

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Facile Hydrothermal Synthesis of Sm and Eu doped TiO₂/Graphene Oxide Nanocomposites for Photocatalytic Applications

Mariam Sh. Gohr^{1*}, Hoda S. Hafez², Mona M. Saif³, Hesham M. A. Soliman¹ and Mohamed Sabry A. Abdel-Mottaleb⁴

¹Nanotechnology and New Composite Materials Department Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Bourg El-Arab City 21934, Alexandria, Egypt.

² Environmental Studies and Research Institute (ESRI), University of Sadat City (USC), Menofia, Egypt.

³ Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, 11341 Cairo, Egypt.

⁴ Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt.

ANTHANIDE (Ln3+) doped TiO, supported on Graphene oxide (GO) (Ln3+ =Eu3+ and Sm³⁺ ions) were prepared by using a low cost and facile hydrothermal method. Structural, morphological and optical properties of the un-doped and Ln3+-doped nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-Ray (EDX), transmission electron microscopy (TEM), (SBET) Barrett-Joiner-Halenda surface area analysis, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS) and diffuse reflection spectrometry (DRS). The photocatalytic activities of the catalysts were investigated by studying photo decolorization and photodegradation of Methylene Blue (MB). The XRD results showed that all the TiO, prepared samples exhibit anatase phase and no other peaks have been observed indicating the absence of impurities in the prepared samples. SEM images demonstrated that the TiO₂ nanoparticles are well dispersed on the GO surface. A red shift in the UV-Vis absorption of the prepared samples have been observed suggesting the charge transfer between the dopants and TiO2. The photocatalytic activity results showed that 0.015 mol% Eu³⁺-doped TiO,/GO nanocomposite possesses the highest photocatalytic activity. Chemical oxygen demand (COD) analysis indorsed the photodegradation results. This promising photocatalyst led to almost complete mineralization of MB dye after only 90 min upon expose to UV light. The results clearly demonstrated the beneficial role of both GO as a supporting material and lanthanide metal ions as dopants on the degradability of MB.

Keywords: Photocatalysis, Lanthanide doped Titania, Graphene oxide, Methylene blue (MB), UV light.

Introduction

Environmental contaminations as wastewater and air pollution have become a very serious problem, the world is facing today. For water treatment, photocatalysis is one of the most powerful and environment friendly techniques [1,2]. Titanium dioxide is one of the most promising semiconductors that have been widely studied because of its unique photoelectric properties, high chemical stability, non-toxicity and low cost [3]. It has been reported that anatase phase is more photoactive than rutile or brookite forms because of the low recombination rate of its photogenerated electrons and holes on the surface

*Corresponding author e-mail: mariam.gohr@gmail.com. Tel. 01288715588 Received 22/07/2019; Accepted 02/09/2019 DOI: 10.21608/ejchem.2019.15112.1914

©2020 National Information and Documentation Center (NIDOC)

of TiO₂. Despite its role as a good photocatalyst semiconductor material its efficiency is limited by its wide bandgap and the fast electron-hole recombination [4]. A lot of approaches have been studied to extend the optical absorption of TiO, into the visible light region, aiming to modify its photocatalytic activity. One of these approaches is doping. The photocatalytic activity of TiO₂ can be increased by doping with Lanthanide elements [5-8]. Because of their unique 4f electronic configuration and spectral characteristics, lanthanides are ideal elements for modifying the crystal structure, electronic structure, optical properties, surface adsorption of TiO₂ and forming a series of novel promising photocatalysts [5]. Lanthanides provide an opportunity for an indepth study of the electronic structure that can enhance the photocatalytic activity of TiO₂ [9,10]. In addition, it has been found that loading TiO₂ nanoparticles on a mesoporous material as zeolites, alumina, silica or carbon-based materials can also enhance the photocatalytic activity of TiO₂ [11-14]. Carbon is used as support material for catalysts because of its high surface area [15]. Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene oxide (GO) increase the surface area of TiO₂ for trapping more organic pollutants and enhance the rate of photocatalytic process [16].

In the present work, we have investigated a simple hydrothermal procedure for the preparation of some lanthanide doped TiO_2 nanomaterials that are decorated on GO forming a new composite nanomaterial (Sm³⁺ and/or Eu³⁺-doped TiO₂/GO). The new catalysts would be characterized by standard techniques. Its potential applications as photocatalysts were also studied. As a test material we have chosen MB dye, which is considered as a model organic dye pollutant that may exist in water.

Experimental

Materials and Reagents

All chemicals and reagents were of analytical purity and used without any additional purification. Graphite flakes, hydrochloric Acid 37%, sulphuric Acid 98%, potassium permanganate (KMnO₄), hydrogen peroxide 30%, Titanium (IV) isopropoxide (Ti(OC₃H₇)₄ (99%)), Methylene blue (MB), Samarium (iii) nitrate hexahydrate (Sm(NO₃)₃·6H₂O), Europium (iii) nitrate pentahydrate (Eu(NO₃)₃·5H₂O), isopropanol (C_3H_8O (99%)) and ethanol (C_2H_5OH (99%)) were purchased from Sigma-Aldrich, Sigma-Aldrish Chemie Gmbh, Taufkirchen, Germany. The chemical structure of MB dye is shown in Fig. 1. Deionized (DI) water was used throughout this work.

Preparation Methods

Graphene oxide sheets (GO) were prepared from graphite powder by improved Hummer method as previous paper reported [17]. Ln(III)-TiO₂/GO were prepared by adding 30 mg GO in 25 mL isopropanol and sonicated at room temperature for 90 min to ensure the dispersion of graphene oxide in the alcoholic solution. Then, a certain amount of titanium isopropoxide was added into the solution and kept stirring for 10 min. Then 1 mL of water containing an appropriate amount of the dopant metal ions (Eu³⁺or Sm³⁺) was added dropwise to the above solution with different molar ratios ranging from (0.01 to 0.03 mol% relative to TiO₂). The resulting mixture transferred into a 100 mL Teflon lined autoclave and heated at 180 °C for 0.5 h. The resulting powder was washed by ethanol for several times and then dried at 50 °C overnight. Pure TiO₂ and TiO₂/GO (1:100) were prepared under the same conditions without the addition of the lanthanide metal ions.

Characterization

X-ray diffraction (XRD) patterns were investigated by the X-ray diffractometer (X-ray 6100 Shimadzu-Japan) with Cu K α radiation (λ = 0.15406) with Kß filter at 30 kV and 30 mA. The Bragg angle (2 θ) had the range from 10° - 80° and scan rate 5 °/min. The morphologies were characterized by a scanning electron microscope (SEM) (JEOL JSM 6360LA, Tokyo, Japan). The samples were coated with gold using sputtering coater (model: S150B, Edwards High Vacuum Ltd., England) in order to avoid the buildup of local electrical charges. SEM instrument equipped with Energy dispersive X-ray (EDX, Oxford Instruments NanoAnalysis, Concord, MA, USA, Shimadzu, Kyoto-Japan. PG Instruments Ltd, Woodway Lane, Alma Park, Leicestershire LE17 5FB, UK. Edwards High Vacuum Ltd, The Hamlyn Centre Bessemer Building, South Kensington Campus, Imperial College London, London, UK) for semi-quantitative elemental analysis of the prepared samples. Transmission electron spectroscopy (TEM) was performed

with a JEOL JEM 100CX, Tokyo, Japan. Optical properties of the prepared samples were investigated using UV-Vis diffuse reflectance spectroscopy on a Shimadzu UV-2550 (Japan). BaSO₄ was used as the reflectance standard. The Brunauer-Emmett-Teller (BET) specific surface area (S_{BET}) was determined by a multipoint BET method using the adsorption data in the relative pressure (P/P_o) range of 0.05-0.25. Desorption isotherm was utilized to measure the distribution of pore sized using the Barret-Joyner-Halender (BJH) method [18]. The nitrogen adsorption volume in the relative pressure was utilized to measure the average pore size and the pore volume. The IR spectra were recorded on FTIR spectrometer (8400s, Shimadzu, Japan) using KBr disc method while the sample's Raman spectra were investigated by using Raman spectroscopy (BRUKER, OPTIK, GMBH, Senterra, Germany). The UV-Vis absorption spectrum of the prepared samples and the concentration of MB dye were determined by a UV-Visible spectrophotometer (T80⁺, PG instruments Ltd., UK). The total organic carbon obtained from the photodegradation of the organic dyes was measured by a Multi parameter Bench Photometer with chemical oxygen demand (COD) and accompanied with COD test tube bench heater model C-99 from HANNA Company 270 George Washington Hwy, Smithfield, RI 02917, USA.

Photocatalytic Activity

The photodegradation experiments of the prepared samples were carried out in a Homemade UV-A photoreactor with a UV-light intensity of 3 mW.cm⁻². Briefly, 100 mL dye solutions were prepared in appropriate concentrations using bi-distilled water. Dye solutions were stirred in the dark for 30 min after the addition of 50 mg of the catalyst to establish an adsorption/ desorption equilibrium. Samples of suspension were withdrawn at regular intervals and were immediately centrifuged at 10000 rpm for 5 min to remove the catalyst particles completely. The progress of the photocatalytic decolorization was monitored by measuring the absorbance of the solution samples at the maximum wavelength of MB dye (664 nm). The total mineralization test was examined by measuring the COD of the samples before and after UV-light irradiation.

Result and Discussion

Morphological and Crystallographic Characterization

XRD characterization is an effective and useful technique to determine the crystallite phase and the size of the nanomaterials. The XRD patterns of GO, TiO₂, TiO₂/GO (1:100) and Sm^{3+} and Eu^{3+} -doped TiO₂/GO (0.015 mol %) nanocomposites are shown in Fig. 2. XRD pattern of GO (Fig. 2a) shows two distinct peaks at 2θ = 10.6° and 42.5° , which are assigned to $(0\ 0\ 2)$ and (1 0 0) crystallographic planes of the carbon hexagonal structure. The interlayer spacing value for GO is 0.83 nm. The distance between consecutive carbon layers is increased indicates the successful oxidation of the starting graphite [19]. XRD pattern of pure TiO, nanoparticles (Fig. 2b) is well ascribed to the standard powder diffraction pattern of anatase TiO₂ (JCPDS No. 21-1272) [20]. In the un-doped and doped-TiO₂/ GO nanocomposite system (Fig. 2c-e), no other diffraction peaks are assigned for GO or the dopant (Sm³⁺ or Eu³⁺ oxides). This firstly confirms that the C atoms are completely replace some of the oxygen atoms in the TiO, crystal lattice in the TiO₂/GO composite indicating that no GO is left on the catalyst's surface. This confirms that GO is in a high dissolution state in the TiO₂ lattice rather than an isolated species on the surface of TiO, [21]. This may be due to the low amounts of GO (1%) and the dopant ion concentrations (0.015%)in the samples. The average crystallite size of the prepared samples are calculated by using Debye-Scherer formula [22]. The average crystallite size of the prepared samples are given in Table 1.

$$d = \frac{k\lambda}{B\cos\theta} \tag{1}$$

where d is the crystallite size, k is a constant of 0.9, λ is the X-ray wavelength of Cu which is 1.5406 Å, is the Bragg angle in degree and B is the full width at half maximum (FWHM) of the peak. Due to the much lower crystalline extent of graphene than that of TiO₂ it has been observed that the crystallite size of the prepared samples decrease after being doped with lanthanides [23-24]. This may be due to the segregation of the doping ions at the grain boundary. In turn, due to bigger ionic radii of Sm³⁺ (1.086 Å) and Eu³⁺ (1.036 Å) than Ti⁴⁺ (0.068 Å), it is difficult for Sm³⁺ and Eu³⁺ to replace Ti⁴⁺ in the crystalline lattice [6].

The morphology of GO, TiO,, TiO,/GO (1:100) and Sm³⁺ and Eu³⁺-doped TiO₂/GO (0.015) mol%) photocatalysts are shown in Fig. 3 and Fig. 4. The SEM image of GO (Fig. 3a) shows a porous sponge-like structure with the graphene sheet not well connected together. This is an indication that the graphite has been exfoliated during the oxidation process. This also may be due to the distorted graphene sheets when oxygen and other functionality groups are attached to the sheets of graphene to form GO [25]. The SEM image of TiO₂ (Fig. 3b) shows small spherical distributed TiO₂ particles. The SEM images of undoped and doped TiO₂/GO composite (Fig. 3c-e) demonstrate that the TiO₂ nanoparticles are well dispersed on the GO surface. The TiO, nanoparticles are attached onto the surface of GO sheets and they are intercalated between the graphene oxide "Sandwich" constructed in an aggregation [26]. These images show the presence of TiO, agglomerates. Due to the high amount of TiO₂ compared with the GO, the latter are less visible [27].

The TEM images of pure GO and TiO₂/GO are shown in Fig. 4(a,b), respectively. The regular shapes of TiO₂ with good defined boundaries and uniform size distribution, show a successful preparation method. The TEM study displays that the size of the TiO₂ nanoparticles are in the range of 6-12 nm with an average size of 9 nm. The TEM image of the TiO₂/GO (Fig. 4b) shows that there is a complete bounding between TiO, nanoparticles with wide distribution on very thin and transparent graphene oxide sheet. Figs. 4c and 4d show the TEM images of Sm³⁺ and Eu³⁺-doped TiO₂/GO, respectively. The TiO₂ nanoparticles are found to be completely embedded into the GO sheets. Therefore, good contact and interaction between lanthanide-doped TiO₂ nanoparticles and GO has been achieved during the hydrothermal process, which is believed to be favorable for transferring the photogenerated electrons into a Ln(III) doped-TiO₂/GO composites during the photocatalytic process.

The elemental compositions of the prepared samples have been done by EDX analysis (Supplement1). The results confirm the presence of Ti, Sm, Eu, O and C. Also, the spectra indicate that the principal constituents are Ti and O with low concentrations of lanthanide ions and GO, as well as the obtained samples are free from impurities [21].

Optical Characterization

The FTIR spectra of GO, TiO₂, TiO₂/GO (1:100) and Sm³⁺ and Eu³⁺-doped TiO₂/GO (0.015) mol%) nanocomposites are shown in Fig. 5. The FTIR spectrum of GO contains the characteristic peaks of GO at 3453 and 1087.9 cm⁻¹, due to O-H and C-O stretching vibrations, respectively. The peaks at 1626.1 cm⁻¹ and 1722.5 cm⁻¹ are due to C=O stretching vibration in the carboxylic acid group. The peak at 1400.4 cm⁻¹ is due to C=C stretching vibration from un-oxidized sp² C-C bonds. The peak at 2348.1 cm⁻¹ is due to O=C=Ostretching vibration [18]. FTIR results of the present study are consistent with previous reports [21, 28]. The presence of polar oxygen containing functional groups strongly changes the Vander Waals interactions between GO layers and makes them hydrophilic. Due to the hydrophilic nature, GO can easily be dispersed in water and forms a stable colloidal aqueous suspension [29]. The FTIR spectra of the TiO₂, un-doped and Ln³⁺doped TiO₂/GO show a broad band about 3406 cm⁻ ¹which is assigned to the OH stretching frequency from the surface hydroxyl groups. The band at 1633 cm⁻¹ corresponds to Ti-O-C vibration, which may result from the interaction between the surface hydroxyl groups of TiO₂ and the functional groups of graphene oxide. The bands observed in the region below 700 cm⁻¹ are characteristic to the Ti-O vibration modes of the Ti³⁺-O-Ti⁴⁺ in TiO₂. These results show the chemical coupling of TiO, and GO [30]. The peak at 1634 cm⁻¹ is assigned to the bending vibrations of adsorbed water molecules [31]. The observed peak at 1415 cm⁻¹, which is due to C=C stretching vibrations from unoxidized graphene domains, is dominant for the TiO₂-GO samples [32]. Furthermore, no residual alkoxy peaks have been observed indicating the absence of impurities in the samples.

The typical Raman spectrum of GO, obtained at an excitation wavelength of 517 nm, is shown in Fig. 6a. The D peak at 1348 cm⁻¹, with an intensity comparable to the G peak at 1592 cm⁻¹, along with their large band width are indicative of significant structural disorder in GO [17]. Fig. 6 (b-e) shows the Raman spectra of the TiO₂, un-doped and Ln³⁺-doped TiO₂/GO prepared by using the hydrothermal method. The Raman active peaks at 143 cm⁻¹ (E_g), 395 cm⁻¹ (B_{1g}), 515 cm⁻¹ (A_{1g}), and 638 cm⁻¹ (E_g) modes are for the as-prepared composites indicate the anatase structure of TiO₂. The (E_g) modes for all prepared composites were broader and blue-shifted from 144 cm⁻¹ to 153 cm⁻¹. The peak shift of TiO₂, which appeared in the Raman spectrum is due to the doping with lanthanide [6]. The 1343 cm⁻¹ and 1602 cm⁻¹ modes are referred to the D and G bands of GO, respectively [17].

The light absorption characteristics of the obtained samples are investigated in Fig. 7. Fig. 7(a,b) shows the UV-Vis diffuse reflectance spectra for the TiO₂, TiO₂/GO and Ln³⁺-doped TiO₂/GO with different lanthanide metal ions (Eu³⁺ and Sm³⁺) concentrations ranging from 0.01 to 0.03 molar ratios. It may be seen very well that the undoped TiO₂/GO and Ln³⁺-doped TiO_{2}/GO (with different Sm^{3+} and Eu^{3+} molar ratios) nanocomposites experienced increased light absorption in the visible range showing a red shift in the absorbance compared with the bare TiO₂. This can be attributed to the charge transfer between the dopant (f electrons of lanthanides and/ or p electrons of carbon) and the TiO₂ conduction or valence band. As a result, the un-doped and Ln^{3+} -doped TiO₂ can absorb lower photo energy and this leads to higher photocatalytic activity. The band gap energies (E_{a}) of the prepared samples are calculated using Tauc's equation;

$$\alpha h v = B(h v - E_{\alpha})^{n/2}$$
 (2)

where α , v, and B are the absorption coefficient, the light frequency and proportionality constant, respectively [33]. The value of n depends on the characteristics of the transition in the semiconductor. The Eg values are calculated by the extrapolation of the linear parts of the curves (Fig. 7c,d) and listed in Table 2.

BET Surface Area Analysis

The textural properties of as-prepared TiO₂, TiO₂/GO, Sm³⁺-doped TiO₂/GO and Eu³⁺-doped TiO₂/GO nanocomposite samples have been investigated using Brunauer-Emmett-Teller (BET) analysis. The BET surface area S_{BET} , total pore volume (V_{i}) and the mean pore volume of the samples are calculated and presented in Table 1. From the data in Table 1, it has been observed that doping with Sm3+ and Eu3+ leads to an increase of the total surface area of the TiO₂/GO composite. This will be favorable for photocatalytic applications, as the higher specific surface area of the photocatalysts doped with Ln(III) lead to increase the adsorption of more dye particles on its surface. This demonstrates that Ln(III) doped TiO₂ supported on GO composites are excellent

candidate for adsorption and photocatalysis.

Photocatalytic Activity

The photocatalytic activities of the assynthesized undoped and Ln(III)-doped TiO_2 / GO (with different Ln(III) molar ratios) nanocomposite compared with that of the pure TiO₂ as a photocatalysts are tested on the degradation of MB as a model for an organic pollutant. Fig. 8(a-d) shows the visible absorption spectra of degraded MB over TiO₂, TiO₂/GO, 0.015 mol% Sm³⁺- TiO₂/GO and 0.015 mol% Eu³⁺- TiO₂/GO photocatalysts, respectively after exposure to UV-light illumination. It can be observed that the absorption peak intensity of MB at 664 nm decreases with the exposure time increasing, thus showing the decolorization of MB by the photocatalysts under investigation.

The decolorization rate kinetics of MB dye is found to obey first order rate kinetics confirmed by the linear fit eq. (3)

$$\ln A_t = \ln A_0 - kt$$
 (3)

where k is the rate constant (min⁻¹), t is the irradiation time, A_{t and} A_o are the initial and final absorption values of the dye solution, respectively. A plot of $\ln (A_{,}/A_{,})$ versus t yields a straight line. The photocatalytic initial decolorization rate kinetics of MB with the different photocatalysts under investigation are shown in Fig. 9(a,b) and summarized in Table 2. The results demonstrated that all Ln(III)-TiO₂/GO catalysts achieved higher rates of MB degradation than the pure TiO₂ and TiO₂/GO catalysts. Moreover, it can be clearly seen that increasing the lanthanide dopant ion concentration leads to an increase of the photodegradation rate of MB till an optimum concentration (0.015 mol%). However, further increase in the lanthanide metal ion concentration, as a dopant metal ion, leads to retardation in the photo degradability of the dye solution (Fig. 9(c,d)).

This can be explained that below an optimum dopant metal ion concentration, the dopant acts as a charge carrier separator which increases the charge separation and enhances the photocatalytic performance of the nanocomposite. However, at higher metal concentration, the dopant can act as a charge recombination center which prevents the separation of the photogenerated charge carriers and furthermore represses the generation

		S _{bet}	V _t x 10 ⁻¹	Average pore size
Sample	Crystal Size (nm)	$(\mathbf{m}^{2}, \mathbf{g}^{-1})$	cc.g ⁻¹	(nm)
TiO ₂	6.6	172	0.3596	8.3631
TiO ₂ /GO	5.4	212	0.2862	5.3972
0.015% Sm- TiO ₂ /GO	4.9	213	0.5543	10.405
0.015%Eu- TiO,/GO	5.4	249	1.0499	16.815

TABLE 1: XRD and S_{BET} analysis of pure TiO₂, TiO₂/GO, 0.015% Sm-TiO₂/GO and 0.015% Eu-TiO₂/GO

TABLE 2: Absorption edge, band gap values and initial rate constants of MB dye (k) with TiO₂, TiO₂/GO and different x mol% of Ln(III)-doped TiO₂/GO catalysts

	Optical characterization		Photocatalytic Activity	
Sample	Absorption edge (nm)	Band gap (eV)	k 10 ⁻³ ×(min ⁻¹)	R
TiO ₂	383.9	3.23	3.30	0.98419
TiO ₂ /GO	413.3	3.00	9.10	0.99188
0.01% Sm- TiO ₂ /GO	387.5	3.21	13.2	0.99758
0.015% Sm- TiO ₂ /GO	376.8	3.29	17.1	0.99935
0.025% Sm- TiO ₂ /GO	374.6	3.31	15.1	0.99750
0.03% Sm- TiO ₂ /GO	372.4	3.33	11.5	0.99876
0.01% Eu- TiO ₂ /GO	380.4	3.26	14.9	0.99755
0.015% Eu- TiO ₂ /GO	372.4	3.33	25.6	0.99781
0.025% Eu- TiO ₂ /GO	381.5	3.25	22.5	0.99574
0.03% Eu- TiO ₂ /GO	370.1	3.35	16.5	0.99950

Fig. 1: The Chemical structure of MB dye

Fig. 2: XRD patterns of a) GO, b) TiO₂, c) TiO₂/GO, d) 0.015% Sm-TiO₂/GO and e) 0.015% Eu-TiO₂/GO

Fig. 3: SEM images of a) GO, b) TiO₂, c) TiO₂/GO, d) 0.015% Sm-TiO₂/GO and e) 0.015% Eu-TiO₂/GO

Fig. 4: TEM images of a) GO, b) TiO₂/GO, c) 0.015% Sm-TiO₂/GO and d) 0.015% Eu-TiO₂/GO

Fig. 5: FTIR spectra of GO, TiO₂, TiO₂/GO, 0.015% Sm-TiO₂/GO and 0.015% Eu-TiO₂/GO

Fig. 6: Raman spectra of a) GO b) TiO₂, c) TiO₂/GO, d) 0.015% Sm-TiO₂/GO and e) 0.015% Eu-TiO₂/GO

Fig. 7(a, b) UV-Vis diffuse reflectance spectra of TiO₂, TiO₂/GO and different x mol % Ln(III) doped TiO₂/GO catalysts; (c, d) Tauc plot of TiO₂, TiO₂/GO and different x mol % Ln(III) dopedTiO₂/GO cataly

Fig. 8 Decay of the UV-Vis absorption spectrum of (1.5X10⁻⁵ M) MB aqueous solution during UV irradiation in the presence of 50 mg (a) TiO₂, b) TiO₂/GO, c) 0.015 mol% Sm-TiO₂/GO and d) 0.015 mol% Eu-TiO₂/GO catalysts

1373

Egypt. J. Chem. Vol. 63, No. 4 (2020)

Fig. 9(a,b) 1st order rate kinetics of the photocatalytic degradation of 1.5×10⁻⁵ M aqueous solution of MB in the presence of 50 mg TiO₂, TiO₂/GO, x mol% Sm- TiO₂/GO and x mol% Eu- TiO₂/GO catalysts; Fig. 9(c, d) Influence of the different molar ratios of the Sm³⁺ and Eu³⁺ dopant ion conc. on the decolorization rate of MB

Fig. 10 COD% decay of MB dye solution under UV-illumination in the presence of 0.015% Eu³⁺-TiO₂/GO photocatalyst

Fig. 11 Proposed mechanism of photocatalytic degradation of MB over Ln(III)-TiO₂/GO photocatalyst under UV irradiation

Supplement 1: EDX analysis of a) pure TiO₂, b) TiO₂/GO, 0.015% Sm-TiO₂/GO and d) 0.015% Eu-TiO₂/GO nanocomposite materials

of oxygen radicals prompting a decrease of the photocatalytic process [34]. Therefore, controlling the dose of metal dopants in the nanocomposites is an important factor for the enhancement of photocatalysis [35].

Mineralization Study

The photocatalytic activity of the highest active 0.015% Eu³⁺-TiO₂/GO photocatalyst has been quantitatively assessed by measuring the COD% decay during the photodegradation experiments (Fig. 10). Fig. 10 indicates that 99.9% of COD was removed after only 90 min of UV-illumination. This (COD% removal) analysis confirms the potentiality of this photocatalytic nanomaterial to efficiently mineralize the MB organic dye pollutant.

Proposed Photocatalytic Mechanism:

The explanation of the enhancement of the photocatalytic activity of the prepared catalysts due to lanthanides doping and graphene oxide incorporation can be explained according to Equations (4-10) [18, 35]. Firstly, up on UVlight illumination, the excited TiO_2 particles generate electron-hole pairs (eq. 4). Then the photogenerated electrons excited from the valence band (VB) to the conduction band (CB) of TiO₂. Ln³⁺ dopant in TiO, act as electron scavenger and reduce their recombination with h⁺ and produce Ln^{2+} (eq. 5) [36,37]. The produced Ln^{2+} ions are very unstable, so that e⁻ can be easily descavenged either by passing to the adsorb O₂ molecules (eq. 6), promoting O_2^{\bullet} and $\bullet OH$ formation or by transferring to GO as well to produce superoxide anion (eq. 7). The reactive superoxide radical ion (O_2^{\bullet}) can easily react with adsorbed water molecules to produce the very reactive oxidizing species (•OH) (eq. 8). On the other hand, the positive holes (h⁺) in the TiO₂ valance band can also promote the MB degradation by either direct oxidation of MB or by generating (•OH) radicals (eq. 9). The powerful oxidizing species (•OH) can easily lead to degradation of MB dye (eq. 10). Moreover, the possible mechanism involved in the photocatalytic degradation of Ln(III) doped TiO₂/ GO photocatalyst can be represented in Fig. 11.

TiO ₂	UV (hγ)	$h^+_{VB} + e^{CB}$	(4)
$Ln^{+3} + (TiO_2)e^{-}_{CB}$		Ln ⁺²	(5)
(Ln ⁺³) e ⁻ + GO		e"(GO)	(6)
O ₂ + e ⁻ (GO)		0 ₂ -	(7)
$\mathrm{O_2}^{-\bullet} + \mathrm{H_2O}$		•OH	(8)
${\rm (TiO_2)}~h^+{}_{VB}+{\rm OH^*}$		•OH	(9)
$^{\bullet}\mathrm{OH}+\mathrm{MB}$	× (legradation products	(10)

Egypt. J. Chem. Vol. 63, No. 4 (2020)

Conclusion

Different molar ratios of Eu³⁺ and Sm³⁺-doped TiO₂ loaded on GO nanocomposite photocatalysts were successfully prepared by a facile and lowcost hydrothermal method. The photocatalytic activity of the prepared Ln(III) nanocomposite photocatalysts was tested for the decolorization and degradation rate of methylene blue (MB) as a model of organic dye pollutants. The results clearly showed the beneficial role of both the GO and the lanthanide metal ions as a dopant on the degradability of MB. The high specific surface area of GO and its oxygen containing functional groups resulted in increase the absorptivity and hence the degradability of MB. The GO content acted as a photosensitizer and an electron scavenger to decrease the photogenerated electron-hole pair's recombination and in this way expand its absorbance in the visible region leading to a great photocatalytic activity. Doping the as-synthesized nanocomposite with an appropriate amount of Ln(III) metal ions such as Sm³⁺ and Eu³⁺ led to further enhancement in the photocatalytic activity of the TiO₂/GO and TiO₂ relatively and expanded the quantity of electron-hole pairs to take part in the photocatalytic reaction. The 0.015% Eu³⁺doped TiO₂/GO photocatalyst showed the highest photocatalytic activity. The high photocatalytic performance combined with its higher absorbance in the visible region confirmed the synergistic impacts of the Ln(III) dopants.

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Acknowledgment

This paper is extracted from a Ph.D. thesis submitted to the faculty of Science –Ain Shams University as partial fulfilment of the Ph.D. degree.

References

- Boxue Z., Shengxin C., Meiqi D., Xiaozhou Y., Yun W. and Jianfeng Y., Titanium Dioxide (TiO₂) Mesocrystals: Synthesis Growth Mechanisms and Photocatalytic Properties. *Catalysts*, 9 (1), 1-27 (2019).
- Ji L. Sh., Huimin H. and Xianjun L., Phenol– TiO₂ complex photocatalysis: visible lightdriven selective oxidation of amines into

imines in air. *Sustainable Energy & Fuels*, **3** (2), 488- 498 (2019).

- Andrea G., David M. T., Salvatore G. L., Billy J. M., Maria P. S., Martin A., Giovanni <u>N.</u> and <u>Richard B.</u>, Sol gel graphene/TiO₂ nanoparticles for the photocatalytic-assisted sensing and abatement of NO₂. <u>Applied</u> <u>Catalysis B: Environmental</u>, **243**, 183-194 (2019).
- Shindume L. H., Zhao Z., Wang N., Liu H., Umar A., Zhang J., Wu T. and Guo Z., Enhanced Photocatalytic Activity of B, N-Codoped TiO₂ by a New Molten Nitrate Process. Journal of Nanoscience & Nanotechnology Research, 19 (2), 839-849 (2019).
- Kiran B., Nasir A., Irfan A. Sh. and Tayyaba <u>M. A.</u>, Effects of Different Parameters on Photocatalytic Oxidation of Slaughterhouse Wastewater Using TiO₂ and Silver-Doped TiO₂ Nanoparticles. *Polish Journal of Environmental Studied*, **28** (3), 1591–1600 (2019).
- Mona S. and Abdel-Mottaleb M. S.A., Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications. *Inorganic Chimica Acta*, 360, 2863–2874 (2007).
- Joanna R. S., Tomasz G., Janusz W. S., Wojciech L., Maria G., Bunsho O. and Adriana Z., Lanthanide co-doped TiO₂: The effect of metal type and amount on surface properties and photocatalytic activity. *Applied Surface Science*, **307**, 333–345 (2014).
- Charfeddine M., Taher G., Jalila J., Mondher G., Alanood A. A., Mounir G., Miguel M. S. and <u>Hatem E.</u>, Synthesis and Characterization of SnO₂-TiO₂ Nanocomposites Photocatalysts. *Current Nanoscience*, **15** (4), 398 – 406 (2019).
- Nejc R., David M. T., Uroš C., Harinarayanan P., João A. L., Andraž L. and Andrijana S. Š., Hydrothermal Synthesis of Rare-Earth Modified Titania: Influence on Phase Composition, Optical Properties, and Photocatalytic Activity. *Materials*, **12** (5), 1-19 (2019).
- 10. Feng Z., Chunjie Y., Qi S. and Sridhar K.,

TiO₂/Sepiolite nanocomposites doped with rare earth ions: Preparation, characterization and visible light photocatalytic activity. *Microporous and Mesoporous Materials*, **274**, 25-32 (2019).

- Liu S. H. and Lin W. X., Simple method to prepare g-C₃N₄-TiO₂/waste zeolites as visiblelight-responsive photocatalytic coatings for degradation of indoor formaldehyde. *Journal* of Hazard Materials, **368**, 468-476 (2019).
- Olivia S., Robert L., Leslie B., Ivana J. Z., <u>Azar F., Shasvat R., Peng P. Mark R.S. and Norman Y.</u> ^{Z.}, Photocatalytic Degradation of Microcystins by TiO₂ Using UV-LED Controlled Periodic Illumination. *Catalysts*, 9 (2), 1-10 (2019).
- Ziming Z., Yu L., Sha L., Wei W. and Jiantai M., Preparation of a magnetic mesoporous Fe₃O₄-Pd@TiO₂ photocatalyst for the efficient selective reduction of aromatic cyanides. *New Journal of Chemistry*, 43 (16), 6294-6302 (2019).
- Meicen G., Xiaocai Y., Jinghua L., Liping W., Zhiwei N. and Hang Y., Composite Photocatalysts of CNTS-TiO₂: An Efficient Photocatalyst for the Degradation of Ammonia Nitrogen Pollutant in Mariculture Wastewater under UV Light Irradiation. *IOP Conference Series: Materials Science and Engineering*, **301**, 1-8 (2018).
- Mohammad B. A., Zoha T. B., Majid S., Sedigheh B. D. and Payam V., Synthesis of TiO₂ nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO₂ nanoparticles and study of optical properties and structural characterization of TiO₂/MWCNT nanocomposite. *Optik*, **149**, 447–454 (2017).
- Yongfang Y., Lidong X., Hefang W., Wenjie W. and Lixin Z., TiO₂/graphene porous composite and its photocatalytic degradation of methylene Blue. *Materials & Design*, **108**, 632-639 (2016).
- Daniela M., Dmitry K., Jacob B., Alexander S., Zhengzong S., Alexander S., Lawrence A., Wei L. and James T., Improved Synthesis of Graphene Oxide. ASC Nano, 8 (4) 4806-4814 (2010).
- Shizhen L., Hongqi S., Shaomin L. and Shaobin W., Graphene facilitated visible light

photodegradation of methylene blue over titanium dioxide photocatalysts. *Chemical Engineering Journal*, **214**, 298-303 (2013).

- Leila Sh. and Anjali A., Graphene Oxide Synthesized by using Modified Hummers Approach. *International Journal of Electrical Engineering and Electronics*, 2 (1), 58-63 (2014).
- Tingting L., Yong G., Junwo Z., Manying Z., Xiaofei F. and Fang L. A., Membrane Modified with Nitrogen-Doped TiO₂/Graphene Oxide for Improved Photocatalytic Performance. *Applied Sciences*, 9 (5), 1-12 (2019).
- Samuel O., William A., Sudheesh Sh. and Poomani G., Lanthanum doped-TiO₂ decorated on graphene oxide nanocomposite: A photocatalyst for enhanced degradation of acid blue 40 under simulated solar light. *Advanced Material Letters*, 8 (3) 295-302 (2017).
- Cullity B. D., Stock S. R., Elements of X-ray Diffractio, 2nd Ed. addision-Wesley publishing company INC. California (2001).
- <u>Shinya H.</u>, Titanium Dioxide Based Visible Light Sensitive Photocatalysis: Mechanistic Insight and Applications. *Catalysts*, 9 (2), 1-22 (2019).
- Jun Ch. L., Anantha I. G., Gopalan S. A., Kwang P. L. and Wha J. K., Preparation of Visible Light Photocatalytic Graphene Embedded Rutile Titanium (IV) Oxide Composite Nanowires and Enhanced NO_x Removal. *Catalysts*, 9 (2) 1-18 (2019).
- Tingting L., Yong G., Junwo Z., Manying Z., Xiaofei F. and Fang L. A., Membrane Modified with Nitrogen-Doped TiO₂/Graphene Oxide for Improved Photocatalytic Performance. *Applied Sciences*, 9 (5), 1-12 (2019).
- Shizhen L., Hongqi S., Shaomin L. and Shaobin W., Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. *Chemical Engineering Journal*, 214, 298-303 (2013).
- 27. Yu L. M., Kan Z., Wei Z., Fang C. Z., You C. Ch. and Yuan G. Z., Enhanced chemical interaction between TiO, and graphene

Egypt. J. Chem. Vol. 63, No. 4 (2020)

oxide for photocatalytic decolorization of methylene blue. *Chemical Engineering J*ournal, **193–194**, 203–210 (2012).

- Martins P. M., Ferreira C. G., Silva A. R., Magalhães B., Alves M. M., Pereira L., Marques P. A. A. P., Melle F. M. and Lanceros M. S., TiO₂/graphene and TiO₂/graphene oxide nanocomposites for photocatalytic Applications: A computer modeling and experimental study. *Composites Part B: Engineering*, **145**, 39-46 (2018).
- 29. Poonam B., Manish K., Pankaj Ch. and Kamal K. K., Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(III) by reduced graphene oxide (rGO)-metal oxide (TiO_2/Fe_3O_4) based nanocomposites. *RSC*, **5** (89)73249–73260 (2015).
- <u>Thuy P., Viet P., Eun Sh., Hai P., Sun K.,</u> <u>Jin Ch., Eui K.</u> and <u>Seung H.</u>, The role of graphene oxide content on the adsorptionenhanced photocatalysis of titanium dioxide graphene oxide composites. *Chemical Engineering Journal*, **170**, 226-232 (2011).
- 31. William V., Angie R., Carlos D. U., Carlos G. and Patricia Q., Photocatalytic activity of graphene oxide TiO₂ thin films sensitized by natural dyes extracted from Bactrisguineensis. *RSC*, **6** (3), 1-17 (2019).
- Amr T., Adham R. R. and Omar A. El., Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination. *Catalysts*, 8 (11), 1-45 (2018).
- Feizpoor S., Habibi Y. A. and Vadivel S., Novel TiO₂/Ag₂CrO₄ nanocomposites: efficient visible–light-driven photocatalysts with n–n heterojunctions. *Journal of Photochemistry* and *Photobiology*, **341**, 57-68 (2017).
- 34. Sakthivel S., Shankar M. V., Palanichamy M., Arabindoo B., Bahnemann D. W. and Murugesan V., Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO₂ catalyst. *Water Research*, **38** (13), 3001-3008 (2004).
- 35. Davis E. A. and Mott N. F., Conduction in

non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. *The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics*, **22** (179), 903-922 (1970).

- 36. Venkata R. P., Viswadevarayalu V. A. and Adinarayana R. S., Fabrication of graphene– TiO₂ nanocomposite with improved photocatalytic degradation for acid orange 7 dye under solar light irradiation. *Bulletin of Materials Science*, **39** (3), 759- 767 (2016).
- Ali Z., Chaudhry M. N., Niaz N. A., Khalid N. R., Ahmed E., Hussain R., Ahmed I., Abbas S. M., Significant effect of Graphene on catalytic degradation of Methylene blue by pure and Ce-doped TiO₂ at nanoscale. *Digest Journal of Nanomaterials and Biostructures*, 8 (4), 1525-1535 (2013).
- Khalid N. R., Ahmed E., Zhanglian H. and Ahmed M., Synthesis and photocatalytic properties of visible light responsive La/ TiO₂-graphene composites. *Applied Surface Science*, 263, 254–259, (2012).

تحضير حرارى سهل لاكسيد التيتانيوم النانومتري المطعم بالسماريوم والايروبيم والمحمل على اكسيد الجرافين وإستخدامها كحفازات ضوئية فعالة.

مريم شاكر جو هر¹*, هدى سعيد حافظ², منى مصطفى سيف³, هشام محمد عبد الفتاح سليمان¹, محمد صبري أحمد عبد المطلب⁴

ا قسم المواد النانومترية والمتراكبات الجديدة - معهد بحوث التكنولوجيا المتقدمة والمواد الجديدة - مدينة الابحاث العلمية والتطبيقات التكنولوجيا- برج العرب الجديدة – ص.ب. ٢١٩٣٤ – الاسكندرية – مصر.

٢ معهد البحوث والدر اسات البيئية – جامعة المنوفية فرع السادات – السادات - مصر.

⁷ قسم الكيمياء – كلية التربية- جامعة عين شمس- ص.ب. ١١٣٤١- القاهرة- مصر.

٤ قسم الكيمياء - كلية العلوم - جامعة عين شمس- ص.ب. ١١٥٦٦ - القاهرة - مصر.

تم تحضير لاكسيد التيتانيوم المطعم بأيونات السماريوم والاير وبيم وحمل على أكسيد الجرافين بطريقة حرارية بسيطة. تم دراسة الخواص التركيبية والمور فولوجية والضوئية للتركيبات النانوية بواسطة جهاز حيود الأشعة السينية (XRD)، الفحص المجهري الإلكتروني (SEM) المجهز بأشعة أشعة تشتت الطاقة (EDX)، والمجهر الإلكتروني (TEM)، وتحليل مساحة السطح (SBET)، وتحليل فورية الطيفي للأشعة تحت الحمراء (FTIR)، ومطياف رامان (RS)، ومطياف الانعكاس المنتشر (DRS). وتم التحقيق من الكفاءة الحفزية الضوئية للعينات المحضرة بقدرتها على إز اللة لون صبغة الميثيلين الأزرق (MB) كنموذج لملوثات الصبغ العضوية وذلك بواسطة الأشعة فوق البنفسجية. وتظهر نتائج التحفيز الضوئي أن متراكب نانو ODS) من الكفاءة الحفزية الصوئية للعينات المحضرة بقدرتها على إز الة لون صبغة الميثيلين الأزرق نانو ODS). وتم التحقيق من الكفاءة الحفزية الضوئية للعينات المحضرة بقدرتها على إز الة الون صبغة الميثيلين الأزرق مع المنتشر (MB) كنموذج لملوثات الصبغ العضوية وذلك بواسطة الأشعة فوق البنفسجية. وتظهر نتائج التحفيز الضوئي أن متراكب نانو OD/₂OG -*TO² OD 5000 ذو نشاط تحفيزي ضوئي عالى من حيث الكفاءة في إز الة اللون وتكسير الصبغة. ما يوضح أن هذه المادة النانوية المركبة الجديدة المطعمة بأيونات اللاتثينيذات تعتبر محفز ضوئي واعد لتكسير ملوثات الأصباغ العضوية في المحاليل المائية. وقد أظهر تحليل الطلب على الأكسجين الكيميائي (COD) درجة عالية من التمعدن الكامل لصبغة الميثلين الازرق بعد ٩٠ دقيقة فقط تحت ضوء الأشعة فوق البنفسجية.