Effect of Waterdeficit on Seed Yield and Prolinecontent in Some Faba Bean Genotypes CHECKED against plagiari El-Harty, E. H. TurnitIn Food Legume Crops Research Department, Field Crops Research Institute, Agricultural Research Center, 9 Gamma Street Giza 12619, Egypt.

Drought stress is one of the most serious problems for agriculture production and sustainability. This study was carried out to investigate seed yield and its components in addition to estimate free proline content in leaves of nine faba bean genotypes with different types grown under three water regimes (well-watered, mild and severe drought). A field experiment was laid out in split plot with three replications during two growing seasons, 2013/14 and 2014/15. The results indicated that drought had pronounce negative effects on yield and its components for all faba bean yield characters, while the effect was positive with leaves proline content. Hassawi 2 out yielded all genotypes under all water treatments and was followed by Giza 843 and ILB 1814 under well irrigation and by Giza Blanka and Giza 843 under high drought stress. Furthermore Hassawi 2 and Nubaria 1 showed higher drought tolerance efficiency (42.3 and 39.5), less drought stress susceptibility index (0.6) and minimum reduction in seed yield 58.3 and 60.4%, respectively. Proline content ranged from 46.3µg/g for Gazira 2 to 69.7 for ILB 1814 under well-watered and from 89.8 for Kamline to 264.0 for Gazira 1 under severe drought. Proline content and seed yield/plant negatively correlated (r = -0.65**) over all treatments and was insignificant under both well-watered (r= 0.62) and high drought stress (r= 0.43). This indicated that proline content was drought stress sensor and could not use as selection parameter for drought tolerant genotype. Keywords: Faba bean, Water regimes, Proline, Tolerance, Seed yield.

INTRODUCTION

Faba bean (Vicia faba L.) is an annual legume crop, belongs to Fabaceae family, commonly known in a worldwide by different names. In this species only two subspecies were recognized (paucijuga and eu-faba), the subspecies eu-faba was subdivided into three types 1minor with small rounded seeds, 2-equina with medium sized seeds and 3-major with large broad flat seeds (Bond et al., 1985) while Cubero (1974) suggested four subspecies, namely: minor, equina, major, and paucijuga. Faba bean a large and economically important crop that is rich in protein and energy. It is widely considered as a good source of protein, starch, cellulose and minerals for humans in developing countries and for animals in industrialized countries (Haciseferogullari et al., 2003).In the Middle East and most parts of the Mediterranean, China and Ethiopia, faba bean constitutes one of the main dishes on the breakfast and dinner tables (Bond et al., 1985). Faba bean may by use as green manure or cover crop also; it has significant value in improving the fertility of soil by its rotation cultivation with cereal crops.

Drought stress is one of the most serious worldwide problems for agriculture. Four-tenths of the world's agricultural land located in arid or semi-arid regions and drought events are increasing (Wang and Hendon, 2007). Drought limits the growth and productivity of most crop species including faba bean. The reduction in faba bean seed yield was positively related to the amount of water reduction and reach up to 50% of seed yield (Musallam et al., 2004 and Ouda et al., 2010 and Ammar et al., 2014). Adaptation is a more complex process than just reduced growth and productivity (Conde et al., 2011). Faba bean plants are sensitive to drought deficit (Ricciardi et al., 2001; Amede and Schubert, 2003; Khan et al., 2007 and 2010 and Ammar et al., 2014). Understanding of the drought tolerance physiological mechanisms in faba bean is substantial to identify characters correlated with drought tolerance that can be selected in breeding programs.

Accumulating solutes is a widespread plant response to environmental stresses such as drought, while carbohydrates are used for energy and maintaining metabolism under water deficit conditions (Khalid et al., 2010). Proline is one of the most common compatible osmolytes in drought stressed plants. Proline has an important role in conferring osmotolerance (Mittler et al., 2004 and Verbruggen and Hermans, 2008). Compatible solutes are overproduced under drought stress for facilitate osmotic adjustment (Hasegawa et al., 2000 and Shao et al., 2005). These compounds accumulated in high amounts mainly in cytoplasm of stressed cells without interfering with macromolecules and behaved as osmoprotectants (Yancey, 1994). Also proline has a key role in stabilizing cellular proteins and membranes in high concentrations of osmoticum (Yancey, 1994 and Errabii et al., 2006). In the same orientation Vendruscolo et al., (2007) reported that proline accumulation in stressed plants is a tolerance mechanism against oxidative stress and it is the main strategy of plants to avoid harmful effects of drought stress. However Maggio et al.,(2002) and Zlatev and Stoyanov, (2005) suggested that proline accumulation in stressed plants is not stress tolerance mechanism, but it may be part of the stress signal influencing adaptive responses.

using

Consequently, the objectives of this study were to determine the differences between faba bean genotypes and types in seed yield and its components under three water regimes in addition to assessment the relationships of proline content and seed yield.

MATERIALS AND METHODS

To achieve the objective of the present study, nine faba bean genotypes belong to the three types (minor, equina and major) were collected from different geographical origins (Table 1). The nine genotypes were evaluated under three levels of water deficit in a field experiment during 2013/2014 and 2014/2015 seasons. Field experiments were conducted at Dirab Experimental Agricultural Research Station (24°43'34"N, and 46°37'15"E), King Saud University, Riyadh, Saudi Arabia. The experimental design was split plot with three replications keeping the water treatments in the main

plots and genotypes in the subplots. Seeds of genotypes were planted in 50 and 20cm spaced rows and hills, respectively, during first week of November in both experimental years. Each experimental plot was represented by four rows with three meter long. The water treatments applied after 3 weeks of sowing by irrigations when the amount of evaporated water from the 'class A pan' evaporation reached 50 mm (control), 100 mm (mild drought stress) and 150 mm (severe drought). The soil texture was loam-sandy whose physiochemical attributes are shown in Table (2).Super phosphate ammonium (15%) was add at the rate of 300 kg/ha during seed bed preparation. Simulative dose of ammonium nitrate(34.4%) (100 N Kg/ha) was added before the first irrigation, while the second and third splits of ammonium nitrate were added before flowering and pod filling stages, respectively. Also Potassium sulphate (48% K₂O) were added at the rates of 100 kg/ha at flowering stage. Hand weed control was applied twice.

At pod filling stage and before irrigation leaf samples from each plot were collected for determining proline content using method of Bates *et al.*,(1973). First, fresh leaf samples were homogenized in 3% sulfosalicylic acid, followed by the addition of 2 mL each of ninhydrin and glacial acetic acid and the samples were heated to 100 °C. The mixture was then extracted with toluene, and the free toluene was quantified spectrophotometrically at 520nm using L-proline as a standard. Proline concentration was determined using a calibration curve and expressed as $\mu g/g$ leaf fresh weight. At maturing stage, five plants from each plot were selected from the middle rows to measure plant height, no. of branches/plant, no. of pods/plant, no. of seeds/plant, no. of seeds/plant, no. of seeds/plant.

The drought stress susceptibility index (SSI) was calculated according to Fischer and Maurer (1978):

Also drought tolerance efficiency (DTE) mean relative performance ratio was estimated by using formula given by Fischer and Wood (1981).

Gazira 2 and Giza 2 under well irrigation treatment

Table 1.Type, genotype name and origin of selected faba bean genotypes.

Minor				E	Major			
No.	Name	Origin	No.	Name	Origin	No.	Name	Origin
1	Gazira 2	Sudan	4	Giza 2	Egypt	7	ILB 1814	Syria
2	Tribal White	Sudan	5	Giza 843	Egypt	8	Nubaria 1	Egypt
3	Kamline	Spain	6	Hassawi 2	Saudi Arabia	9	Gazira 1	Sudan

Table 2. Physical and chemical analysis of Dirab soli.											
Sample depth	Saturated soil pH	E.C. (ds.m-1)	Total N%	Absorbable P (ppm)	Absorbable K (ppm)	O.M %	Sand	Silt	Clay	Caco3%	
0-30 cm	7.5	0.9	13.1	20.6	86.6	0.3	76.1	12	11.9	18.0	

Statistical analysis

Data of the two seasons were submitted to analysis of variance (ANOVA) and after confirmation of errors compatibility; the combined analysis over the two seasons was applied following Gomez and Gomez (1984). The means of treatments were compared using Duncan's multiple method (Duncan, 1955) at the level of 5% probability using Mstatc software (MSTATC1990). Simple correlation coefficients between seed yield/plant and proline contents were computed according to Snedecor and Cochran (1981)using subprogram (correlation) in the same software.

RESULTS AND DISCUSSION

Combined analysis of variance of the two seasons revealed significant differences among seasons and water treatments for all traits as well as their interactions in plant height, branches, seeds/pod and proline content. Genotypes and its interactions with seasons and water treatments exhibited highly significant differences for all traits except no. of branches in genotype by water treatments and seed yield/plant in genotype by water treatments by seasons (Table 3).All round improvement in growth and seed yield characters were found significantly maximum under well water irrigation treatment degraded with increase drought stress. The tallest genotypes Giza 843, exhibited high reduction when grow under stress conditions as compare to the other genotypes (Table 4). The tallest genotypes over all treatments were Giza 843, Gazira 2, Gazira 1 and Giza 2 with mean values of 95.1, 93.9, 91.9 and 91.0cm, respectively. Faba bean genotypes var., major (ILB 1814, Nubaria 1and Gazira 1) had highest branches number under all conditions with mean values of 6.1, 5.5 and 5.0 under well irrigation and 4.7 4.7 and 4.3 mean of all treatments, respectively. The highest number of pods and seeds per plant showed by minor type followed by equina under well irrigation but equina genotypes were maintained numbers of pods in stress conditions (9.8, 7.1 and 6.8 for Hassawi 2, Giza 843 and Giza 2, respectively) but as mean of the water treatments suggested the superior of TW, Hassawi 2 and Gazira 2 with maximum number of pods (15.2, 13.8 and 13.5, respectively). Concerning no of seeds/plant, minor type genotypes produced highest number under well-watered conditions however, under drought stress Hassawi 2 from equina type shared Gazira 2 the first rank with mean number of 16.0 and 15.3, respectively (Table 4). These results are in agreement with these obtained by Khalafallah et al. (2008), Ouzounidou et al. (2014), Ammar et al. (2014) and Alghamdi et al. (2014) found that drought stress significantly influenced all faba bean characters.

where Y_{si} is the yield/hectare of the genotype under stress conditions, Y_{pi} is the yield/hectare of the genotype under non-stress conditions, Y_s is the mean yield of all genotypes under stress conditions, and Y_p is the mean yield of all genotypes under nonstress conditions. A lower SSI and high DET indicate higher drought tolerance genotype. Yield/hectare was estimated according to the plot area harvested.

Table 3. Analysis of variance for the	he influence of water	deficit on seed	yield, its comp	ponents and pr	oline content	traits of
faba bean genotypes (com	ibined of the two seas	sons)				

SOV	Df	Plant	No. of	No. of pods/	No. of seeds/	No. of seeds/	Seed	Seed yield/	Proline
50 V	DI	height	branches	plant	plant	pod	index	plant	content
Season (S)	1	72483.2**	0.002ns	90.9**	1309.0**	2.49**	764.8*	314.4**	19120.9**
Treatment (T)	2	22493.6**	42.3**	1504.5**	6472.8**	0.37ns	1645.2**	3140.6**	203045.3**
S T	2	2130.1**	2.5*	2.18ns	91.4ns	0.7*	103.7ns	35.5ns	12153.2**
Error	8	55.9	0.4	7.4	46.7	0.1	110.6	12.7	251.3
Genotype (G)	8	2068.0**	19.8**	196.6**	412.7**	1.4**	8395.9**	165.7**	9602.8**
SG	8	356.9**	5.8**	34.8**	126.2**	0.52**	219.6**	39.3**	4372.9**
TG	16	140.6**	0.89ns	37.6**	108.8**	0.28*	236.4**	27.4**	5363.4**
STG	16	111.9**	1.17*	16.9**	31.7*	0.34*	67.6**	7.79ns	1774.9**
Error	96	44.9	0.6	5.1	15.0	0.2	53.8	7.1	285.3
SOV, source of va	ariation;	d.f., degree of	freedom; ns,	non-significant;	*Significant at	P 0.05; **Sign	ificant at F	° 0.01.	

Table 4. Influence of wa	ter deficit on plant	height, number	of branches. n	ods and s	eeds/plant of	faba bean	genotypes
(combined of th	no two concone)	8 9	· · · · · · · · · · · · · · · ·		I		8

Plant height (cm)			Maaa	No. of branches/ plant			Maar
T 1	T 2	Т3	Mean	T 1	Т2	Т 3	Mean
114.9 A	96.6 EFG	70.2 JKL	93.9 ab	4.2 DEF	3.5 E-I	2.7 H-K	3.5 cd
92.2GH	77.5JK	61.5 MN	77.1 e	3.1 F-K	2.8 H-K	2.0 KL	2.6 e
106.1 BCD	90.1 GH	61.5 MN	85.9 cd	2.4 JKL	2.3 KL	1.6 L	2.1 e
117.2 A	89.3 GH	66.6 KLM	91.0 ab	3.2 F-K	2.7 H-K	2.2 KL	2.7 de
111.0 ABC	93.4 FGH	64.9 LMN	89.8 bc	4.8 CD	3.3 E-J	2.4 JKL	3.5 cd
113.8 AB	98.6 DEF	72.8 I-L	95.1 a	3.8 EFG	3.5 E-I	2.5 I-L	3.3 dc
111.7 ABC	79.7 I	67.6 KLM	86.3 cd	6.1 AB	4.9 CD	3.0 G-K	4.7 ab
99.2 DEF	87.4 H	68.2 KLM	84.9 d	5.5 ABC	5.0 CD	3.7 E-H	4.7 ab
104.8 CDE	96.8 EFG	74.0 IJK	91.9 ab	5.0 CD	4.4 DE	3.4 E-J	4.3 bc
107.9	89.9	67.5		4.2	3.6	2.6	
Ν	lo. of pods/pla	nt		N	o. of seeds/pla	ant	
20.1 BC	13.8 EF	7.3 JKL	13.8 ab	38.3 BC	21.3 FG	15.3 JKL	25.0 ab
23.9 A	16.1 DE	5.7 LM	15.2 a	39.7 B	31.3 DE	11.0 LMN	27.3 a
21.7 AB	10.8 GH	5.9 LM	12.8 bc	44.3 A	24.0 F	12.2LMN	26.8 a
19.1 BC	11.0 GH	6.8 KL	12.3 bc	34.6 CD	19.3 F-J	13.2 KLM	22.3 b
17.7 CD	13.0 FG	9.8 HIJ	13.5 b	36.6 BC	22.6 FG	16.0 H-L	25.1 ab
17.3 CD	10.4 GHI	7.1 JKL	11.6 c	38.0 BC	18.3 G-k	12.9 LM	23.1 b
12.3 FGH	7.5 JKL	3.8 M	7.9 d	29.2 E	15.7 I-L	7.8 N	17.5 c
9.5 H-K	7.2 JKL	4.8 LM	7.2 de	20.8FGH	16.0H-L	9.8 MN	15.6 c
7.7 I-L	6.8 JKL	3.2 M	5.9 e	20.5 F-I	15.2 JKL	9.2 MN	14.9 c
16.6	10.7	6.0		33.6	20.4	11.9	
	P T 1 114.9 A 92.2GH 106.1 BCD 117.2 A 111.0 ABC 113.8 AB 111.7 ABC 99.2 DEF 104.8 CDE 107.9 N 20.1 BC 23.9 A 21.7 AB 19.1 BC 17.7 CD 17.3 CD 12.3 FGH 9.5 H-K 7.7 I-L 16.6	Plant height (ct T 1 T 2 114.9 A 96.6 EFG 92.2GH 77.5JK 106.1 BCD 90.1 GH 117.2 A 89.3 GH 111.0 ABC 93.4 FGH 113.8 AB 98.6 DEF 111.7 ABC 79.7 I 99.2 DEF 87.4 H 104.8 CDE 96.8 EFG 107.9 89.9 No. of pods/pla 20.1 BC 13.8 EF 23.9 A 16.1 DE 21.7 AB 10.8 GH 19.1 BC 11.0 GH 17.7 CD 13.0 FG 17.3 CD 10.4 GHI 12.3 FGH 7.5 JKL 9.5 H-K 7.2 JKL 7.7 I-L 6.8 JKL 16.6 10.7	Plant height (cm) T 1 T 2 T 3 114.9 A 96.6 EFG 70.2 JKL 92.2GH 77.5JK 61.5 MN 106.1 BCD 90.1 GH 61.5 MN 117.2 A 89.3 GH 66.6 KLM 111.0 ABC 93.4 FGH 64.9 LMN 113.8 AB 98.6 DEF 72.8 I-L 111.7 ABC 79.7 I 67.6 KLM 99.2 DEF 87.4 H 68.2 KLM 104.8 CDE 96.8 EFG 74.0 IJK 107.9 89.9 67.5 No. of pods/plant 23.9 A 16.1 DE 5.7 LM 21.7 AB 10.8 GH 5.9 LM 19.1 BC 11.0 GH 6.8 KL 17.7 CD 13.0 FG 9.8 HIJ 17.3 CD 10.4 GHI 7.1 JKL 12.3 FGH 7.5 JKL 3.8 M 9.5 H-K 7.2 JKL 4.8 LM 7.7 I-L 6.8 JKL 3.2 M	Plant height (cm) Mean T 1 T 2 T 3 Mean 114.9 A 96.6 EFG 70.2 JKL 93.9 ab 92.2GH 77.5JK 61.5 MN 77.1 e 106.1 BCD 90.1 GH 61.5 MN 85.9 cd 117.2 A 89.3 GH 66.6 KLM 91.0 ab 111.0 ABC 93.4 FGH 64.9 LMN 89.8 bc 113.8 AB 98.6 DEF 72.8 I-L 95.1 a 111.7 ABC 79.7 I 67.6 KLM 86.3 cd 99.2 DEF 87.4 H 68.2 KLM 84.9 d 104.8 CDE 96.8 EFG 74.0 IJK 91.9 ab 107.9 89.9 67.5 VIMIN No. of pods/plant 20.1 BC 13.8 EF 7.3 JKL 13.8 ab 23.9 A 16.1 DE 5.7 LM 15.2 a 21.7 AB 10.8 GH 5.9 LM 12.8 bc 19.1 BC 11.0 GH 6.8 KL 12.3 bc 17.7 CD 13.0 FG 9.8 HIJ 13.5 b 17.7 CD 13.0 FG	Plant height (cm) Mean T 1 T 0 T 1 114.9 A 96.6 EFG 70.2 JKL 93.9 ab 4.2 DEF 92.2GH 77.5JK 61.5 MN 77.1 e 3.1 F-K 106.1 BCD 90.1 GH 61.5 MN 85.9 cd 2.4 JKL 117.2 A 89.3 GH 66.6 KLM 91.0 ab 3.2 F-K 111.0 ABC 93.4 FGH 64.9 LMN 89.8 bc 4.8 CD 111.3 AB 98.6 DEF 72.8 I-L 95.1 a 3.8 EFG 111.7 ABC 79.7 I 67.6 KLM 86.3 cd 6.1 AB 99.2 DEF 87.4 H 68.2 KLM 84.9 d 5.5 ABC 104.8 CDE 96.8 EFG 74.0 IJK 91.9 ab 5.0 CD 107.9 89.9 67.5 4.2 No. of pods/plant N 20.1 BC 13.8 EF 7.3 JKL 13.8 ab 38.3 BC 23.9 A 16.1 DE 5.7 LM 15.2 a 39.7 B 21.7 AB 10.8 GH 5.9 LM 12.8 bc 44.3 A 19.1 BC 11	Plant height (cm) Mean No. of branches/p T1 T2 T3 T1 T2 114.9 A 96.6 EFG 70.2 JKL 93.9 ab 4.2 DEF 3.5 E-I 92.2GH 77.5JK 61.5 MN 77.1 e 3.1 F-K 2.8 H-K 106.1 BCD 90.1 GH 61.5 MN 85.9 cd 2.4 JKL 2.3 KL 117.2 A 89.3 GH 66.6 KLM 91.0 ab 3.2 F-K 2.7 H-K 111.0 ABC 93.4 FGH 64.9 LMN 89.8 bc 4.8 CD 3.3 E-J 111.3 & AB 98.6 DEF 72.8 I-L 95.1 a 3.8 EFG 3.5 E-I 111.7 ABC 79.7 I 67.6 KLM 86.3 cd 6.1 AB 4.9 CD 99.2 DEF 87.4 H 68.2 KLM 84.9 d 5.5 ABC 5.0 CD 104.8 CDE 96.8 EFG 74.0 IJK 91.9 ab 5.0 CD 4.4 DE 107.9 89.9 67.5 4.2 3.6 20.1 BC 13.8 EF 7.3 JKL 13.8 ab 38.3 BC 21.3 FG </td <td>Plant height (cm)MeanNo. of branches/ plantT1T2T3T1T2T3114.9 A96.6 EFG70.2 JKL93.9 ab4.2 DEF$3.5 \text{ E-I}$$2.7 \text{ H-K}$92.2GH77.5JK$61.5 \text{ MN}$77.1 e$3.1 \text{ F-K}$$2.8 \text{ H-K}$$2.0 \text{ KL}$106.1 BCD90.1 GH$61.5 \text{ MN}$$85.9 \text{ cd}$$2.4 \text{ JKL}$$2.3 \text{ KL}$$1.6 \text{ L}$117.2 A89.3 GH$66.6 \text{ KLM}$91.0 ab$3.2 \text{ F-K}$$2.7 \text{ H-K}$$2.2 \text{ KL}$111.0 ABC93.4 FGH$64.9 \text{ LMN}$89.8 bc$4.8 \text{ CD}$$3.3 \text{ E-J}$$2.4 \text{ JKL}$113.8 AB98.6 DEF$72.8 \text{ I-L}$95.1 a$3.8 \text{ EFG}$$3.5 \text{ E-I}$$2.5 \text{ I-L}$111.7 ABC79.7 I$67.6 \text{ KLM}$$86.3 \text{ cd}$$61.4 \text{ B}$$4.9 \text{ CD}$$3.0 \text{ G-K}$99.2 DEF$87.4 \text{ H}$$68.2 \text{ KLM}$$84.9 \text{ d}$$5.5 \text{ ABC}$$5.0 \text{ CD}$$3.7 \text{ E-H}$104.8 CDE96.8 EFG$74.0 \text{ IJK}$$91.9 \text{ ab}$$5.0 \text{ CD}$$4.4 \text{ DE}$$3.4 \text{ E-J}$107.9$89.9$$67.5$$4.2$$3.6$$2.6 \text{ II.0 \text{ LMN}$20.1 BC$13.8 \text{ EF}$$7.3 \text{ JKL}$$13.8 \text{ ab}$$38.3 \text{ BC}$$21.3 \text{ FG}$$15.3 \text{ JKL}$23.9 A16.1 DE$5.7 \text{ LM}$$15.2 \text{ a}$$39.7 \text{ B}$$31.3 \text{ DE}$$11.0 \text{ LMN}$21.7 AB10.8 GH$5.9 \text{ LM}$$12.8 \text{ bc}$$44.3 \text{ A}$$24.0 \text{ F}$$12.2 \text{ LMN}$<</td>	Plant height (cm)MeanNo. of branches/ plantT1T2T3T1T2T3114.9 A96.6 EFG70.2 JKL93.9 ab4.2 DEF 3.5 E-I 2.7 H-K 92.2GH77.5JK 61.5 MN 77.1 e 3.1 F-K 2.8 H-K 2.0 KL 106.1 BCD90.1 GH 61.5 MN 85.9 cd 2.4 JKL 2.3 KL 1.6 L 117.2 A89.3 GH 66.6 KLM 91.0 ab 3.2 F-K 2.7 H-K 2.2 KL 111.0 ABC93.4 FGH 64.9 LMN 89.8 bc 4.8 CD 3.3 E-J 2.4 JKL 113.8 AB98.6 DEF 72.8 I-L 95.1 a 3.8 EFG 3.5 E-I 2.5 I-L 111.7 ABC79.7 I 67.6 KLM 86.3 cd 61.4 B 4.9 CD 3.0 G-K 99.2 DEF 87.4 H 68.2 KLM 84.9 d 5.5 ABC 5.0 CD 3.7 E-H 104.8 CDE96.8 EFG 74.0 IJK 91.9 ab 5.0 CD 4.4 DE 3.4 E-J 107.9 89.9 67.5 4.2 3.6 $2.6 \text{ II.0 \text{ LMN}$ 20.1 BC 13.8 EF 7.3 JKL 13.8 ab 38.3 BC 21.3 FG 15.3 JKL 23.9 A16.1 DE 5.7 LM 15.2 a 39.7 B 31.3 DE 11.0 LMN 21.7 AB10.8 GH 5.9 LM 12.8 bc 44.3 A 24.0 F 12.2 LMN <

T1, T2 and T3 mean water treatments (well-watered, mild and severe drought). Interaction and main effects sharing the same case letter, for a parameter, do not differ significantly at P 0.05.

Influence of water deficit on number of seeds/pod, seeds index, seed yield/plant and free proline content in leaves of the nine faba bean genotypes as mean of the two season are presented in Table 5. Major type's genotypes (Gazira 1, ILB 1814 and Nubaria 1) described by number of seeds per pod and seed index. In this study these genotypes maintained their number of seeds per pod under all water irrigation treatments and produced 2.9, 2.3 and 2.2, respectively as mean of the three treatments. Distinction between faba bean types was clear by seed index character, seed index of major genotypes were higher than other types which had values higher than of equina and almost double of weight of minor seed index under all conditions. The reduction in seed yield/plant was in linear with increase drought stress. The genotype Hassawi 2 exhibited maximum seed yield per plant under high level of water (T1) and less changes due to drought stress and maintained its rank over tested genotypes under all conditions. Hassawi 2 shared the first rank with ILB 1814 and Giza 843 under high water irrigation with mean values of 29.0, 27.1 and 27.0, respectively while under low available water, Hassawi 2 was ranked first followed by Nubaria 1 and Giza 843 with mean values of 12.1, 8.4 and 8.1, respectively. The mean of the three water treatments indicated the superior of Hassawi 2 followed by Giza 843, ILB 1814 and Giza 2. Ammar et al. (2014) reported that drought stressed plants produced less number of branches, lower number of pods, seeds/pod,

lighter seed weight which consequently led to a significantly lower seed yield due to progressive water deficit. Estimates of proline contents of faba bean genotypes under different water treatments suggested that proline accumulation in faba bean leaves increased with progressive water deficit also the variations between genotypes under high water available were low and increased under mild and high drought stresses. The highest proline content values (264.0, 228.1 and 212.9µg) were measured under high drought stress in Gazira 1, Nubaria 1 and Hassawi 2, respectively; these genotypes had higher seed yield under high drought stress conditions except Gazira 1. Ammar et al. (2014) found that the highest accumulation of leaf free proline in seedling of Gazira 2 and Hassawi 2 was under water deficit conditions. On the other side, the genotypes Gazira 2 and TW exhibited the lowest proline content (46.3 and 49.7µg, respectively) under well-watered treatment. These results suggested that proline accumulation in faba bean leaves under well water and increased with increasing the drought stress in faba bean genotypes not related to faba bean types however major type was higher in all treatments. In other field crops it was found that proline content was higher after droughtin wheat (Vendruscolo et al., 2007 and Johari-Pireivatlou, 2009), Pea (Alexieva et al., 2001), Chickpea (Mafakheri et al., 2010), Sugar Beet (Putnik-Delic et al., 2013), Sesame (Kadkhodaie et al., 2015), Sunflower (Nazarli et al., 2011), upland Rice

(Lumet al., 2014) and Cotton (Zhang et al., 2014). Over all water treatments proline content was in highly significant negative relationship with seed yield (r= -0.65**, P<0.01) indicated that exposing faba bean plants to drought accumulation of proline in leaves increased and seed yield decreased. While the relationship was insignificant between proline content and seed yield/plant (r= 0.62 and 0.43) under well-watered and high drought stress, respectively. Ghiabi et al. (2013) noted that proline content showed significant positive correlation with yield of Chickpea under water deficit conditions and insignificant under irrigated environment. Siddiqui et al., (2015) suggested that heat-tolerant faba bean genotypes may have better osmotic adjustment by increasing the accumulation of proline content. On contrary with Parchinet al. (2014) observed that insignificant negative correlation between Wheat seed yield and proline content under drought stress. This indicated that proline accumulation in faba bean plants due to drought stress as drought tolerance mechanism of genotype but could not use as drought tolerance

parameter. However, other authors suggested use accumulation of proline trait to select water stress-tolerant genotypes in Safflower (Amini *et al.*, 2014), Rosy periwinkle (Jaleel *et al.*, 2007), Sesame (Hassanzadeh *et al.*, 2009 and Molaei *et al.*, 2012 and Kadkhodaie *et al.*, 2015) and Wheat (Farshadfar *et al.*, 2012).

Table 6 shows the seed yield (t/ha), percentage of reduction in seed yield, stress susceptibility index and drought tolerance efficiency of the nine faba bean genotypes. Two genotypes Hassawi 2 and Giza 843 exhibited maximum seed yield under bothwell irrigated conditions (5.2 and 4.9t/ha) as well as under stress (2.2 and 1.5t/ha, respectively) while the large seed genotype Nubaria 1 was in the same rank with Giza 843 under drought stress conditions. High drought stress condition caused reduction in seed yield (67.9 %) across genotypes as compared to well irrigated treatment. The reduction in seed yield due to drought was ranged from 58.3% in Hassawi 2 to 79.4% in ILB 1814. Ouda *et al.* (2010) estimated that the reduction in faba bean seed yield by 50%.

Table 5.	Influence of water deficit on number of seeds/pod, seeds index, seed yield/plant and free proli	ine
	content in leaves of faba bean genotypes (combined of the two seasons)	

Compton		No. of seeds/p	od	Maaa	Seeds index (g)			Maaa
Genotypes	T 1	Т 2	Т 3	Mean	T 1	Т2	Т 3	Mean
Gazira 2	1.9 C-F	1.6 F	1.6F	1.7 c	47.0 I	45.9 IJ	43.8 IJ	45.5 e
TW	1.7 EF	2.0 C-F	2.1 C-F	1.9 c	44 IJ	42.2 IJK	41 IJK	42.2 e
Kamline	2.1 C-F	2.0 C-F	2.1 C-F	2.1bc	46.4 I	48.3I	41.8 IJK	45.5 e
Giza 2	1.9 C-F	1.7 DEF	2.0 C-F	1.9 c	73.1 FG	68.1 GH	60.7 H	67.3 d
Hassawi 2	2.2 CDE	1.7 DEF	1.7 DEF	1.9 c	78.6 DEF	74.6 FG	75.7 EFG	76.3 c
Giza 843	2.1 C-F	1.8 DEF	1.8 DEF	1.9 c	78.0 DEF	84.6 CDE	66.7 GH	76.4 c
ILB 1814	2.4 BC	2.3 B-E	2.1 C-F	2.3 b	93.0 ABC	85.9 BCD	71.4 FG	83.4 b
Nubaria 1	2.2 B-E	2.3 B-E	2.2 CDE	2.2 b	102.2 A	94.7 AB	84.8 CDE	93.9 a
Gazira 1	3.0 A	2.8 AB	2.4 BCD	2.9 a	100.3 A	97.9 A	72.3 FG	90.2 a
Mean	2.2	2.0	2.0		73.6	71.4	62.0	
Genotypes	S	eed yield/plant	(g)		Proline c	ontent $\mu g/g$ fre	sh weight	
Gazira 2	18.0 CDE	9.7 IJK	6.6 KLM	11.4 d	46.3 MN	105.7 GH	195.1 CD	115.7 c
TW	14.4 FGH	9.3 IJK	3.7 M	9.1 e	49.7 MN	86.8 HIJ	145.3 F	90.3 e
Kamline	18.5 CD	11.5 HIJ	5.7 LM	11.9 d	57.1 LMN	62.9 KLM	89.8 HI	69.9 f
Giza 2	25.2 B	12.7 GHI	7.7 KL	15.2 bc	58.8 LMN	112.7 G	124.2 G	98.6 de
Hassawi 2	29.0 A	16.8 DEF	12.1 GHI	19.3 a	55.6 LMN	80.8 IJK	212.9 BC	116.4 c
Giza 843	27.0 AB	15.1 EFG	8.1 JKL	16.8 b	65.7 J-M	82.1 IJK	176.5 DE	108.1 cd
ILB 1814	27.1 AB	13.5 FGH	5.6 LM	15.4 bc	69.7 I-L	105.5 GH	160.7 EF	111.9 c
Nubaria 1	21.2 C	14.8 E-H	8.4 JKL	14.8 c	57.3 LMN	113.7 G	228.1 B	133.0 b
Gazira 1	20.5 C	14.9 E-H	6.8 KLM	14.0 c	65.2 J-M	118.2 G	264.0 A	149.1 a
Mean	22.7	13.6	7.3		57.1	96.5	177.4	

T1, T2 and T3 mean water treatments (well-watered, mild and severe drought).Interaction and main effects sharing the same case letter, for a parameter, do not differ significantly at P 0.05.

Table 6: Seed yield (t/ha), water deficit susceptibility index (SSI) and tolerance efficiency (DTE) of nine faba bean genotypes.

Inne Tubu beun genotypes:										
Conotynos	Seed y	ield (t/ha)	% reduction in	SSI	DTF					
Genotypes	T1	T3	yield	551	DIE					
Gazira 2	3.2	1.2	63.3	0.6	37.5					
TW	2.6	0.7	74.3	0.7	26.9					
Kamline	3.3	1.0	69.2	0.7	30.3					
Mean	3.0	1.0	68.9	0.7	31.6					
Giza 2	4.5	1.4	69.4	0.7	31.1					
Hassawi 2	5.2	2.2	58.3	0.6	42.3					
Giza 843	4.9	1.5	70.0	0.7	30.6					
Mean	4.9	1.7	65.9	0.7	34.7					
ILB 1814	4.9	1.0	79.3	0.8	20.4					
Nubaria 1	3.8	1.5	60.4	0.6	39.5					
Gazira 1	3.7	1.2	66.8	0.7	32.4					
Mean	4.1	1.2	68.8	0.7	30.8					
T1 and T.	3 mean	water tr	eatments (well-wa	atered.	mild and					

11 and 13 mean water treatments (well-watered, mild and severe drought).

If water deficit happen during pod ding stage. In Jordon Musallam *et al.* (2004) found that the difference

between faba bean seed yield grow under irrigation and rain fed conditions more than double. The drought resistance parameters, stress susceptibly index (SSI)and drought tolerance efficiency (DTE) were ranged from 0.6 to0.8 and from 20.4 to 42.3%, respectively. The cultivars which had the lowest SSI and highest DTE values were considered drought resistant. Three genotypes i.e., Hassawi 2, Nubaria 1 and Gazira 2 were recorded the lowest stress susceptibility index (0.6) and the highest drought tolerance efficiency (42.3, 39.5 and 37.5%, respectively). The minimum yield reduction was shown in a line with the highest DTE and the lowest SSI in chickpea genotypes (Parameshwarappa and Salimath, 2008) and in spring bread wheat genotype (Bahar and Yildirim2010). This revealed the superiority of local genotype Hassawi 2 in all conditions followed by Giza 843 and ILB 1814 under well irrigation and followed by Giza 843 and Giza Blanka under drought stress. These

results are in agreement with Abdellatif *et al.* (2012) who found that Giza 843 gave medium seed yield mean over all water stresses treatments however it was drought tolerant variety and Ammar *et al.* (2014) they reported that Hassawi 2 and Giza Blanka were highly drought tolerant genotypes.

REFERENCES

- Alghamdi, S.S; A. M. Al-Shameri; H. M. Migdadi; M. H. Ammar; E. H. El-Harty; M. A. Khan and M. Farooq (2014). Physiological and molecular characterization of faba bean (*Vicia faba L.*) genotypes for adaptation to drought stress. J. Agro.Crop. Sci. 201 (6):401-409.
- Abdellatif, K.F.; E.A. El Absawy and A. M. Zakaria (2012). Drought stress tolerance of faba bean as studied by morphological traits and seed storage protein pattern. Journal of Plant Studies, 1(2):47-54.
- Alexieva, V.; I. Sergiev; S. Mapelli and E. Karanov (2001).The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ, 24: 1337–1344.
- Amede, T. and S. Schubert. (2003). Mechanisms of drought resistance in grain legumes I: Osmotic adjustment. Ethiopian J. Sci., 26 (1): 37–46.
- Amini, H.; A. Arzani and M. Karami (2013).Effect of water deficiency on seed quality and physiological traits of different safflower genotypes. Turk. J. Biol., 38: 271-282
- Ammar, M.H; F. Anwar; E. H. El-Harty; H. M. Migdadi; S. M. Abdel-Khalik; S. A. Al-Faifi; M. Farooq and S. S. Alghamdi (2014). Physiological and yield responses of faba bean (*Vicia faba* L.) drought in a Mediterranean-type Environment. J Agro Crop Sci., 201:280–287.
- Bates, L.S.; R.P. Waldren and I.D Teare (1973).Rapid determination of free proline for water-stress studies. Plant Soil, 9: 205–207.
- Bahar, B. and M. Yildirim (2010). Heat and drought resistances criteria in spring bread wheat: Drought resistance parameters. Scientific Research and Essays, 5(13):1742-1745
- Bond, D.A.;D.A. Lawes; G.C. Hawtin; M.C. Saxena and J.S. Stephens (1985).Faba Bean (*Vicia faba* L.). R.
 J. Summerfield, E.H. Roberts (Eds.), Grain Legume Crops, William Collins Sons Co. Ltd., 8 Grafton Street, London, WIX 3LA, UK:199–265
- Conde, A.; M.M. Chaves and H. Geros (2011).Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol., 52: 1583-1602.
- Cubero, J.I. (1974). Evolutionary trends in *Vicia faba*. Theoretical and Applied Genetics, 43:59-65.
- Duncan, D. B. (1955).Multiple range and multiple F tests. Biometrics 11:1-42.
- Errabii, T.; C.B. Gandonou; H. Essalmani; J. Abrini; M. Idaomar and N. Skali-Senhaji (2006).Growth, proline and ion accumulation in Sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. Afr. J. Biotechnol., 5(6): 1488-1493.

- Farshadfar, E.; S. Jalali and M. Saeidi (2012). Introduction of a new selection index for improvement of drought tolerance in common wheat (*Triticumaestivum* L.). Euro. J. Exp. Bio., 2 (4): 1181-1187.
- Fischer, K.S. and G. Wood (1981).Breeding and selection for drought tolerance in tropical maize. In: Proc. Symp. on Principles and Methods in Crop Imprt. For Drought Resist. with Emphasis on Rice, IRRI, Philippines, 23-25th May, 1981.
- Fischer, R.A. and R. Maurer (1978). Drought resistance in spring wheat cultivars: 1. grain yield responses. Aust. J. Agric. Res., 29:897–912.
- Ghiabi, S.; S. Sharafi and R. Talebi (2013).Morphophysiological and biochemical alternation responses in different chickpea (*Cicer arietinum* L.) genotypes under two constructing water regimes. Int. J. Biosci., 3 (8):57-65
- Gomez, K. A. and Gomez, A. A. (1984) Statistical procedures for agricultural research, ²nd ed., John Wiley & Sons, New York.
- Haciseferogullari, H.; I. Geaer, Y. Bahtiyarca and H.O. Menges (2003).Determination of some chemical and physical properties of Sakiz faba bean (*Vicia faba* L. Var.*major*). J. Food Eng., 60: 476–479
- Hasegawa, P.; R.A. Bressan; J.K. Zhu and H.J. Bohnert (2000).Plant cellular and molecular responses to high salinity.Annu. Rev. Plant Mol. Biol., 51: 463-499.
- Hassanzadeh, M.; M. Ebadi; E. Panahyan; M. Kivi; E. Jamaati and S.H. Somarin (2009). Evaluation of drought stress on relative water content and chlorophyll content of sesame (*Sesamum indicum* L.) genotypes at early flowering stage. Res. J. Environ. Sci. 3:345–350.
- Jaleel, C.A.; R. Gopi; B. Sankar; P. Manivannan; A. Kishorekumar; R. Sridharan and R. Panneerselvam (2007).Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in *Catharanthus roseus* seedlings under salt stress. South Afr. J. Bot., 73: 190–195.
- Johari-Pireivatlou, M. (2009).Effect of soil water stress on yield and proline content of four wheat lines. African Journal of Biotechnology, 9 (1): 36-40.
- Kadkhodaie, A.; J. Razmjoo; M. Zahedi and M. Pessarakli (2015). Selecting sesame genotypes for drought tolerance based on some physiochemical traits. Agronomy J., 106 (1):111-118.
- Khalafallah, A. A., Tawfik, K. M., &Abd El-Gawad, Z. A. (2008). Tolerance of seven faba bean varieties to drought and salt stresses. Research. J of Agriculture and Biological Sciences, 4(2), 175-186.
- Khalid, K.A.; J.A. Teixeira da Silva and W. Cai (2010). Water deficit and polyethylene glycol 6000 affects morphological and biochemical characters of *Pelargonium odoratissimum* (L.).HortSci., 125: 159–166.
- Khan, H. R., J. G. Paull, K. H. M. Siddique and F. L. Stoddard (2010). Faba bean breeding for droughtaffected environments: A physiological and agronomic perspective. Field Crop Res., 115: 279– 286

- Khan, H. R.; W. Link; T. J. Hocking and F. L. Stoddard (2007). Evaluation of physiological traits for improving drought toler-ance in faba bean (Vicia faba L.). Plant Soil, 292: 205-217.
- Lum, M.S.; M.M. Hanafi; Y. M. Rafii and A. S. N. Akmar (2014).Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. The J. of Animal and Plant Sci., 24(5): 1487-1493
- Mafakheri, M.; A. Siosemardeh; B. Bahramnejad; P.C. Struik and Y. Sohrabi (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. AJCS; 4(8):580-585
- Maggio, A.; S. Miyazaki; P. Veronese; T. Fujita; J.I Ibeas; B. Damsz; M.L. Narasimhan; P.M. Hasegawa; R.J. Joly and R.A. Bressan (2002). Does proline accumulation play an active role in stress-induced growth reduction. Plant J., 31: 699-712.
- Mittler, R.; S. Vanderauwera; M. Gollery and F. Van-Breusegem (2004).Reactive oxygen gene network of plants. Trends Plant Sci., 9: 490-498.
- Molaei, P.; A. Ebadi; A. Namvar and T. K. Bejandi (2012).Water relation, solute accumulation and cell membrane injury in sesame (Sesamum indicumL.) cultivars subjected to water stress. Ann. Biol. Res., 3:1833-1838.
- MSTATC (1990) A Microcomputer program for the design, management, and analysis of agronomic research experiments. Michigan State Univ. USA.
- Musallam, I.W.; G. Al-Karaki; K.Ereifej and A. Al-Tawaha (2004). Yield and yield components of faba bean genotypes under rainfed and irrigation conditions. Asian J. of Plant Sci., 3: 439-448.
- Nazarli, H.; F. Faraji and M.R. Zardashti (2011).Effect of drought stress and polymer on osmotic adjustment photosynthetic pigments of and sunflower. Cercet.Agron. Moldova, 1(149) :35-41.
- Ouda, S.A.; M.A. Shreif and R. Abou Elenin (2010). Increasing water productivity of faba bean grown under deficit irrigation at middle Egypt. Proceedings of the 14thInternational Water Technology Conference, March 21-23, 2010, Cairo, Egypt, 345-355.
- Ouzounidou, G.; I. F. Ilias; A. Giannakoula; I. Theoharidou (2014).Effect of water stress and NaCl triggered changes on yield, physiology, biochemistry of broad bean (Vicia faba) plants and on quality of harvested pods. Biologia,69 (8):1010-1017

- Parchin, R.A.; A. Najaphy; M. Shaban; M. Mohebodini; A. Vaseghi; F. Sohrabi-Babahadi and A. Mostafaie (2014).Comparing protein pattern and drought tolerant indicators as screening techniques for drought tolerance in common wheat genotypes. IJPAES, 4 (2) :251-258.
- Parameshwarappa, S.G. and P.M. Salimath (2008). Field screening ofchickpea genotypes for drought resistance. Karnataka J. Agric. Sci., 21(1): 113-114.
- Putnik-Delic, M.; I. Maksimovic; A. Venezia and N. Nagl (2013). Free proline accumulation in young sugar beet plants and in tissue culture explants under water deficiency as tools for assessment of drought tolerance. Romanian Agri. Res., 30:141-148
- Ricciardi, L.; G. B. Polignano and C. D. Giovanni (2001). Genotypic response of faba bean to water stress. Euphytica, 118:39-46.
- Shao, H.B.; Z.S. Liang and M.A. Shao (2005). Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage, Colloids Surf. B: Biointerfaces, 45(1): 7-13.
- Siddiqui, M.H.; M. Y. Al-Khaishany; M. A. Al-Qutami; M. H. Al-Whaibi; A. Grover; H. M. Ali; M.S. Al-Wahib (2015). Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi Journal of Biological Sciences, 22:656-663.
- Vendruscolo, A.C.G; I. Schuster; M. Pileggi; C.A. Scapim; H.B.C. Molinari; C.J. Marur and L.G.C. Vieira (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol., 164(10): 1367-1376.
- Verbruggen N and C. Hermans (2008). Proline accumulation in plants: a review. Amino Acids, 35: 753 759.
- Wang, G. and H. H. Hendon.(2007). Sensitivity of Australian rainfall to inter-El Nino variations. J. Climate, 20:4211-4226.
- Yancey, P.H. (1994). Compatible and counteracting solutes, In Strange K. Boca Raton (eds) Cellular and Mol. Physiol. of Cell Volume. CRC Press: 81-109
- Zlatev, Z. and Z. Stotanov (2005). Effect of water stress on leaf water relations of young bean plants. J. Central Eur. Agric., 6(1): 5-14.
- Zhang, L.; J. Peng; T. T. Chen; X. H. Zhao; S. P. Zhang; S. D. Liu; H. L. Dong; L. Feng and S. X. Yu (2014). Effect of drought stress on lipid peroxidation and proline content in cotton roots. The J. of Animal and Plant Sci., 24(6): 1729-1736.

تأثير نقص المياه على محصول البذور ومحتوي البرولين في بعض التراكيب الوراثية المختلفة من الفول البلدي ايهاب حلمي الحارتي قسم بحوث المحاصيل البقولية, معهد بحوث المحاصيل الحقلية , مركز البحوث الزراعية الجيزة

الجفاف يكون واحدا من اهم المشاكل التي تواجه انتاجية واستدامة الزراعة. هذه الدراسة نفذات لبحث محصول البذور ومكوناته بالاضافة الي محتوي البرولين في اوراق تسعة تراكيب وراثيةً تشمل ثلاثة طرز من الفول البلدي تحت ثلاثة مستويات من مياه الري. نفذت تجربة حقليةً بتصميم القطع المنشقة في ثلاثة مكر أرات خلال موسمي النمو٢٠١٣/١٤ و ١٤/٢٠١٢. اشارات النتائج الي أن الجفاف له تأثير سلبي علي محصّول بذور الفول ومكوناته بينما كان التأثير موجبا علي محتوي البرولين في الاوراق . حساوي ٢ انتج اعلي محصول بذور تحت كل الظروف تبعه كلا من جيزة ١٤٨ و ١٤١ ILB تحت ظروف الري الجيد و تبعه كلا من نوبارية ١ وجيزة ١٤٨ تحت ظروف الجفاف علاوة على ذلك كان تعبير حساوي ٢ ونوبارية ١ اعلى كفاءة في التحمل للجفاف (٢.٣ و و٣٩. و اقل في دليل الحساسة للجفاف (٢.) واقل انخفاض في محصول البذور (٥.٣ و ٢٠٢% علي التوالي). كان مدي محتوي البرولين من ٢٦.٢ ميكر وجرام/جرام في جزيرة ٢ الي ٢٩.٧ في 11.4 في ا الي ٢٦٤٠ في جزيرة ١ تحت ظروف الجفاف. كان محتوي البرولين ومحصول البذور في علاقة معنوية سالبة (0.65 = = **) لمعاملات الري الثلاثة ومع ذلك ارتباط غير معنوي كان موجود بين محتوي البرولين ومحصول البذور تحت كلا من ظروف الري الجيد (c= 0.62) والجفاف العالي (0.43 =r). مما يدل علي ان محتوي البرولين كان مؤشرٌ لحدوث الجفاف وليس دليل انتخابي للتر اكيب الور اثية متحملة للجفاف