Proceedings of the 9" | CCAE-9 Conference, 29-31 May, 2012 | PM |1

Military Technical College 9" International Conference
Kobry El-Kobbah, on Civil and Architecture
Cairo, Egypt s Engineering
|CCAE-9-2012

Time-Cost Tradeoff Problems Solutionsfor Construction Projects
Using Integer Linear Programming.

A. M. Bela *, M. K. Hasan**, |. A. Nusair *** and N. M. Badra****

Abstract:

Time-Cost Optimization (TCO) problem is one of the greatest challenges in construction project
planning and control. TCO may be defined as a process to identify suitable construction activit ies
for speeding up, and deciding “by how much” so as to attain the best possible savings in both time
and cost. In this paper, an Integer Linear Model is developed to obtain solutions of time -cost
tradeoff (TCT) problemsin construction projects.

The proposed Model collects most related characteristics and constraints presented by different
previous works. Also, new factors have been added to the model so asto represents morereal TCT
problemsin life projects. The model is solved by Excel 2007 and verified using the commercial
package Primavera (P3) throughout an application example. Good agreement results of model
response against different related factors are founded through conducting sensitivity analysis.
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1. Introduction:

Construction Management decisions are made based on devel oped schedules during the early
planning stage of Projects. Decisions could be made by th e expertise using commercial software
such as Primavera, Microsoft Project, etc. Sometimes, the output time of the scheduling process
does not satisfy the desired conditions (such as the time included in the contract, etc.). Hence, to
reduce the project duration, a crashing of some activities durations must be conducted. To perform
the activities of a project, planners usually have to decide the construction methods or technologies,
operation processes and the associated resources. However, different const ruction methods and
related resource combinations for performing an activity create various durations and costs for that
particular activity, and therefore, influence the total cost and duration of the project. Hence,
planners have to face the decisions of finding the most cost effective way to complete a project
within the desirable duration for a project. These decisions are usually made based on the so -called
TCT andysis.
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1.1. Time-Cost Tradeoff studies:

Different methods and algorithms were introduced in the literature to deal with TCT problemin
construction project management. Mon, et al. [1] proposed afuzzy PERT /cost that can be applied to
a variety of fuzzy distributions of activity durations. They used a -cut method to obtain relationships
between project time and cost under different risk levels and different degrees of optimism.
Tareghian and Taheri [2] proposed a meta-heuristic solution procedure for the discrete TCQT
problem in order to minimize the total cost while maximizing the quality and also meeting agiven
deadline. Eshtehardian, et a. [3] presented a new approach for the solution of TCT problemsin an
uncertain environment. Fuzzy numbers were used and Fuzzy sets theory was then explicitly
embedded into the optimization procedure. Btaszczyk and Nowak [4] analyzed a project scheduling
problem including TCT and considering various resource allocations. Hazir, et a. [5] investigated
the budget variant of the discrete TCT problem. This multi -mode project scheduling problem
requires assigning modes to the activities of a project so that the total completion timeis minimized
and the budget and the precedence constraints are satisfied . Anagnostopoulos and Kotsikas [6]
evaluated variants of a simulated annealing algorithm which solve the total cost minimization
problem in activity networks in the case that discrete time—cost execution modes are allowed on the
project activities. Chen and Tsai [7] proposed a novel approach for TCT analysis of a project
network in fuzzy environment. The mem bership function of the fuzzy minimum total crash cost was
constructed based on Zadeh’s extension principle and fuzzy solutions are provided. M. Rahimi and
H. Iranmanesh [8] applied a meta-heuristic algorithm for the discrete TCQT problem and multiple
alternatives were considered for the activities of a project.

1.2. Modeling of TCT problemsin construction projects using Linear
Programming (LP):

The development of LP has been ranked among the most important scientific advances of the mid -
20th century. Its impact has been extraordinary since 1950, and its use has been spreading rapidly .
A magjor proportion of all scientific computation on computers is devoted to the use of LP [9]. Babu
and Suresh [10] developed LP models to study the tradeoffs among time, cost, and quality. The
model contains traditional activity characteristics and traditional constraints (normal duration,
crashed duration, normal direct cost, crashed direct cost, and the relationships among activities are
finish to start). Arikan and Gungor [11] presented a practical application of fuzzy goal LP in real
life project network with two objectives as minimum completion time and crashing cost wanted to
be optimized simultaneously . The membership functions A1 and A2 which expressed the total direct
cost and total project duration (1=> A1> = 0; 1=> A2 >= 0) were summarized in one function (A).
The optimum solution was considered to be the solution produced at A1= max. No additional
activity characteristics or new constraints were included in the mo del. Sakellaropoulos and
Chassiakos [12] developed a solution method considering additional realistic project characteristics
such as generalized activity precedence relations (finish to finish [FF], start to start [SS], and finish
to start [FS]) and external time constraints for particular activities (an activity can not start or finish
after or before a certain time or it must finish at a certain time). The possible existence of lags and
leads among activities was considered in the model. Also, penalty an d bonuses costs per unit time
were applied to the results obtained from the optimization process to get new results. The proposed
method is formulated as a linear/integer program and provides the optimal project time —cost curve
and the minimum cost schedule. The model considers indirect project costs including general
expenses that cannot directly be attributed to particular activities and exist regardless of activity
progress (e.g. general office expenses). Indirect costs were typically assumed to be propo rtiona to
project duration. Ananya and Chakraborte [13] proposed a method for the minimization of
transportation cost as well as time of transportation when the demand, supply and transportation
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cost per unit of the quantities are fuzzy. The problem is mo deled as multi objective LP problem
with imprecise parameters. Fuzzy parametric programming has been used to handle impreciseness
and the resulting multi objective problem has been solved by goal programming approach.

2. Problem description:

In project planning, one of the most important issues is to achieve the scheduling of project
activities. The project duration is an output of the scheduling process. Sometimes, the output
duration of the scheduling process does not satisfy the desired conditions (such asthe time included
in the contract, etc.). Hence, to reduce the project duration, a crashing of some activities durations
must be conducted. A simple representation of the possible relationship between the duration of an
activity and its direct costs appearsin Figure (1).

Cost Crash duration

&
Crash cost

Normal duration

Normal cost

Time

Figure (1): lllustration of linear time/cost trade-off for an activity
The linear relationship shown in Figure (1) implies that any intermediate duration could also be
chosen (continuous time-cost tradeoff relationship).
The slope of the line connecting the normal point and the crash point is called the cost slope of the
activity. The slope of this line can be calculated mathematically by knowing the coordinates of the
normal and crash points.
Cost slope = (crash cost — normal cost) / (normal duration — crash duration).
Total project costs include both direct costs and indirect costs. If each activity was scheduled for the
duration that resulted in the minimum direct cost in this way, the time to complete the entire project
might be too long and substantial penalties associated with the late project completion might be
incurred. Thus, planners perform what is called TCT analysis to shorten the project duration. This
can be done by selecting some activities on the critical paths to shorte n their duration.
Asthe direct cost for the project equals the sum of the direct costs of its activities, the project direct
cost will increase by decreasing its duration. On the other hand, the indirect cost will decrease by
decreasing the project duration, as the indirect cost is amost a linear function with the project
duration. The decison maker has to choose the appropriate solution (consisting time and

corresponding cost) from those plotted on the total cost curve as shown in Figure (2).
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Figure (2): Illustration of direct and indirect cost relationships with the project

duration.

To find solutions for the problem, planner can manually solve the problem. However, solving the
problem manually can be very difficult and time-consuming, especialy if the project consists of a
big number of activities. So, an optimization process using a ppropriate technique is needed to find
different solutions of the problem. The optimization process is constructed based on a suitable
model. The model must consider most conditions and constraints related to this problem. Different
conditions and constraints are presented in real projects such as; different relationships among
activities (FS, SS, and FF), external time constraints for particular activities, the possible existence
of lags and leads among activities, penalty and bonuses costs per unit time, indirect cost, total
budget, and the presence of holidays.

3. Model (method) development:

Assume the schedule of a project with n activities gives a project duration that is not satisfied by
decision maker. Consequently, the project duration is needed to be crashed, so a study is conducted
to get alternatives time-cost data for project activities. To get a new schedule using the original and
alternative activities data, an optimization process must be conducted throughout a suitable model.
The proposed model must take into account most factors related to this problem. In this paper an
integer linear programming model is suggested to solve this problem. The suggeseted model
consists of multiple steps as discussed below.

Step 1.

The following two basic functions presented by [11] for the project network problem are
considered:

MinZc =3 (Cdli* Tsci) ¥ iEA (D
Min Z1 = tfn - ts0 Y iEA (2
Where: activity i=1,2,........ N

A: the set of activities, Zc: total crashed cost for the project, Z1: total completion time for the
project, Cdli: cost slope for activity i: Cdli = Ccmaxi / TCmaxi where:

Ccmaxi: maximum crashed cost for activity i, TCmaxi: maximum possible crashed time for
activity i, Tsci: solved crashed time for activity | (number of crashed days)

tfn: the finish time of the last activity (n), tsO: the start time of the first activity (0)

These two eguations are subjected to the following constraints:

Start time of activity i tsi =0 ViEA
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Tsci =0 wiEA
Tsci < TCmaxi ¥ IEA
tg > tfi vi,jEA

Here: j isthe succeeding activity of activity i, tg: Start time of activity |

Tfi isthe finish time for activity i, The constraint t§ = tfi is related to the FS relationships between i
andj.

Step 2:

Equation (1) expresses the total crashed cost. To get the total direct cost (Zdc), the sum of normal
costs (> Cni) of all activities is added to the equation.

MinZdc= 3 Cni + 3 (Cdi* Tsci) 3

Step 3

Most related factors and characteristics presented in previous works are considered in the proposed
model such as; fixed and variable indirect costs, different relationships among activities (FS, SS,
and FF), external time constraints for par ticular activities, the existence of lags and leads among
activities, penalty and bonuses costs, and available budget constraint.

Step 4:

The following new factors are used in the model:

- Fixed penalty cost

- Fixed bonuses cost

- Real time factor, which is equal to the r atio between the number of days per week (7days) to the
number of working days per week.

Step 5:

Based on the above steps, the new model can be constructed as following:

a) Modéd functions

Equation (2) calculates the project duration without considering weekly holidays (this means 7
working days per week). If the weekly holidays are presented, then the project duration will
increase in arate equal to:

a = number of daysinaweek (7days)/number of working days per week .

Therefore, multiplying equation (2) by a will result equation (4) that calculates the real project
duration considering the presence of weekly holidays.

Min Z1 = (tfn — ts0)*a 4)

Equation (3) calculates the total direct cost (total crashed cost plus total normal costs). To get the
total project completion cost, the following costs must be added to equation (4):

* The indirect cost (indC) [fixed and variable indirect costs].

* The penalty cost (PC) [fixed and variable penalty costs].

* The bonuses cost (BC) [fixed and variable bonuses costs]. Adding these costs to equation (4), we
get equation (5).

MinZ2=3 Cni + ) (Cdli* Tsci) +indC +PC -BC VIiEA (5)

Here Z2 is the total project completion cost.

indC = indCf +indCv, where indCf isthe fixed indirect cost and indCv isthe variable indirect cost.

indCv =indd * Z1, where indd is the constant indirect cost per unit time.
PC = PCf + PCv,where PCf is the fixed penalty cost and PCv is variable penalty cost.
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PCv = (PT -Z1)*Pd, where PT is the time after which penalty is considered and Pd is the constant
penalty cost per unit time.

BC = BCf + BCv, where BCf isthe fixed bonuses cost and BCv isthe variable penalty cost.

BCv = (BT -Z1)*Bd, where BTis the time before which bonuses is considered and Bd is the
constant bonuses cost per unit time.

The finish time of each activity i (tfi) is calculated as:

tfi =tsl + Tni — Tsci ;where Tni, tsi, and Tsci are explained in stepl.

b) Model constraints

The model equations (4 and 5) are subjected to the following constraints:

ts=>0and Tsci =0 Y iEA

Tsci < TCmaxi ¥YiEA

For FSrelationship, the start time of activity j >= start time of i pluslags (or leads) between j and i
(lags have positive values, while leads have ne gative ones):

tg > tfi + Lij

For FF relationship, the finish time of activity j > finishes time of i plus lags (or leads) between j
andi: tfj > tfi + Lij

For SSrelationship, the start time of activity j = start time of i plus lags (or leads) between j and i:
tg > tsi + Lij

Activity i must finish before a certain time (t): tfi < t/a.

Activity i must start before a certain time (t): tsi < t/a.

Activity i must start at a certain time (t): tsi = t/a.

Activity i must finish at a certain time (t): tfi = t/a.

Total completion cost must be equal or smaller than available budget : Z2 < budg.

The start time and the solved crashed time of each activity i must be integer numbers (tsi = integer,
Tsci = integer). Penalty and bonuses costs are considered in equation ( 2) with respect to the
following conditions:

IFZ1>PT, THEN: PC=PCf + PCv; ELSE: PC=0

IFZ1<BT, THEN: BC=BCf+BCv; ELSE: BC=0

4. Solution procedure:

1) Project duration (Z1) can be expressed by the membership function (A1) as presented by [11]:
0<A1< 1Al =(maxZl - Z1)/ (maxZ1 — minZ1), Where maxZ1: normal project duration; minZ1:
project duration at maximum crashing as shown in Figure 3, Z1: resulted project duration.

. Project

£=0 l * duration

“da}'s”

Crashing duration Norm ﬂ!‘dura(ion
minimum possible) o oA i oo m )

[t
Figure (3): Membership function of project duration
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2) Alisdividedto 10 intervals ([0~ 0.1],[0.1~0.2], [0.2~0.3], [0.3~0.4], [0.4 ~ 0.5], [0.5 ~
0.6], [0.6 ~0.7], [0.7 ~ 0.8], [0.8 ~ 0.9], [0.9 ~ 1]) in addition to A1= 0, and A1=1.

3) For each interval of Al-value, the model is solved to get the minimum total cost (Z2) and
corresponding project duration (Z1).

4) Z2-values resulted at each interval are plotted against the corresponding values of Z 1 to get the
optimum TCT curve of project activities.

5) The decision-maker can choose the appropriate solution from the resulted time-cost tradeoff
curve.

5. An application example:

The data presented by [12] from a highway construction project is used. The project refersto the
upgrading of an existing two-lane undivided highway to afour-lane divided motorway with
controlled traffic access. In this application, a 100 m road section length is considered for
simplicity. The datafor the project of 29 activities is shown in Table (1).

Table (1): activities data

Nor mal Crash Normal Cost Crash Cost 5 Lags
Activit Time Time (lower pound) | (upper pound) 5 gr)
y (Tni), (Tci), (Cni), (Cci), 8 | Leads
day day unit unit o 0
Serviceroad A
1-Rock excavation 5 4 2030 2300 0 0
2- Embankment construction 8 6 1020 1510 1(FS) -3
1(FS) 0
3- Sub base and base layers 8 6 1700 2090 2AFS) 0
4- Asphalt layer 4 3 590 730 3(FS) 0
5- Temporary marking and signing 2 - 90 - 4(SS) +1
Serviceroad B
6-Earth and semi-rock excavation 4 3 910 1100 1(FS) 0
) 2(FS) 0
7-Embankment construction 2 - 250 6(FS) 1
3(FS) 0
8-Subbase and base layers 7 5 1490 1830 7(F9) 0
A(F9) 0
9-Asphalt layer 4 3 520 750 8(FS) 0
10-Temporary marking and 2 ) % 5(FS) 0
signing 9(FF) +1
Main road
11-Traffic diversion 1 - 50 lsé(FFSF)) 0
12-Rock excavation 8 6 3260 3710 11(FS) 0
13-Earth and semi-rock
excavation—existing pavement 5 3 1140 1720 12(59 2
14- Sub grade stabilization,
retaining wall/culvert construction 4 3 300 450 1389 2
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15-Embankment construction 8 5 1020 1430 ﬁgzg; g
16-Drainage pipe construction 9 6 790 1180 15(FS) -6
17-Drainage layer 13 11 3340 4060 15(SS) +4
18-Planting at roadway ver ges 9 7 470 830 15(FS) +4
ig;gE&IG. installations at r oadway 6 4 460 810 15FS) 0
20- Ditches 6 5 1280 1430 17(SS) +3
21- Sub base layer 14 10 1090 1560 20(S9) +2
22- Base layer 14 9 900 1400 21(SS) +2
23- Median island (New Jer sey) 14 11 2220 2690 22(F9) -9
IZS?;rI]EC:ect installation in median 3 ) 230 ) 23(S9) %
25- Asphalt layer #1 6 4 1590 1990 23(F9) -4
26- Asphalt layer #2 10 8 2630 3240 25(SS) | +4
27- Friction cour se over lay 8 6 2060 2660 26(FS) 0
28 -Final marking and signing 10 8 320 610 27(FS) -3
29- Traffic restoration 1 - 50 - 28(F9) 0

An external constraint is set for the completion time of the service road s. In particular, the latest
finish time of activity 11 is 23 days after the beginning of the project. The variable indirect project
cost is 150 units per day. Further, avariable penalty at a rate of 200 units per day of delay applies
after the 80th day while a variable bonus of 100 units per day is given for project completion before
the 80th day.
In this case study, fixed indirect, penalty and bonuses costs were not considered (this means that
indCf =0, PCf = 0, and BCf = 0). The holiday days were not taking into account (7 working days
per week), so in our model this can be expressed by giving avalue equal to (1) to the real time
factor (a). Available project budget is not presented, so this constraint will not be considered in the
solution. The project network is shown in Figure (4).

To get the optimum solution for project problem, the membership function is expressed as:
Al = (maxZ1 - Z1)/ (maxZ1l - minZ1l).

O ONPTOSD) oA
% / e {\{é.]

Gr()—(s)—(r02)~1309) (o)

Figure (4): project network
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-Model running at minimum possible crashing (this means at mi nimum direct cost), we get project
duration = maxZ1 = 85 days. Model running at minZ 1, we get project duration = minZ1 = 70 days.
So, membership function can be presented as:

Al =(85-21)/ (85-70).

-Model running for al £1-intervalsat minZ2, we calculate Z2-values and corresponding Z 1-val ues.
The model solutions are presented in Table (2) and plotted in Figure (5).

Time-Cost Tradeoff Curve

47600
47400 ¢
47200

47000 ¢
46800

46600 2

46400 ¢

46200

46000 * L

45800
45600 * e *e * e
45400

*(tc)

Total Cost, unit

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Project Duration, day

Figure (5): Optimum Time-Cost Tradeoff Curve for original case study

It can be seen that minZ2 to complete the project can be achieved by Z1 equal to 74 days. It is noted
that, all solutionswith Z1 > 75 are dominated by the solution (Z1= 74, Z2 = 45521).

Table (2): Time-cost solutions

Al-interval Indirect Bonuses Penalty

interval Z1, days Al-value Direct Cost Cost Cost Cost Z2, unit
0 85 0 33610 12750 0 1000 47360
0-0.1 84 0.06667 33710 12600 0 800 47110
0.1-0.2 82 0.2 33960 12300 0 400 46660
0.2-0.3 81 0.26667 34055 12150 0 200 46405
0.3-04 79 04 34260 11850 100 0 46010
0.4-0.5 78 0.46667 34417 11700 200 0 45917
0.5-0.6 76 0.6 34707 11400 400 0 45707
0.6-0.7 75 0.66667 35007 11250 500 0 45757
0.7-0.8 74 0.73333 35021 11100 600 0 45521
0.8-0.9 73 0.8 35321 10950 700 0 45571
0.9-1 71 0.93333 35931 10650 900 0 45681
1 70 1 36231 10500 1000 0 45731

Of course, thiswill not be a reason to exclude these solutions. The project team might not be able to
execute the activities with the applied crashing (for the first four solutions). Therefore, the presence
of other solutionsis very important.
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To verify the schedule of project activities, we use the new resulted activities durations (for solu tion
Z1=74 days and Z2 = 45521) as an input data. This can be done manually or using commercial
software such as primavera project planner (P3). The resulted schedule is shown in Figure (6).

Figure (6): Project schedule at solution Z1=74 days and Z2=45521 units.

Activity Activity Orig |Rem| % Early Early
D Description Dur | Dur Start Finish
10 1 4 4 ojo10CTI1 040CTN
20 2 L3 8 ojozoCcT11 o70CTN
20 3 6 & 0 jo80CTI1 130CTNM
40 4 4 4 o]140CTN 170CTN
50 5 2 2 o|150CT11 160CT11
60 L 4 4 0 josoCTi 080CT1
70 7 2 2 0]o8OCTI 090CT1
Bo a8 5 s o|140CT11 180CT11
90 2 3 3 0]190CT11 210CT11
100 10 2 2 oj210CT11 220CTN1
110 " 1 1 0]230CcTN
120 12 B8 B8 0j240CT11 3MOCTN
130 13 5 5 0|260CT11 300CT1
140 14 3 3 0}280CTN 300CTN
150 15 8 & 0}290CT1 OSHOVI1
160 16 9 9 o]310CTN 08HOV1I1
170 17 13 13 ojozNOVIY 14NOWV11
180 18 9 a 0] 10NOV11 18NOV11
190 19 8 & 0 |oenOV11 TMNOWVT
200 20 B 8 O josSNOVIT 10HOWV11
210 21 14 14 ojoTnOV 11 20N0V11
220 22 9 a ojosNOvVIT 17THOV11
230 23 " 1 ojosNOVT 19HOV11
240 24 3 3 o|1SNOVI 1THOV11
250 25 L & O] 16N0V I 21HOV1I1
280 26 10 10 oj20N0V11 289H0V11
270 27 a8 & 0 |2oNOV11 O7DEC11
280 28 8 & 0]0oSDEC11 12DECT1 :
290 29 1 1 0|13DECT 13DEC11 : : & 29

It can be seen that project startsat 1/10/2011 and finishes at 13/12/2011 (74 days). Also activity 11
finishes at 23/10/2011 (23 days after project start).

6. Sengitivity analysis:
In this section, the sensitivity of the proposed model against different factorsis studied. Thisis done
by an illustrative sensitivity analysis for the application example.

6.1. Available budget:
Assume a constraint budget of 46000 unitsis considered for the project. The resulted TCT curveis
shown in Figure (7).

Time-Cost Tradeoff Curve
46000 |
.E 45900 | L 4
< 45800 |
S 1 <
- i <
.E 45700 ¢ ’[t; C}
£ 45600 | *
; L 2
45500 *
68 69 70 71 72 73 74 75 76 71 78 79 80
Project Duration, day

Figure (7): Optimum TCT curve at case where available budget<= 46000 units.
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It can be shown that all solutionswith Z2 > 46000 are excluded from the original TCT curve.

6.2. Generalized activities characteristics:

Considering activity 15 cannot start before 35 days from the project start, then the TCT curve at this

case is presented in Figure (8).

Total Cost, unit

48200
48000
47800
47600 |
47400
47200
47000

&

TCTeurve

&
¢ e &

+(t,c)

76

77

78

79 80 81 82

Project Duration, day

83 &

85 86

Figure (8): Optimum TCT curve at case where activity 15 cannot start before 35

days

It can be seen that Z1-valuesincreased due to the increase of start time of activity 15. The model
solution (Z1=80 days, Z2 = 47171 unlts) |s solved by P3 asshown in Flgure (9).

Activity Activity Orig |Re Early Early 20
D Description Dur Dur Start Finish - ’__
10 1 4 4 o|o1o0cT11 040CTM
20 2 6 3 o|o20cT11 070CT11
30 3 & 3 o|osocT1 130CTN =
40 4 r] 4 o[140CT11 170CTH a2
50 5 2 2 o[1s0CcT11 160CT1 P75
60 G I 4 o|osocT 080CTH /T 6
70 7 2 F] 0|o8ocT11 080CT1 Fars &4
80 ] 5 5 o]140CcT1 180CT ™ AT &
90 9 3 3 o[190CcT11 210CT1 &
100 [10 2 2 o|z10cTh 220CT1 & 10
10 |1 1 1 0 230CT11* F &L
120 12 8 &8 0[240CT11 310CTN [ 12
130 |13 5 5 o|2e0cT11 300CTH [T 13
140 |14 4 4 0]280cT1 310CTH L7 14 :
150 |15 8| 8 0[0SNOViTT  [12NOV1T | dgmly 15
160 16 9 [] [ CLOE R 1SN0V 11 S 16
170 |17 13| 13 oosnovil 21NOVI A—_F 17
180 |18 ] 9 [ EECGRER 2Z5NOV1 S ———— w18
180 |19 5 3 of13novn 18NOV 11 w19
200 |20 B 3 of1znovn 1TNOVI AlT 20
210 |21 14 14 of1anovi 2THOVIT AT 21
220 |22 ] ] o[1enovn 24N0OV1 Ay 22
230 |23 nl n of1enovii 26NOV 11 Ay 73
240 |24 3 3 o[zznovia 24N0V1 &F—F 24
250 |25 6 3 ofz3novii 2BNOV 11 AT 25
260 |26 0| 10 0270V |0BDECTA Ak 26
270 |27 7 7 o[o7DECTY 13DEC11 | AT 27
280 |28 8| & o[11DECT 18DECT . Awmk¥ 28
280 |29 1 1 0[190ECTY 190EC11 & 29

Figure (9): project schedule at solution Z1=80 days and Z2= 47171 units.

It isnoticed that activity 15 startsat 5/11/2011 (this means 35 days after project starts) and project
finish at 19/12/2011 (80 days after project start).

6.3. Fixed bonuses cost:
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In addition to the variable bonuses cost in the original case, afixed bonuses cost (1000 units) for a
project completion duration earlier than 80 daysis considered. The resulted TCT curve is presented
in Figure (10).

It is noted that a decreasing of total cost has been occurred for all solutionswith Z 1 < 80 days due
to the adding of fixed bonuses cost.

TCTcurve

48800

48400 >
48000

47600

47200 *
46800 o*

46400

46000

45600 *(t, c)
45200

&

44800 & >

44000 :

Total Cost, unit

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Project Duration, day

Figure (10): Optimum TCT curve consi dering1000 units of fixed bonuses cost

6.4. Fixed penalty cost:

In addition to the variable penalty cost in the original case, afixed penalty cost (1000 units) for
project completion durations later than 80 daysis considered. The resulted TCT curveis presented
in Figure (11).

TCTcurve

48800

48400 ¢
= 48000 ¢
E_ 47600 *
‘g 47200
“ 46800
S 46400 *(tc)
= 46000 *

45600 e 4ot .

45200

68 60 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Project Duration, day

Figure (11): Optimum TCT curve considering1000 units of fixed penalty cost

It can be seen that an increasing of total cost has been occurred for all solutionswith Z 1 > 80 days
due to the added fixed penalty cost.

6.5. Fixed indirect cost:
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In addition to the variable indirect cost in the original case, afixed indirect cost equal to 1000 units
isconsidered. Theresulted TCT curveis presented in Figure (12). It is observed that an increasing
of total cost has been occurred f or all solutions.

TCTcurve

48600 |
48400 | +
48200 |
48000 |
47800 |
47600 | *
47400 | I
47200 | *(tc)
47000 |
46800 | » i
. * o * 0
46600 | * o
46400 '
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Project Duration, day

Total Cost, unit

Figure (12): Optimum TCT curve considering fixed indirect cost (1000 units)
6.6. Real time factor:

Considering 5 working days per week, the real time factor (a) = 7/5 =1.4. TCT curvefor thiscase is
drawn asfollows:

1- Membership function will take the following new boundaries:

A = (85%1.4 - Z1)/ (85 - 70)* 1.4 = (119 — Z1)/ (119 - 98).

2- The constraint related to activity 11 (activity 11 finish at 23 days after project start) is given for a
case of 7 working days per week. In this case the equivalent finish time of activity 11 equal to
23*1.4 = 32 days. Theresulted TCT curve is plotted in Figure (13).

TCT Curve

59500

59000 | ¢ *
5 58500
5 58000 . +
5 57500
Z 57000 * &
O 56500 |
= 56000 L 2 ¢t c
2 55500 | = ¢ (t.c)
= 55000 |

54500 @ \ *

54000 |

96 98 100 102 104 106 108 110 112 114 116 118 120

Project Duration, day

Figure (13): Optimum TCT curve considering 5-working days per week (a = 7/5 =
1.4)
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Itisclear that avaluableincreasing in the total cost has been occurred due to the increasing of
indirect and penalty costs. The existence of 2 holiday days per week caused an increasing in project
duration (Z1). Indirect and penalty costs increased proportionally with respect to the increase of Z1.
To verify this case, P3 is used to schedule project activities at the solution Z 1 = 98 daysand Z2 =
54531 units. The schedule is shown in Figure (14).

It is noticed that project startsat 1/10/2011 and finishes at 7/1/2012. (99 days), however, the model
results duration is 98 days. The one-day difference isrelated to the reason that, P3 is affected by the
chosen of holiday days, project start day, and the resulted finish day, while the model cannot
consider these factors.

Activity Activity orig|Rem| % Early Early 2011 1
o Description Dur | Dur Start Finish
CE 4] 4 oo10cT1 040CT11 1
20 2 6] & o0[oz0cT11 090CT11 2 :
30 |3 6] & o[100cT11 170CT1 Vo B
40 4 s 4 o[180cT11 230CT11 oz Y
50 |5 HIE o[1socTi 220CT11 a0
60 |6 4 4 ofosocTi 100CT11 i=v A
70 7 2| 2 0[100CT11 1oCTi w7
80 8 5] 5 o[180CT11 240CT11 [TEW 8.
%0 |9 3| 3 o|zsocTi1 250CT11 pas gl
100 |10 2] 2 o|zsocTin 300CT11 A7 10
T Ty 0 GINGVIT" &
120 [12 8| & 0 [o2n0v11 130V A7 12
130 |13 s| s 0[oenovi1 12N0V 1 | AT 13
140 [14 3 3 0josNOVIY 12NOV11 L AT 14 ;
150 |15 8| 8 0[0SNOVI1  |20NOV1T | A7 15 |
160 |18 BE o[13NOVI1  |23M0OVTT [ v S— T
170 |1 12] 13 o[1sNOV11T [D3DECTT : An—7 17
180 18 (] 9 o2Tnovit 07DEC11 : 7 18
160 19 6 & o[21nOV11 28NOV1 ' %19
200 |20 6] & ofzoNOVI1T [27HOVTY ! A7 20
Z0 |21 14| 14 0lzznOovil  [11DECTT f A— 21
220 |22 5| s 0[28NOV11 |DSDECTT : A—_7 22
230 |23 n| 1" 0[28NOV 11 10DEC11 ; A—_ 23
240 |24 e 0 [04DECT DEDECT1 i 7 24
250 |25 6] & 0[0SDEC11 12DECT1 : | dgmiy 25
60 |26 s & o[11oEC 20DECT1 } Ay 76 |
270 |27 & & 0[21DECTT 28DECTT : : i |27
280 |28 8 & 0[260ECTT D4JANT2Z : : Ami7 28
790 |29 1 1 0[07JANIZ  |OTJANIZ i &2

Figure (14): Project schedule for 5-working days per week (Z1 = 98 days, Z2 =
54531units)

7. Conclusion:

In thiswork, an Integer Linear model combining most factors and characteristics presented in
previous works and related to TCT problems was proposed. Also, other factors such asfixed
indirect, fixed penalty, and fixed bonuses costs were introduced in the model. for best real
representation of life projects, the weekly holiday days were considered in the model by introducing
real time factor (a) = 7/ (number of working days per week). A procedure method to get optimum
time-cost solutions was presented. The optimum time-cost solutions were plotted in so-called TCT
curve to enable decision maker to choose the appropriate solution for the problem.

A sengitivity analysis was conduct ed to test the model reaction against different affected factors.
The sensitivity analysis showed good reaction of the model to the different solved cases. The new
resulted activities durations (after crashing) for different solutions were scheduled using primavera
project planner (P3). The aim of this process was to ensure that model scheduled project activities at
minimum durations. The comparison showed that results were fitting well.
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