000ppm	65.46m	74.10h	77.706	e 73.33	i 72.64c	64.41m	73.15h	76.41e	72.48i	71.61c		
Mean 65.89d 75.64b 78.68a 73.25c 64.86d 74.54b 77.65a 72.21c Membrane permeability (MP) % Membrane permeability (MP) % Membrane permeability (MP)% Membrane permeability (MP)% Control 68.28j 73.81h 43.311 32.05m 54.37e 56.96j 70.34f 40.471 32.11m 49.97d 1000ppm 72.79h 91.21b 63.61k 77.01g 76.15d 60.93i 80.04d 60.19i 69.85f 67.76c 2000ppm 89.03c 91.63b 73.99h 88.57c 85.81b 63.70h 89.89a 67.92g 86.28b 76.95b	3000ppm	63.610	72.60j	78.420	1 64.54	n 69.74d	62.520	71.26j	77.41d	63.40n	68.65d		
Membrane permeability (MP) %Membrane permeability (MP) %Control68.28j73.81h43.31l32.05m54.37e56.96j70.34f40.47l32.11m49.97d1000ppm72.79h91.21b63.61k77.01g76.15d60.93i80.04d60.19i69.85f67.76c2000ppm89.03c91.63b73.99h88.57c85.81b63.70h89.89a67.92g86.28b76.95b	4000ppm	56.48q	68.58k	77.466	e 62.57	o 66.27e	55.55q	67.45k	76.37e	61.33p	65.18e		
Control68.28j73.81h43.31132.05m54.37e56.96j70.34f40.47l32.11m49.97d1000ppm72.79h91.21b63.61k77.01g76.15d60.93i80.04d60.19i69.85f67.76c2000ppm89.03c91.63b73.99h88.57c85.81b63.70h89.89a67.92g86.28b76.95b	Mean	65.89d	75.64b	78.68	a 73.25	2	64.86d	74.54b	77.65a	72.21c			
Control68.28j73.81h43.31132.05m54.37e56.96j70.34f40.47l32.11m49.97d1000ppm72.79h91.21b63.61k77.01g76.15d60.93i80.04d60.19i69.85f67.76c2000ppm89.03c91.63b73.99h88.57c85.81b63.70h89.89a67.92g86.28b76.95b													
1000ppm72.79h91.21b63.61k77.01g76.15d60.93i80.04d60.19i69.85f67.76c2000ppm89.03c91.63b73.99h88.57c85.81b63.70h89.89a67.92g86.28b76.95b										• • •			
2000ppm 89.03c 91.63b 73.99h 88.57c 85.81b 63.70h 89.89a 67.92g 86.28b 76.95b		•											
									0				
	3000ppm	70.84i	86.02d	86.000		a 84.38d		80.28d	82.68c	90.41a	76.86b		
4000ppm 81.97e 95.16a 79.09f 92.16b 87.10a 57.20j 91.85a 72.61e 90.50a 78.04a											78.04a		
Mean 76.58b 87.57a 69.20c 76.89b 58.57d 82.48a 64.77c 73.83b	Mean	76.58b	87.57a	69.200	<u> </u>	0	58.57d	82.48a	64.77c	73.83b			

Table 4. Effect of saline irrigation water levels and spraying by GA₃ and PGPR on chlorophyll (a) mg/g F. W., chlorophyll (b) mg/g F. W, relative water content and membrane permeability % of *Nigella sativa* L. plants

Means designed by the same letter at each cell are not significantly different at the 5% level according to Duncan's multiple range tests.

when GA₃ was used without salinity treatment in both growth seasons.

The relationship between saline irrigation water levels and spraying GA_3 and PGPR on changes in seeds yield in both seasons.

A positive linear relationship was obtained between saline irrigation water levels and spraying GA₃ and PGPR on seeds yield changes in both seasons (Figure 2). The correlation coefficient values r^2 0.74, 0.74, 0.51, and 0.08, respectively in the first season and 0.95, 0.87, 0.68, and 0.46, respectively in the second season. The positive relationship indicated that there is a high reduction in seeds yield with increasing salinity level, this reduction reduced by spraying treatments especially GA₃ in both seasons. At low saline irrigation level, there is an increase in seeds yield reached 131.65 and 151.72 % with using GA₃ in both seasons, successively.

Biochemical characteristics

Increasing salinity levels from 0 to 4000ppm caused a gradual decrease in chlorophyll a, chlorophyll b, fixed oil and RWC in *Nigella sativa* L. Table (4 and 5). The most elevated salinity level recorded the least values in this respect. Furthermore, membrane permeability (Mp), proline accumulation, (CAT) and (POX) enzymes activities were gradually increased by increasing salinity concentrations. Spraying $GA_3 + PGPR$ noticeably increased chlorophyll a and b content, fixed oil%, proline accumulation, CAT and POX enzymes activity in both seasons, while using GA_3 increased membrane permeability in both seasons. The promotion effect was observed when salinity levels were combined with GA_3 or $GA_3 + PGPR$ treatments. The greatest

chlorophyll a and b were recorded by GA_3 without salinity for both seasons.

Furthermore, spraying $GA_3 + PGPR$ without salinity recorded the maximum fixed oil percentage. Proline accumulation, CAT and POX enzymes activities

were pronounced when salinity treatments were combined with $GA_3 + PGPR$ treatments and the greatest values were noted by 4000 ppm salinity level with GA_3 + PGPR. However, when salinity treatments combined with GA_3 or PGPR treatments, the lessening in RWC was retarded and the highest membrane permeability recorded at 3000 and 4000 ppm together with GA_3 or $GA_3 + PGPR$ treatments in both seasons.

Total soluble salts

Fig (3) show a positive linear relationship obtained between used saline water and spraying GA₃, PGPR and GA₃+PGPR on values of soil EC. There are highly significant (with correlation coefficient values, r^2 =0.95, 0.97, 0.92, and 0.97 for spraying with GA₃, PGPR, and GA₃+PGPR, respectively). Moreover, significant variations in the values of soil EC after using different saline irrigation water, which increased significantly in excess of salinity concentrations of 2000 ppm, 3000 ppm and 4000 ppm diluted sea water for irrigation.

Table 5. Effect of saline irrigation water levels and treatment with GA₃ or PGPR on fixed oil%, proline and antioxidant enzyme activities of *Nigella sativa* L. plants

Seasons	s 1 st Season 2015						2 nd Season 2016					
	Fresh wate		PGPR	GA ₃ +	Mean	Fresh	GA ₃	PGPR	GA ₃ +	Mean		
Salinity				PGPR		water			PGPR			
			Fixed oil%					Fixed oil%				
Control	30.86h	34.11e	39.53b	40.13a	36.16a	29.00fg	32.74d	37.04b	38.33a	34.28a		
1000ppm	31.20g	31.94g	39.05c	39.72b	35.48b	30.34e	29.69ef	35.56c	36.22bc	32.95b		
2000ppm	29.58i	26.381	28.51j	36.28d	30.19c	28.52g	24.00j	27.23h	30.37e	27.53c		
3000ppm	17.56p	23.48n	27.51k	32.88f	25.36d	16.50n	21.56l	25.89i	30.34e	27.55c 23.57d		
4000ppm	13.49q	22.92o	24.52m	29.35i	22.57e	12.730	19.56m	22.71k	27.48h	20.62e		
Mean	24.54d	27.76c	31.82b	35.67a		23.42d	25.51c	29.68b	32.55a	20.020		
		Prol	ine(?mol/g ⁻¹)	FW)			Proli	ne(?mol/g ⁻¹	FW)			
Control	1.71h	2.34f	2.56e	2.67de	2.32d	1.49jk	1.88gh	2.2def	2.49a-c	2.02b		
1000ppm	1.72h	2.09g	2.77d	3.12c	2.42c	1.61ij	1.89gh	2.1fg	2.33с-е	1.98bc		
2000ppm	1.82h	2.14g	2.7de	3.2bc	2.47bc	1.3k	1.60ij	2.1fg	2.59ab	1.90c		
3000ppm	1.66h	2.09g	3.29ab	3.11c	2.53b	1.38k	1.89gh	2.08fg	2.39b-d	1.93bc		
4000ppm	1.76h	2.16g	3.36ab	3.39a	2.67a	1.76hi	1.88gh	2.15ef	2.70a	2.12a		
Mean	1.73d	2.16c	2.93b	3.09a		1.51d	1.83c	2.13b	2.50a			
				Antioxidan	t enzyme	activities						
		CA	T ?mol min ⁻¹	¹ mg ⁻¹ prote	in		CAT ?mo	ol min ⁻¹ mg	⁻¹ protein			
Control	0.871	0.93k	1.16h	1.44f	1.10e	0.77j	0.87hi	0.97fg	1.18d	0.95d		
1000ppm	0.96jk	1.21h	1.58de	1.86b	1.40cd	0.80ij	0.92gh	1.32c	1.47b	1.13c		
2000ppm	0.98ij	1.26g	1.59de	1.90ab	1.43c	0.87hi	1.01ef	1.32c	1.59a	1.19b		
3000ppm	1.03i	1.46f	1.64d	1.88b	1.50b	0.92gh	1.07e	1.29c	1.48b	1.19b		
4000ppm	1.31g	1.57e	1.74c	1.95a	1.64a	1.04ef	1.24cd	1.46b	1.62a	1.34a		
Mean	1.03d	1.28c	1.54b	1.81a		0.88d	1.02c	1.27b	1.47a			
POX ?mol min ⁻¹ mg ⁻¹ protein							POX ?mol min ⁻¹ mg ⁻¹ protein					
Control	11.671	14.05jk	15.19h-j	17.88fg	14.69e	11.071	13.52i-k	14.23h-j	16.23f-h	13.76d		
1000ppm	13.25k	15.47hi	18.48e-g	19.56de	16.69d	12.14kl	13.71i-k	17.34d-f	18.29de	15.37c		
2000ppm	14.30i-k	17.61g	20.52d	21.97c	18.60c	13.19jk	16.15f-h	18.56d	20.84c	17.19b		
3000ppm	15.61h	18.00fg	22.48c	25.45b	20.39b	14.34h-j	16.52e-g	23.16ab	22.59bc	19.16a		
4000ppm	17.41g	19.05ef	24.86b	27.89a	22.30a	15.30g-i	17.26d-g	22.59bc	24.66a	19.95a		
Mean	14.44d	16.84c	20.31b	22.55a			15.43c	19.18b	20.52a			

Means designed by the same letter at each cell are not significantly different at the 5% level according to Duncan's multiple range tests.

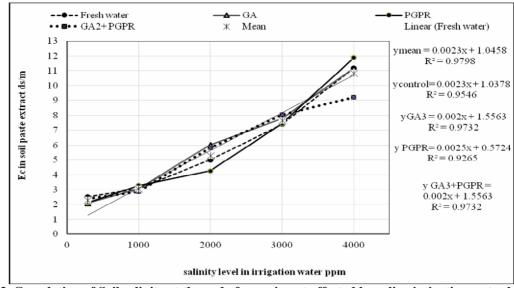


Figure.3. Correlation of Soil salinity at the end of experiment affected by saline irrigation water levels and foliar applications

DISCUSSION

The results reported in the present study displayed a general decline in the growth of Nigella sativa L. plants as far as plant height, the number of branches, plant dry weight, number of capsules, weight of capsules, 1000 seeds weight and seed yield (Tables 1, 2 and 3). The inhibition in growth parameters by salinity stress was previously reported by (Khan et al., 2010) on Linum usitatissimum L., (Bourgou et al., 2012) on Nigella sativa L. and (Saeidi-Sar et al., 2013) on Phaseolus vulgaris seedlings. Salinity can hamper plant growth by altering the water potential, increasing the ion toxicity, impeding the cell division besides cell expansion, or causing an ion imbalance (Arshi et al., 2005). In this perspective, (Younis et al., 2010) stated that the growth reduction initiated by salinity stress due to inhibiting apical growth in plants in addition to an endogenous hormonal imbalance. In both situations, the reduction could have been produced by the lethal effects of ions (Na⁺ and Cl⁻) on metabolism or from adverse water relations.

In our study, the growth features of black cumin under salinity stress was effectively enhanced with GA₃ supplement, however, the harmful influences of salinity was strong enough to hamper plant growth because of a decrease in gibberellin production. Therefore, the addition of gibberellic acid might increase seedling growth by enhancing endogenous gibberellin content as mentioned by (Rodr?guez et al., 2006). Furthermore, the improvement of growth rate by gibberellin might result in an enlargement of leaf area, the motivation of cell division and/or cell elongation. stimulation of photosynthetic modified partitioning of rate,

photosynthates, or in their combination. The GA₃mediated invertase activity in elongating shoots could result in an accumulation of hexoses which considered important for the primary cell wall biosynthesis, accordingly enhancing seedling growth beneath stress condition (Saeidi-Sar *et al.*, 2007). Enhancing plant growth under salinity stress by GA₃ has formerly been reported by (Ashraf *et al.*, 2002, Khan *et al.*, 2010) on wheat and *Linum usitatissimum* L plants.

Increasing levels of saline irrigation water produced a clear reduction in branches number, capsules number, dry weight of plants, seed yield, capsules yield and RWC of black cumin; nevertheless, the decline in the aforementioned organs was partially overcome by PGPR. The positive effect of PGPR on plant growth may be attributed to that PGPR motivation plant in growth and productivity *via* direct or indirect mechanisms. Direct mechanisms include plant hormone creation, improved iron accessibility, phosphorus solubilization and nutrient mobilization are a portion of the direct methods of growth development by PGPR . Indirect growth promotion happens when PGPR encourage plant growth by improving growth-restricting conditions.

Production of antagonistic materials to eliminate specific destructive microbes from roots vicinity and initiation of systemic resistance provides fortification against pathogens so improving growth-promoting conditions as reported by (Pierson and Thomashow, 1992 and Weller *et al.*, 2002). Our results are in harmony with data from other researchers. They reported that the foliar treatment of PGPR had a considerable effect on alleviation salt stress, PGPR from medicinal plants such *Withania somnifera*, *Catharanthus roseus, Coleus forskohlii, Ocimum sanctum* and *Aloe vera* have been stated to increase growth and yield (Attia and Saad, 2001; Karthikeyan *et al.*, 2008).

The decrease in *Nigella Sativa* L. root parameters (Table 2) such weight decline as a result of salinity stress is formerly documented on *Phaseolus vulgaris* L., (Saeidi-Sar *et al.*, 2013) on linseed (Khan *et al.*, 2010)

Ashraf et al., (2002) reported that fresh and dry weights of roots, were decreased with increasing salt amount for Triticum aestivum L. Applying GA₃ clearly improved black cumin root growth this confirms earlier reports on various plant species. Saeidi-Sar et al., (2013) found that common bean seedlings were less affected as a result of GA₃ applications and almost exhibited no root growth reduction under salty conditions, but GA₃ increased linseed root dry weight under salt stress (Khan et al., 2010). Moreover, the gibberellic acid treatment caused a significant effect on fresh and dry weight of both spring wheat cultivars (Ashraf et al., 2002). In addition applying PGPR generally resulted in an obvious increase in Nigella sativa L. root growth and the inhibitory impact of salinity stress was fully ameliorated particularly at low salinity level. Our findings are in harmony with many

authors who revealed that PGPR had a significant impact on alleviation of salt stress. Egamberdieva et al., (2013) stated that PGPR significantly improved root length, shoot length and total biomass of Silybum marianum (milk thistle) plants subjected to salt stress after using Pseudomonas extremorientalis TSAU20 by producing auxin, exopolysaccharide, biofilm creation, as well as Saravanakumar and Samiyappan, (2007) found that applying PGPR increased salt tolerance of Arachis hypogaea through lowering ethylene production, auxin production, exopolysaccharide. On the same plant (Nautiyal et al., 2013) showed an increment in fresh biomass, total length and root length over control under salt stress by using PGPR through the manufacture of NH₃, siderophore, chitinase, HCN, IAA production and phosphorus solubilization.

As our data revealed, a decrease in chlorophyll content in relation to the undesirable effect of prolonged saline water stress (Table 4) which might be anticipated to a reduction in the uptake of minerals such as Mg and N required for chlorophyll biosynthesis or membrane deterioration (Sheng *et al.*, 2008). In addition to the uncertainty of protein complexes and damage of chlorophyll by the raised activity of chlorophylldegrading enzyme chlorophyllase under stress circumstances (Reddy and Vora, 1986). Numerous reports proved that leaves total chlorophyll content was lessened by rising salinity level (Tuna et al., 2008; Shoresh et al., 2011; Celik and Atak, 2012). The results also, indicated that PGPR treatment support greater chlorophyll concentration under saline situation and these findings were consistent with several authors who reported that PGPR increase chlorophyll content in mung bean plants (Dutta et al., 2005) and maize (Nadeem et al., 2007), (Nabti et al., 2010) reported that inoculation durum wheat (Triticum durum var. Waha) with the rhizosphere bacterium *azospirillum brasilense* under saline environments increased chlorophyll content. Moreover, the obtained results showed the beneficial effect of GA3 treatment on chlorophyll content under saline situations which is in agreement with (Misratia et al., 2013) who mentioned that GA₃ increased photosynthetic capacity an essential feature for greater dry matter synthesis in rice salt-stressed plants. Also, applying GA₃ increased chlorophyll levels for both spring wheat cultivars (Triticum aestivum L.) exposed to salinity circumstances (Ashraf et al., 2002). On chamomile plant, chlorophyll degradation occurred by salinity was prohibited by using GA₃ (Ali and Hassan, 2014). Furthermore, spraying the vegetative parts of maize, wheat, cotton, broad and parsley plants with GA3 increased pigments content (Abd El-Samad and Shaddad, 2014). This because the role of GA₃ for the inhibition of pigment degradation or motivation of protochlorophyllide synthesis by phytohormons (Pazuki et al., 2013) and this may be a vital part of a defense versus salinity stress.

Our results display that salinity stress induces membrane permeability changes (Table 4) which are in agreement with results achieved by NaCl application (Ali and Hassan, 2014) on chamomile plant. Additionally, when salt-stressed maize inoculated with PGPR, ACC deaminase comprising Pseudomonas syringae, Enterobacter aerogenes and P. fluorescens caused high relative water content (Nadeem et al., 2007). Highest leaf (RWC) and least (MP) have been certified in wheat and barley treated with PGPR strains of Bacillus and Azospirillum (Turan et al., 2012). Greater cell wall flexibility and the capability to modify plant hormones are particular mechanisms induced by Azospirillum to combat with salinity and osmotic stress (Creus et al., 1998 and Bashan et al., 2004). On the other hand, GA3 counteracts with salinity stress by rising membrane permeability and nutrient amounts in leaves which finally leads to superior seedling growth, shoot, root and whole biomass (Iqbal et al., 2012). Also, (Ali and Hassan, 2014) found that membrane stability index for chamomile plants was prevented when salinity treatments were combined with GA₃.

Proline accumulation in plant tissues is a valuable physiological reaction to counterbalance saline stress.

Proline performs a defensive function against salinity disorders in plants (Verbruggen and Hermans, 2008). The significantly improved proline levels located in Nigella Sativa L. plants during harsh salt stress (Table 5) reflect this response. Such proline accumulation in consequence of salt stress is well documented (Nabti et al., 2010; Ali and Hassan, 2014 and Shao et al., 2015). As our data indicated, salinity mitigation by GA₃ may occur through its effect on proline metabolism via regulating N accumulation (Igbal and Ashraf, 2013). In addition (Tuna et al., 2008) reported that foliar treatment of GA3 improved proline content which lessened antagonistic impacts of salinity by maintaining membrane permeability, increasing macro and micronutrient levels. This superior gathering of proline could characterize a major biochemical adaptation in plants osmotic adjustment (Siddiqui et al., 2008).

An increment in CAT and POX enzymes activities we noticed with rising salinity levels (Table 5). Also, a secondary aspect of salinity in plants is the stressinduced creation of reactive oxygen species (ROS) (Manchanda and Garg, 2008). The enriched production of (ROS) through salinity stress lead to the advanced oxidative damage and finally cell death and growth suppression (Ruiz-Lozano et al., 2012). Thus, to keep metabolic tasks under stress, the scavenging of ROS is required. ROS scavenging depends on detoxification method offered by antioxidant enzymes (CATand POX).Under salt stress, plants displayed the enhanced amount of enzymes activities (CAT and POX), contrasted with their control. GA3 may likewise enhance salinity tolerance by keeping up enzyme activities. It is, accordingly, possible that foliar utilization of GA₃ could be a helpful tool in supporting great seedling growth and establishment under salty conditions. Moreover, exogenous treatment with growth hormones may possibly be beneficial to return metabolic activities toward their regular levels (Iqbal et al., 2012). Also, (Tuna et al., 2008) stated a similar impact of GA₃ on the antioxidant levels .The findings showed that foliar treatment of GA₃ was observed to be efficient in lightening the unfavorable impact of salt stress by improving antioxidants activity which is consistent with (Ali and Hassan, 2014) on chamomile and (Saeidi-Sar et al., 2013) on Phaseolus vulgaris L. seedlings. PGPR is also reported to protect the plants from saline disorders by decreasing membrane destabilizing activity in the cell (Khan and Panda, 2008). Moreover, PGPR improves ROS-scavenging enzymes such as catalase and ascorbate peroxidase (Kohler et al., 2010 and Gururani et al., 2013).

The increase in total soluble salts (Figure 3) may be proportional to the salts from saline irrigation water these results agree with those obtained by (Mostafazadeh-fard *et al.*, 2007 and Noufal *et al.*, 2008). However, utilizing freshwater and 1000 ppm sea water decreased soil EC by 39 and 18%, respectively compared to soil EC before planting this anticipated by addition of leaching requirements (Mostafazadeh-fard *et al.*, 2007 and Mostafazadeh-Fard *et al.*, 2008). The values of EC differ between spraying treatments; the greatest values of soil EC were recorded after using GA₃ spraying treatments.

As a conclusion, salinity treatments negatively influenced the growth and yield characters of *Nigella sativa* plants. Under salinity treatments relative water content, chlorophyll content and fixed oil percentage were decreased. However, proline, membrane permeability, enzyme activities and total soil salts were increased. Meanwhile, GA₃ or PGPR treatments lightened the harmful impacts of salinity on the formerly declared parameters. GA₃ or PGPR treatment increased proline content and activities of CAT and POX which may consider promising mechanisms for salinity alleviation in *Nigella sativa* L. plant.

ACKNOWLEDGEMENT

The authors are so grateful to Microbiology Department, Sakha Agricultural Research Station, Agricultural Research Center for offering the microbial cultures needed for the experiment.

REFERENCES

- Abd El-Samad, H. M.A and M.A.K Shaddad. 2014. The exogenous amelioration roles of growth regulators on crop plants grown under different osmotic potential. J. Stress Physiol. Biochem. 10:203–213.
- Ali,E.F.and F.A.S. Hassan.2014. Alleviatory effects of salt stress by mycorrhizal fungi and gibberellic acid on chamomile plant. Int. J. Scinece Res. 3:109–118.
- Arshi,A., M.Z.Abdin and M.Iqbal. 2005. Ameliorative effects of CaCl2 on growth, ionic relations, and proline content of Senna under salinity stress. J. Plant Nutr. 28:101–125.
- Ashraf, M., F.Karim and E. Rasul. 2002. Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul. 36:49–59.
- Attia, F. A. and O. A. O. Saad. 2001. Biofertilizers as potential alternative of chemical fertilizer for Catharanthus roseus G. Don. J. Agric. Sci. 26:7193–7208.
- Baghalian, K., A.Haghiry, M. R.Naghavi and A. Mohammadi. 2008. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (*Matricaria recutita L*.). Sci. Hortic. (Amsterdam). 116:437–441.
- Bashan, Y., J.P. Hernandez, L.A. Leyva, M. Bacilio. 2002. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fertil. Soils.35:359–368.
- Bashan, Y., G.Holguin and L. E. De-Bashan. 2004. Azospirillum-plant relationships: physiological,

molecular, agricultural, and environmental advances 1997-2003. Can. J. Microbiol. 50:521–577.

- Bates, L. S., R. P.Waldren and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207.
- Bohm, W. 2012. Methods of studying root systems. Springer Science & Business Media.
- Bourgou, S., I. Bettaieb, I. Hamrouni and B. Marzouk. 2012. Effect of NaCl on fatty acids, phenolics and antioxidant activity of *Nigella sativa* organs. Acta Physiol. Plant.34: 379–386
- Bourgou, S., R. Ksouri, A. Bellila, I. Skandrani, H.Falleh and B. Marzouk. 2008. Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C. R. Biol. 331:48–55.
- Bourgou, S., A.Pichette, B. Marzouk and J. Legault. 2010. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. South African J. Bot. 76:210–216.
- Bradford, M.M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
- Celik, O. and C. Atak. 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turkish J. Biol. 36:339–356.
- Cheikh-Rouhou, S., S.,Besbes, B. Hentati, C.Blecker, C.Deroanne and H. Attia.2007. *Nigella sativa* L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 101:673–681.
- Claiborne, A. L. 1985. Catalase activity, in: Handbook of Methods for Oxygen Radical Research. CRC Press Boca Raton. pp. 283–284.
- Creus, C. M., R. J.Sueldo and C .A. Barassi. 1998. Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can. J. Bot. 76:238–244.
- Dutta,S., R. P.Singh and J. K. Jindal. 2005. Effect of antagonistic bacteria and plant defence activators on management of bacterial leaf spot of mungbean. Indian Phytopathol. 58:269–275.
- Egamberdieva, D., D. Jabborova and N. Mamadalieva. 2013. Salt tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress. Med. Aromat. Plant Sci. Biotechnol. 7:7–10.
- Flowers, T. J., A.Garcia, M.Koyama and A. R. Yeo. 1997. Breeding for salt tolerance in crop plants the role of molecular biology. Acta Physiol. Plant. 19:427–433.
- Ghoulam, C., A.Foursy and K. Fares. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 47:39–50.
- Gururani, M.A., C. P.Upadhyaya, V. Baskar, J.Venkatesh, A. Nookaraju and S. W. Park. 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul. 32:245–258.

- Hassan, F. A. S. and S. A. Mahfouz. 2012. Effect of 1methylcyclopropene (1-MCP) on the postharvest senescence of coriander leaves during storage and its relation to antioxidant enzyme activity. Sci. Hortic. (Amsterdam). 141:69–75.
- Hoque, M. M. and I .S. Haque. 2002. Yield Parameters of mungbean (*Vigna radiata L.*). Pakistan J. Biol. Sci. 5:281– 283.
- Horwitz, W., P. Chichilo and H. Reynolds . 1970. Official methods of analysis of the Association of Official Analytical Chemists. Washington, DC, USA
- Iqbal, M. and M. Ashraf. 2013. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot. 86:76–85.
- Iqbal, N., A. Masood and N.A. Khan. 2012. Phytohormones in Salinity Tolerance: Ethylene and Gibberellins Cross Talk., in: Khan, N.A., Nazar, R., Iqbal, N., Anjum, N.A. (editors.), Phytohormones and Abiotic Stress Tolerance in Plants. Springer-Verlag Berlin Heidelberg.pp. 77–98.
- Jensen, H. L. 1951. Notes on the biology of Azotobacter, in: Proceedings of the Society for Applied Bacteriology. pp. 89–94.
- Karthikeyan, B., C. A. Jaleel, G. M. A.Lakshmanan and M. Deiveekasundaram. 2008. Studies on rhizosphere microbial diversity of some commercially important medicinal plants. Colloids surfaces B Biointerfaces. 62:143–145.
- Khan, M. H. and S.K, Panda. 2008. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol. Plant. 30:81–89.
- Khan, M. N., M. H.Siddiqui and F.Mohammad, M.Naeem, M. M. A. Khan.2010. Calcium chloride and gibberellic acid protect linseed (*Linum usitatissimum L.*) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol. Plant. 32:121–132.
- Kohler, J., F. Caravaca and A. Rold?n. 2010. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem. 42:429–434.
- Maggio, A., G.Barbieri, G.Raimondi and S. De Pascale. 2010. Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J. Plant Growth Regul. 29:63–72.
- Manchanda, G. and N. Garg. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant. 30:595–618.
- Matthaus, B. and M. M. Ozcan. 2011. Fatty Acids, Tocopherol, and Sterol Contents of Some *Nigella* Species Seed Oil. Czech J. Food Sci. 29:145–150.
- Misratia, K. M., M .R.Ismail, M. A.Hakim, M .H. Musa and A. Puteh. 2013. Effect of salinity and alleviating role of gibberellic acid (GA3) for improving the morphological, physiological and yield traits of rice varieties. Aust. J.

Crop Sci. 7:1682-1692.

- Moran, R. 1982. Formulae for determination of chlorophyllous pigments extracted with N, Ndimethylformamide. Plant Physiol. 69:1376–1381.
- Mostafazadeh-fard, B., M.Heidarpour, Q. A.Aghakhani and M. Feizi. 2007. Effects of irrigation water salinity and leaching on soil chemical properties in an arid region. Int. J. Agric. Biol. 3:166–469.
- Mostafazadeh-Fard, B., M.Heidarpour, Q.A.Aghakhani and M. Feizi. 2008. Effects of leaching on soil desalinization for wheat crop in an arid region. Plant Soil Environ. 54:20–29.
- Nabti, E., M.Sahnoune, M.Ghoul, D.Fischer, A. Hofmann, M. Rothballer, M. Schmid and A. Hartmann.2010. Restoration of Growth of Durum Wheat (*Triticum durum* var. waha) Under Saline Conditions Due to Inoculation with the Rhizosphere Bacterium Azospirillum brasilense NH and Extracts of the Marine Alga Ulva lactuca. J. Plant Growth Regul. 29:6–22.
- Nadeem, S. M., Z. A.Zahir, M.Naveed and M. Arshad. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 53:1141– 1149.
- Nautiyal, J., M.Christian and M .G. Parker. 2013. Distinct functions for RIP140 in development, inflammation, and metabolism. Trends Endocrinol. Metab. 24:451–459.
- Noufal, E., O. H.El-Hussieny and I. M .Farid.2008. Effect of irrigation with increasing water salinity levels using seafresh mixed water on some soil chemocal properties and plant growth, in: The 3rd International Scientific Conference for Environment. South Valley University, Egypt,November. pp. 80–94.
- Oueslati, S., K.bouraoui, N. H. da A., M.Rabhi, R.Ksouri and M.Lachaal. 2010. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 32:289–296.
- Page, A. L., R. H.Miller and D. R.Keeney. 1982. Methods of Soil Analysis: Chemical and Microbiological proerpteis. Madison, Wisconsin.
- Pazuki, A., M. Sedghi and F. Aflaki. 2013. Interaction of salinity and phytohormones on wheat photosynthetic traits and membrane stability. Agriculture. 59:33–41.
- Pierson, L. S. and L .S. Thomashow. 1992. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol. Plant-Microbe Interact. 5:330–339.
- Rajasekaran, L. R. and T. J. Blake. 1999. New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. J. Plant Growth Regul. 18:175–181.
- Ramadan, M. F. 2007. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview. Int. J. food Sci. Technol. 42:1208–1218.

- Reddy, M. P. and A. B. Vora.1986. Salinity induced changes in pigment composition and chlorophyllase activity in wheat. Indian J. Plant Physiol. 29:331–334.
- Rodr?guez, A. A., A. M.Stella, M .M.Storni, G.Zulpa and M.C. Zaccaro.2006. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems 2:2–7.
- Ruiz-Lozano, J. M., R.Porcel, C.Azc?n and R. Aroca.2012. Regulation by Arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J. Exp. Bot. 63:4033–4044.
- Saeidi-Sar, S., H.Abbaspour, H.Afshari and S. R Yaghoobi. 2013. Effects of ascorbic acid and gibberellin GA₃ on alleviation of salt stress in common bean (*Phaseolus* vulgaris L.) seedlings. Acta Physiol. Plant. 35:667–677.
- Saeidi-Sar ,S., R. A.Khavari-Nejad, H.Fahimi, M. Ghorbanli and A.Majd. 2007. Interactive effects of gibberellin GA3 and ascorbic acid on lipid peroxidation and antioxidant enzyme activities in Glycine max seedlings under nickel stress. Russ. J. Plant Physiol. 54:74–79.
- Sakamoto, A. and N. Murata. 2002. The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant. Cell Environ. 25:163–171.
- Saravanakumar, D. and R .Samiyappan. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (*Arachis hypogea*) plants. J. Appl. Microbiol. 102:1283–1292.
- Shannon, L. M., E.Kay and J.Y. Lew. 1966. Peroxidase isozymes from horseradish roots I. Isolation and physical properties. J. Biol. Chem. 241:2166–2172.
- Shao, Y., J.Gao, X. Wu, Q.Li, J.Wang, P.Ding and X.Lai. 2015. Effect of salt treatment on growth, isoenzymes and metabolites of Andrographis paniculata (Burm . f .) Nees. Acta Physiol. Plant. 37:1-12
- Sheng, M., M. Tang, H.Chen, B. Yang, F. Zhang and Y. Huang.2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18:287–296.
- Shoresh, M., M.Spivak and N. Bernstein.2011. Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radic. Biol. Med. 51:1221–1234.
- Siddiqui, M. H., M. N.Khan, F. Mohammad and M. M. A. Khan.2008. Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in *Brassica juncea* L. under salt stress. J. Agron. Crop Sci. 194:214–224.
- Snedecor, G. W. and W. G. Cochran. 1980. Statistical Methods, Seventh Edition (Ames, IA: The Iowa State University Press), Seventh Ed. ed. Iowa, USA.
- Steel, R. G. D., J. H.Torrie and D. A. Dickey. 1980. Principles and Procedures of Statistic: A Biometrical approach. 2nd Ed. McGraw-Hill Publ. Co., New York. 631p.
- Tuna, A. L., C. Kaya, M.Dikilitas and D. Higgs. 2008. The

combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ. Exp. Bot. 62:1–9.

- Turan, M., M. Gulluce and F. Sahin. 2012. Effects of plantgrowth-promoting rhizobacteria on yield, growth, and some physiological characteristics of wheat and barley plants. Commun. Soil Sci. Plant Anal. 43:1658–1673.
- Verbruggen, N. and C. Hermans. 2008. Proline accumulation in plants: A review. Amino Acids. 35:753–759.
- Weller, D. M., J. M.Raaijmakers, B. B. M.Gardener and L. S. Thomashow. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309–348.
- Weyens, N., D. van der Lelie, S. Taghavi, L.Newman and J. Vangronsveld. 2009. Exploiting plant--microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 27:591–598.
- Whetherley, P. E. 1950. Studies in the water relations of

cotton plants. I. The field measurement of water deficit in leaves. New Phytol. 49:81–97.

- Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol.59: 225-251
- Yan, B., Q.Dai, X.Liu, S.Huang and Z.Wang. 1996. Floodinginduced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil. 179:261– 268.
- Yang, J., J. W. Kloepper and C.M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1–4.
- Younis, M. E., M. N. A.Hasaneen and A. M. S. Kazamel. 2010. Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings. Protoplasma. 239:39–48.
- Zhu, J.K .2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247–273.

الملخص العربى

تخفيف الاجهاد الملحى لحبة البركه بالجبريللين والريزوبكتريا

ناهد مصطفى راشد، عوض يوسف شعله، محمود عبدالله محمود

الكبسولات وعدد الجذور لكل نبات و الوزن الطازج والجاف للجذور ومحصول الكبسولات والبذور ووزن مركبز الكلوروفيل والنسبه المئويه للزيت الثابت والمحتوى تركيز الكلوروفيل والنسبه المئويه للزيت الثابت والمحتوى النسبى للماء ومع ذلك ازداد محتوى البرولين ونشاط انزيم البيروكسيديز والكتاليز ونفاذية الغشاء والمحتوى الكلى البيروكسيديز والكتاليز ونفاذية الغشاء والمحتوى الكلى الملاح الذائبه في التربه بالمقارنه بالكنترول . وقد أدى استخدام الجبريللين والريزوبكتيريا لتخفيف التأثيرات الضاره للملوحه. الزياده في نامط الانزيمات وتراكم البرولين يرجع الى الجبريللين والريزوبكتريا والذى اقترح البرولين يرجع الى الجبريلين والريزوبكتريا والذى اقترح بالبرولين برجع الى الجبريلين والريزوبكتريا والذى اقترح بالبرولين بتركيز ان خير المرغوبه توصى الدراسة بالرش بالجبريللين بتركيز ان جزء في المليون أوالريزوبكيتريا بتركيز من دا %. تعتبر الملوحة احد اهم الاجهادات الخطيرة للنباتات مما يؤثر على العمليات الاخرى مثل الاجهادات التاكسدية والتى تؤدى فى النهاية لموت الخلايا. تم اجراء تجربة أصص خلال موسمى ٢٠١٤/٢٠١٥ ؛ ٢٠١٥/٢٠١٤ في المزرعه التجريبيه بمحطة بحوث البساتين بسخا لدراسة امكانية تقليل التريبية بمحطة بحوث البساتين بسخا لدراسة امكانية تقليل والازوس بيريلم والازوتوباكتر على حدة او باضافه الجبريللين والازوسبيريلم والازوتوباكتر معا على النمو الخضرى والمحصول والتركيب الكيماوى والنسبه المئويه عباره عن ماء عادى كنترول وماء بحر مخفف الى ١٠٠٠، الجبريللين بتركيز ما جزء في المليون وتم استخدام الجبريلين بتركيز ما جزء في المليون وتم استخدام البيريالين بتركيز ما جزء في المليون وتم المتدام البيريالين بتركيز ما ما حرمان الموحه المايون وتم الم