References
1.
|
Bagi, R., Yadav, J., Rao, K. (2015). Improved recognition rate of language identification system in noisy environment. In Eighth International Conference on Contemporary Computing (pp.214-219), Noida, India.
|
2.
|
Yu-bin, S., Jing, L., Hua, L., Yi-min, L. (2021). Language Identification in Real Noisy Environments. Journal of Beijing University of Posts and Telecommunications 44(6), 134.
|
3.
|
Kilimci, H., Kilinc, H., Kilimci, Z. (2025). Automatic Language Identification from Speech using Transformer-Based Models. In 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (ICHORA) (pp.1-7).
|
4.
|
Barnard, E., Cole, R. (1994). Reviewing automatic language identification. IEEE Signal Processing Magazine 11(4), 33–41.
|
5.
|
O'Shaughnessy, D. (2025). Spoken language identification: An overview of past and present research trends. Speech Communication, 167.
|
6.
|
Rai, M., Fahad, M., Yadav, J., Rao, K. (2016). Language identification using PLDA based on i-vector in noisy environment. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp.1014-1020).
|
7.
|
Sáez, J., Luengo, J., Herrera, F. (2016). Evaluating the classifier behavior with noisy data considering performance and robustness: The equalized loss of accuracy measure. Neurocomputing, 176, 26-35.
|
8.
|
H, M., Gupta, S., Dinesh, D., Rajan, P. (2021). Noise-Robust Spoken Language Identification Using Language Relevance Factor Based Embedding. In IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, IEEE.
|
9.
|
Makhoul, J. (2005). Linear prediction: A tutorial review. In Proceedings of the IEEE (pp.561 - 580), vol. 63.
|
10.
|
Mermelstein, P. (1976). Distance measures for speech recognition, psychological and instrumental. Pattern Recognition and Artificial Intelligence, 374-388.
|
11.
|
Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. The Journal of the Acoustical Society of America 87(4), 1738–1752.
|
12.
|
Eyben, F., Wöllmer, M., Schuller, B. (2010). OPENSMILE - The Munich Versatile and Fast Open-Source Audio Feature Extractor. In Proceedings of the 9th ACM International Conference on Multimedia (pp.1459-1462).
|
13.
|
Singh, G., Sharma, S., Kumar, V., Kaur, M., MohammedBaz, Masud, M. (2021). Spoken Language Identification Using Deep Learning. Computational Intelligence and Neuroscience, 1–12.
|
14.
|
Fathoni, A., Hidayat, R., Bejo, A. (2022). Optimization of Feature Extraction in Indonesian Speech Recognition Using PCA and SVM Classification. In 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia.
|
15.
|
Ramoji, S., Ganapathy, S. (2018). Supervised I-vector Modeling-Theory and Applications. INTERSPEECH, 1091-1095.
|
16.
|
Thimmaraja, Y., Nagaraja, B., Jayanna, H. (2021). Speech enhancement and encoding by combining SS-VAD and LPC. International Journal of Speech Technology, 24, 165–172.
|
17.
|
Nassif, A., Shahin, I., Hamsa, S., Nemmour, N., Hirose, K. (2021). CASA-based speaker identification using cascaded GMM-CNN classifier in noisy and emotional talking conditions. Applied Soft Computing, 103.
|
18.
|
Kantamaneni, S., Charles, A., Babu, T. (2023). Speech enhancement with noise estimation and filtration using deep learning models. Theoretical Computer Science, 941, 14-28.
|
19.
|
Biswas, M., Rahaman, S., Ahmadian, A., Subari, K., Singh, P. (2023). Automatic spoken language identification using MFCC based time series features. Multimedia Tools and Applications, 82, 9565–9595.
|
20.
|
Salamon, J., Bello, J. P. (2017). Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification. IEEE Signal Processing Letters, 24(3), 279-283.
|
21.
|
Luo, Y., Mesgarani, N. (2019). Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation. IEEE/ACM Transactions on Audio Speech and Language Processing, 27(8), 1256-1266.
|
22.
|
|
23.
|
Jolliffe, I. (2002). Principal Component Analysis 2nd edn. Springer , New York.
|
24.
|
Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188.
|
25.
|
Xanthopoulos, P., Pardalos, P. M., Trafalis, T. B. (2013). Linear Discriminant Analysis. In Robust Data Mining. Springer, New York.
|
26.
|
Olson, D., Delen, D. (2008). Advanced Data Mining Techniques 1st edn. Springer.
|
27.
|
Prahallad, K., Kumar, E., Keri, V., Rajendran, S., Black, A. IIIT-H Indic Speech Databases, IIIT Hyderabad, India. (Accessed 2024) Available at: http://festvox.org/databases/iiit_voices/.
|
28.
|
Gupta, M., Bharti, S., Agarwal, S. (2017). Implicit language identification system based on random forest and support vector machine for speech. In 4th International Conference on Power, Control & Embedded Systems (ICPCES), Allahabad, India.
|
29.
|
Athira, N., Poorna, S. (2019). Deep learning based language identification system from speech. In International Conference on Intelligent Computing and Control Systems (ICCS) (pp.1094-1097), Madurai, India.
|
30.
|
Mukherjee, H., Das, S., Dhar, A., Obaidullah, S., Santosh, K., Phadikar, S., Roy, K. (2020). An ensemble learning-based language identification system. In Computational Advancement in Communication Circuits and Systems: Proceedings of ICCACCS, 2018.
|
31.
|
Paul, B., Phadikar, S., Bera, S. (2021). Indian regional spoken language identification using deep learning approach. In Proceedings of the Sixth International Conference on Mathematics and Computing: ICMC 2020 (pp.263-274), Singapore.
|
32.
|
AMBILI, A., ROY, R. (2023). The Effect of Synthetic Voice Data Augmentation on Spoken Language Identification on Indian Languages. IEEE Access, 11, 102391 - 102407.
|
|