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ABSTRACT 
Pressure vessels are wildly used in many fields, such as chemical, petroleum, military industries as well as in nuclear 

power plants. Pressure vessels should be designed with great care because rupture of pressure vessel may cause 

catastrophic accident. The common problem to the pressure vessel's designer is the accurate evaluation of stresses due 

to the applied mechanical and /or thermal loads. The finite element method  FEM  is one of the numerical stress 

analysis for many subjects. In this paper a complete stress analysis through the wall of pressure vessel under the effect 

of constant and cyclic loading is presented. Hoop, radial, axial and effective stresses for cylindrical pressure vessels 

have been evaluated analytically  as well as using the program package ANSYS as a numerica l fin ite element method. A 

comparison between the analytical and numerical solution is presented, and it is found a good agreement between them.  

KEYWORDS: Pressure vessels, Stress analysis, Finite element method, Cyclic loading, Thermal stresses. 

NOTATION 
E …… . Young’s modulus   of material   Mpa  

𝑓 … . Frequency  of pressure  oscillation  s−1  

H =  
E α ∆T

1 − ѵ
… . Thermal  load  Mpa  

K =  
ro

ri
 …… Diamter  ratio  

K i =
rc

ri
 … Diameter  ratio for inner cylinder 

Ko =
ro

rc
 … Diameter  ratio for outer  cylinder 

Pa =  
Pimax

− Pimin

2
 . . Pressure  amplitude   Mpa  

                 Pc …… Contact  pressure   Mpa  

Pi … . . Applied internal  pressure   Mpa  

Pm = 
Pimax

+ Pimin

2
… Mean pressure   Mpa  

Po … External  pressure   Mpa  

P ri ,t .Pressure  at inner  surface ri and after  time t  Mpa  

𝑟 …… Desired radius   mm  

rc … . Contact  radius  of the cylinder  mm  

ri … . . Inner  radius  of the cylinder  mm  

ro … . Outer  radius of the cylinder  mm  

R = r
ri … Normalized radius  

t …… . . Time  s  

T … . Temperature  at any radius  of the  cylinder  ℃  
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Ti … . Temperature  at inner  surface of the  cylinder  ℃    

To … Temperature  at outer  surface of the  cylinder  ℃  

∆T = Ti −  To … . . Temperature  difference  ℃  

α …… Coefficient  of linear  thermal  expansion   mm−1  ℃−1  

σ … . Stress   Mpa   

𝜎𝑎 … . Stress  amplitude   Mpa  

σh … . Hoop stress   Mpa  

σm … . Mean  stress  Mpa  

σr … . Radial  stress  Mpa   

σv … . Equivalent  stress  Mpa  

σz … . Axial  stress   Mpa  

ѵ …… Poisson’s ratio  

t   = 𝑓t …. …...Normalized time 

σ  =  σ P … … . . Normalized stress   

σ h = 
σh

P … . . Normalized  hoop stress  

σ r =  
σr

P … … Normalized  radial stress   

σ v =  
σv

P … . . Normalized equivalent  stress  

σ z = 
σz

P … … Normalized axial  stress  

1. INTRODUCTION 

Pressure vessels are widely used in a wide range of 

technological applications. Examples of great interest 

are found in nuclear engineering military industries and 

the field of metal forming. They are usually subjected 

to high pressure which may be constant or cyclic. In 

practice many pressure vessels are subjected also to 

high internal temperature.  

Evaluation of stress analysis  in cylindrical pressure 

vessel is important for principal design consideration. 

Therefore many investigators have direct their effort to 

study the pressure vessel in order to predict the required 
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working capacity. In order to achieve better use of 

material or to allow h igher working capacity, many 

attempts were made using different types of analysis. 

Alzaharnah et al. [3] have determined the thermal 

stresses due to temperature gradient developed in the 

pipe wall. You et al. [4] presented an accurate method 

to carry out elastic analysis of thick-walled spherical 

pressure vessels subjected to internal pressure. Kandil 

[6] presented a complete analysis of stresses within the 

wall of a cylindrical pressure vessel subjected to cyclic 

internal pressure and temperature. Gupta et al. [7] 

studied the effect of non-homogeneity on elastic-plastic 

transition in a thick walled circular cy linder under 

internal pressure and temperature using Seth’s 

transition theory. Lee [8] presented the use cylindrical 

pressure vessel subjected to internal high pressure in 

manufacture. Shao [9] used a mult i-layered approach 

based on the theory of laminated composites  to evaluate 

the temperature, displacements and thermal / 

mechanical stresses in a functionally graded circular 

hollow cylinder. Duncan et al. [10] recently determined 

the effect of cross hole on the elastic response by 

considering the shakedown and ratcheting behavior of a 

plain thin & thick walled cylinder with radial cross hole 

subjected to constant internal pressure and cyclic 

thermal loading.  

Kandil  12  presented a stress analysis of shrink-

fitted compound cylinders subjected to cyclic internal 

pressure and temperature and carried out a complete 

evaluation of the time-dependent mechanical and 

thermal stresses distributions across the wall thickness 

of duplex cylinder using a numerical model on the basis 

of the forward finite difference technique. Heckman 

[13] sat out to explore applicable methods using finite 

element analysis in pressure vessel analysis. He studied 

pressure vessels, especially in determining stresses in 

local areas such as penetrations, O-ring grooves and 

other areas difficult to analyze by hand. Yang et al. [14] 

carried down shakedown the residual stress analysis of 

an autofrettaged compound cylinder is designed using a 

Mat lab graphical user interface (GUI) and program 

design technique. Ayob et al. [15] calculated the effect 

of autofrettage on thick-walled cylinders under high 

internal pressure. Verijenko et al. [16] determined stress 

analysis of mult ilayered pressure vessels under internal, 

external and inter laminar pressures.   

The main aim of this paper is to investigate and 

determine the stress analysis through the wall of 

cylindrical pressure vessels subjected to different loads. 

These loads are formulated as follow: 

 Constant pressure (internal and /or external 

pressure). 

 Internal temperature. 

 Internal pressure and temperature. 

 Variable pressure. 

 Variable pressure and constant temperature. 

Hoop, radial, axial and equivalent stress distribution 

for monoblock and compound cylindrical pressure 

vessels have been evaluated by theoretical analysis and 

fin ite element analysis.  A comparison between the 

analytical and numerical solutions is carried out. 

2. THEORITICAL ANALYSIS 

2.1 Thick Walled Cylinder Under Pressure  
Figure 2.1 shows a cross section of a thick walled 

cylinder subjected to internal and external 

pressure  Pi , Po
 . The hoop, radial and longitudinal 

stresses across the cylinder wall can be determined by 

the following equations  1, 2 : 

 
 

 

 

 

 σh =
1

ro
2 −ri

2  ri
2Pi − ro

2Po +  
ri ro

r
 

2
 Pi − Po

             2.1 

 σr =
1

ro
2 − ri

2
 ri

2Pi − ro
2Po −  

ri ro

r
 

2

 Pi − Po
           2.2 

A longitudinal stress for closed ended cylinder, 

σz =
Pi ri

2 − Po ro
2

ro
2 − ri

2                                                             2.3  

A longitudinal stress for open ended cylinder 

σz = 0                                                                                  2.4  

The equivalent stresses  σv
  are obtained by Mieses 

theory, 

σV =  σh
2 + σr

2 + σz
2 − σh σr − σh σz − σrσz

 0.5       2.5   

2.2 Thick Walled Cylinder under Temperature 

In the present analysis the temperature is considered 

to be symmetrical about the axis of the cylinder and 

independent on the axial coordinate. The cylinder is 

assumed with free ends such that the axial displacement 

is zero. The linear and logarithmic temperature 

distributions are usually calculated by  3, 4 : 

T = Ti  
ro − r

r0 − ri

                                                                  2.6 

T = Ti

Ln  ro
r   

Ln  ro
ri  

  
                                                             2.7  

The stress components due to temperature difference 

between inner and outer surface of thick cylinder are 

given by  1 : 

σh =
 H

2lnK
 1 − ln

ro

r
−

1

K2 − 1
 1 +

ro
2

r2
 lnK         2.8 

Fig. 2.1: Thick walled cylinder under 

pressure 
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σr =
 H

2lnK
 −ln

ro

r
−

1

K2 − 1
 1 −

ro
2

r2
 lnK              2.9 

σz =
 H

2lnK
 1 − 2ln

ro

r
−

2

K2 − 1
lnK                       2.10 

2.3 Thick Walled Cylinder under Internal 

Pressure And Temperature Difference 

The stress distributions for closed ended cylinder 

subjected to internal pressure  Pi
   and temperature 

deference  ∆T  can be obtained by superposition the 

stress components in Eqs. 2.1 to 2.3 with the 

corresponding Eqs. 2.8 to 2.10  5: 7 : 

σh =  
Pi

 K2 − 1 
 1 +

ro
2

r2
  

+  
H

2 ln K
 1 − ln

ro

r

−
1

K2 − 1
 1 +

ro
2

r2
 lnK               2.11 

σr

=  
Pi

 K2 − 1 
 1 −

ro
2

r2
  

+

 
 
 
 

H

2 ln K
 

 
−ln

ro

r

−
1

K2 − 1
 1 −

ro
2

r2
 lnK

 

 

 
 
 
 

                   2.12 

σz  =  
Pi

K2 − 1
 +  

            
 H

2 lnK
 1 − 2ln

ro

r
−

2

K2 − 1
lnK               2.13 

2.4 Compound Cylinder under Internal 

Pressure  
The stress analysis of the mult ilayer walled cylinder 

shown in Fig. 2.2 is somewhat different from the thick 

walled cylinder. This may be attributed to the effect of 

the shrink-fit pressure. Thus the resulting stresses in 

overlapping stress due to internal and contact pressure 

are given by  8 : 

 

 

 

 

For inner cylinder  

σh =  
−PC K i

2

K i
2 − 1

 1 +
ri

2

r2
  +  

Pi

 K2 − 1 
 1 +

ro
2

r2
   2.14 

σr =  
−PC K i

2

K i
2 − 1

 1 −
ri

2

r2
  +  

Pi

 K2 − 1 
 1 −

ro
2

r2
  2.15 

The longitudinal stress for closed ended cylinder 

σz =  
Pi

K2 − 1
                                                                2.16 

For outer cylinder 

σh =  
PC

Ko
2 − 1

 1 +
ro

2

r2
  +  

Pi

 K2 − 1 
 1 +

ro
2

r2
   2.17 

σr =  
PC

Ko
2 − 1

 1 −
ro

2

r2
  +  

Pi

 K2 − 1 
 1 −

ro
2

r2
   2.18 

the longitudinal stress for closed ended cylinder 

  σz =
Pi

K2 − 1
                                                                2.19 

Longitudinal stress for free ended compound cylinder 

is equal to zero. 

2.5 Compound Cylinder under Temperature 

Difference  

For compound cylinder with free ends and subjected 

to internal temperature the resulting stress due to 

contact pressure  Pc
  and temperature deference  ∆T  is 

described by  8, 9 : 

for inner cylinder  

σh =  
−PC K i

2

K i
2 − 1

 1 +
ri

2

r2
  + 

         
H

2 ln K
 1 − ln

ro

r

−
1

K2 − 1
 1 +

ro
2

r2
 lnK         2.20 

σr =  
−PC K i

2

K i
2 − 1

 1 −
ri

2

r2
  

+           
H

2 ln K
 −ln

ro

r

−
1

K2 − 1
 1 −

ro
2

r2
 lnK               2.21 

For outer cylinder  

σh =  
PC

Ko
2 − 1

 1 +
ro

2

r2
  + 

           
H

2 ln K
 1 − ln

ro

r
−

1

K2 − 1
 1 +

ro
2

r2
 lnK  2.22 

 

 
Fig. 2.2: Compound cylinder under 

pressure 
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σr =  
PC

Ko
2 − 1

 1 −
ro

2

r2
   

+  
H

2 ln K
 −ln

ro

r

−
1

K2 − 1
 1 −

ro
2

r2
 lnK   2.23 

A longitudinal stress for closed ended compound 

cylinder subjected to internal temperature can be 

calculated by: 

σz  =
 H

2 lnK
 1 − 2ln

ro

r
−

2

K2 − 1
lnK                      2.24 

2.6 Compound Cylinder under Pressure and 

Temperature Difference 
For compound cylinder subjected to internal 

temperature and internal pressure the stress components 

are expressed as follows   10, 11 : 

 

For inner cylinder  

σh =  
−PC K i

2

K i
2 − 1

 1 +
ri

2

r2
  +  

Pi

 K2 − 1 
 1 +

ro
2

r2
  + 

        
H

2 ln K
 1 − ln

ro

r
−

1

K2 − 1
 1 +

ro
2

r2
 lnK  2.25 

 

σr =  
−PC K i

2

K i
2 − 1

 1 −
ri

2

r2
  +  

Pi

 K2 − 1 
 1 −

ro
2

r2
  + 

  
H

2 ln K
 −ln

ro

r
−

1

K2 − 1
 1 −

ro
2

r2
 lnK   2.26  

For outer cylinder  

σh =  
PC

Ko
2 − 1

 1 +
ro

2

r2
  +  

Pi

 K2 − 1 
 1 +

ro
2

r2
  + 

    
H

2 ln K
 1 − ln

ro

r
−

1

K2 − 1
 1 +

ro
2

r2
 lnK           2.27 

 

σr =  
PC

Ko
2 − 1

 1 −
ro

2

r2
  +  

Pi

 K2 − 1 
 1 −

ro
2

r2
  + 

          
H

2 ln K
 −ln

ro

r
−

1

K2 − 1
 1 −

ro
2

r2
 lnK     2.28 

 

A longitudinal stress for compound cylinder with free 

ends and subjected to internal pressure and temperature 

can be calculated according to Eq. 2.24. 

2.7 Thick Walled Cylinder under Variable 

Pressure  

Internal variable pressure, which affects on the inner 

surface of thick wall cylinder, is fluctuated between two 

values Pmax  and Pmin . The resulting of hoop, rad ial, 

axial and equivalent stresses can be determined 

similarly as calculated in thick walled cylinder under 

constant internal p ressure by replacement Pi  in Eqs. 2.1: 

2.3 with  P ri ,t   which determined as follow   6, 10 : 

 

P ri ,t = Pm + Pa sin 2π𝑓t                                            2.29 

 

The mean and amplitude of hoop, radial and axial 

stress components are calculated by: 

σm =
σmax + σmin

2
                                                  2.30 − a 

σa =
σmax − σmin

2
                                                  2.30 − b 

2.8 Thick Walled Cylinder under Variable 
Pressure and Constant Temperature Difference 

In this case the tangential, radial and axial stress for 

thick walled cylinders with closed ended can be 

determined as Eqs. 2.11 to 2.13. The resulting stresses 

are calculated by superposition of stress due to internal 

variable pressure  P ri ,t   and the stress due to the 

applied temperature difference  ∆T  4: 6 . 

2.9 Compound Cylinders under Variable 

Pressure 
For compound cylinders subjected to internal variable 

pressure  the resulting stresses can be determine by 

superposition of stresses due to shrinkage fit  Pc
  and 

the stresses due to the internal variable 

pressure  P ri ,t   as calculated in Eqns. 2.14 : 2.19 by 

replacement the constant pressure  Pi
  with variable 

pressure   P ri ,t    8, 12 . 

2.10 Compound Cylinder under Internal 
Variable Pressure and Constant Temperature  

For free ended compound cylinders subjected to 

internal variab le pressure and constant temperature the 

stress components for inner and outer cylinders  can be 

determined similarly as calculated for compound 

cylinder under constant internal pressure and 

temperature by replacement constant pressure Pi  with 

internal variable p ressure  P ri ,t  . The resulting stresses 

are calculated by superposition of stresses distribution 

due to Pc ,  P ri ,t  and ∆T  12 .  

The longitudinal stress σz  for closed ended compound 

cylinder is obtained by Eq. 2.24.  

3. FINITE ELEMENT ANALYSIS 
Fin ite element analysis   FEA  is a numerical method 

of constructing a complex system into very small p ieces 

called elements. The software implements equations 

that govern the behavior of these elements and solves 

them all creat ing a comprehensive explanation of how 

the system acts as a whole. These results can be 

presented in tabulated or graphical forms. This type of 

analysis is typically used for the design and 

optimization of systems which complex to analyze by 

hand  13, 14 .  
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Basic steps in finite element method:  
Like solving any problem analyt ically, we need to 

define (1) the solution domain, (2) the physical model, 

(3) boundary conditions and (4) the physical properties. 

Then we solve the problem and present the results. In 

numerical methods the main d ifference is an ext ra step 

called mesh generation. This step divides the complex 

model into small elements that become solvable in an 

otherwise too complex situation. The procedures that 

have to be carried out are: 

 

Building Geometry: Constructing of three-dimensional 

representation of the object to be modeled and tested 

using the work plane coordinates system within 

ANSYS. 

 

Defining of Material Properties: Now that the part 

exists, define a library o f the necessary materials that 

compose the object (or project) being modeled. This 

includes thermal and mechanical properties  of listed 

materials. 

 

Applying Loads: Once the system is fully designed the 

last task is to burden the system with constraints, such 

as physical loadings or boundary conditions . 

Generating Mesh: At this point ANSYS understands 

the makeup of the parts which defines how the modeled 

system should be broken down into finite p ieces. 

 

Reading the Solution: This is the difficu lt step, 

because ANSYS needs understanding within, what state 

(steady state, transient), the problem must be solved. 

 

Presentation of the Results: After the solution has 

been obtained, there are many ways to present ANSYS’ 

results such as tables, graphs, or contour plots. 

3.1 Finite Element Individualize of a Model 
In the fin ite element method, the structure of interest 

is sub-divided into discrete shapes called elements as 

shown in Fig. 3.1. The most common element types 

include one dimensional beam, two dimensional 

elements, or three dimensional bricks or tetrahedrons. 

 

 

        1D                             2D                        3D  
 

Fig. 3.1: Common element types used in ANS YS 
simulation.  

Types of Elements: 

Shell Element: 

Structures composed of thin walls can be modeled 

using shell elements. Shell elements are treated as two 

dimensional, with a thickness for the element entered, 

but not shown on the model. Testing included linear 

elements (SHELL63) and quadratic elements 

(SHELL91). The linear elements have four nodes, one 

node at each corner of the element (Fig.3.2-a). The 

quadratic shell has a node midway between corner 

nodes adding up to eight nodes per element (Fig.3.2-b). 

Solid Elements  

The eight node brick (SOLID45) element was used 

for comparison with other elements. In the eight node 

brick there is a node at each corner of the brick 

(Fig.3.2-c). 

Contact Elements  

A point to point (CONTAC52) element joins two 

nodes. If contact between two nodes is expected then a 

contact element is created between the nodes. This 

element, when set properly, will enable the nodes to 

touch but prevent them from passing each other. 

 
 

 

 
 

 

Fig. 3.2: Types of elements. 

3.2 Types of Analyses 

Structural analysis  will be either linear or non-linear 

analysis. 

 Linear analysis assumed that the cylindrical 

pressure vessels  Monoblock and  compound  are 

subjected to constant internal pressure and /or 

temperature. 

 Non-linear analysis depend on internal pressure 

variable between two values Pmax  and  Pmin .  

Heat Transfer analysis  shows the conductivity or 

thermal properties of the model. This may be either 

steady state or transient transfer 

 Steady state transfer refers  to constant temperature 

affect on the inner and the outer surface of the 

cylinder. 

 

 Non-linear will usually involve time, rad iation, 

and/or changing thermal properties in the 

material or through convection. 

3.3 Geometrical Modeling 

For the pressure vessels generally there are three 

ways to run the model: three dimensional, symmetric 

and ax-symmetric as shown in Fig. 3.3. 

Three Dimensional Models 

This model is the complete pressure vessel model. 

One end is pinned along the edge in the Z direction. 

One node is also pinned in the X and another in the Y 

direction. 

Symmetric Model  

The symmetric model only models half of the 

pressure vessel. Symmetric boundary conditions are 

applied along the edges. One end is pinned along the 

symmetry edge. One node is pinned in the X direction. 

The model is pinned in the Y direction due to the 

 (a) (b) (c) 
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symmetry of the model. Symmetric models offered an 

impressive improvement in run time.  

Axi-symmetric Model  

The Axi-symmetric model takes a two-dimensional 

cut to model the pressure vessel since it is symmetrical 

about the Z-axis. Symmetry boundary conditions are 

applied along the end caps. One node is pinned in the Y 

direction to prevent the model from being under 

constrained.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

Fig. 3.3: Ways to run the model. 

3.4 Finite element analysis of pressure vessel 

Thick walled cylindrical pressure vessel under 

steady load 

The finite element analysis for thick walled 

cylindrical pressure vessel is developed in plan-strain 

condition by taking advantage of three dimensions. The 

geometry and finite element model of the cylinder with 

free ends is shown in Fig. 3.4. The model is subjected 

to steady load. This load is usually high pressure and / 

or internal temperature. The pressure may be internally 
 Pi

  or externally  Po
   13 . 

 

 

 

 

 

 

 

 

Thick walled cylinder under pressure  

Figure 3.5 illustrates the finite element analysis using 

ANSYS software to study the effect of internal constant 

pressure for thick walled cylinder, Figure 3.5-a defines 

the type of material, the type and place of loading. In 

this case type of loading is internal pressure   Pi
  affects 

on inner surface of cylinder. Figure 3.5-b presents the 

meshing process for the model. To generate this process 

it must be define the type of meshing and the size of 

element, In Fig.3.5-c illustrates the division of the 

cylinder into small parts to study the effect of internal 

pressure. Figure 3.5-d solves the models by using 

equivalent von Mises to clarify the effect of internal 

pressure. 

 

In the previous passage we exp lained the use of FEA 

for the pressure vessel under the effect of constant 

pressure. Similarly ANSYS software is used to know 

FEA the resulting stress analysis for monoblock and 

compound cylindrical pressure vessel subjected to 

different conditions of constant and /or cycling pressure 

and constant temperature. 

4. RESULTS AND COMPARISON 
A complete evaluation of stress analysis for 

cylindrical pressure vessels are obtained by solving the 

proposed mathemat ical model analytically as well as 

numerically employing the forward fin ite element 

technique as given the previous sections. The 

mathematical model contains several working 

parameters. They are constant and cyclic pressure, as 

well as temperature. In this paper the previous 

parameters on thick walled and compound cylindrical 

pressure vessels are studied. The effect of shrink-fit 

pressure is introduced. Also the optimum location of the 

interference surface is obtained according the working 

conditions.  

4.1 Steady Loads 
Figure 4.1 shows the stress distribution of normalized 

hoop, radial, axial and equivalent stresses for thick 

walled open ended cylinder with diameter ratio 

K = 1.5 and subjected only to internal pressure. 

 

Fig.3.4: Model of thick walled cylinder. 

  (a) Three Dimensional  (b) Symmetric     

(c) Axi-symmetric 

(a) (b) 

 (c)  (d) 

Fig. 3.5: Thick walled cylinder under internal pressure . 
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Fig. 4.1: Stresses distribution on monoblock cylinder 

due to constant internal pressure. 

 

Figure 4.2 illustrates the thermal stresses distribution 

through the wall thickness of monoblock cylinder with 

diameter ratio K = 1.5 under the effect of internal 

temperature. 

Fig. 4.2: Stresses distribution on monoblock cylinder 

due to constant internal temperature. 

 

The normalized hoop, rad ial, axial and equivalent 

stresses distribution due to both constant internal 

pressure and temperature for a diameter rat io K = 1.5 

and  H
Pi

 = 5   are illustrated in Fig. 4.3. 

 
Fig. 4.3: Stresses distribution on monoblock due to 

constant internal pressure and temperature . 

 

The compound cylindrical pressure vessels are used 

to obtain more  uniform tangential stress distribution 

over the wall thickness.  Figure 4.4 presents stresses 

distribution for compound cylindrical pressure vessel 

under the effect of internal constant pressure with 

 K = 1.5 ,  K i = 1.25 and  
Pc

P i
= 0.1 . 

 

 
Fig. 4.4: Stresses distribution for compound cylinder 

due to constant internal pressure. 

 

Figure 4.5 illustrates the resulting stresses for the 

same compound cylindrical pressure vessel subjected 

only to internal temperature with  
Pc

H
= 0.1 . 

 

Fig. 4.5: Stresses distribution for compound cylinder 

due to constant internal temperature. 

 

The stresses distribution on open ended compound 

cylinder with  K = 1.5, K i = 1.25  under the effect of 

steady loads of pressure and temperature are plotted in 

Fig. 4.6. 

4.2 Cyclic Loading  
Hoop, radial, and equivalent stresses for open ended 

monoblock cylinder  K = 1.5  subjected to cyclic 

pressure  Pa Pm
 = 0.5  are plotted in Fig. 4.7 against 

the time    t = 𝑓t   for different normalized radius  R . 
Figure 4.8 presents the tangential, radial, axial and 

equivalent stresses for thick walled  cylinder with free 

ends and diameter ratio   K = 1.5 . The cylinder is 

subjected to cyclic pressure with  Pa Pm
 = 0.5  and 

constant temperature H Pm
 = 5.  
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Fig. 4.6: Stresses distribution for compound cylinder 

due to constant internal pressure and temperature  

 

 
(a) Normalized hoop stress distribution. 

 
 𝐛  Normalized radial stress distribution 

 
 𝐜  Normalized equivalent stress distribution  

Fig. 4.7: Stresses distribution on monoblock cylinder 

due to internal cyclic pressure. 

 

 

 
 𝐚  Normalized hoop stress distribution 

 

 
 𝐛  Normalized radial stress distribution 
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(c)Normalized axial stress distribution 

 
(d)Normalized equivalent stress distribution 

 

Fig. 4.8: Stress distribution on monoblock cylinder 

due to internal cyclic pressure and constant 

temperature. 

 

The resulting stresses for open ended compound 

cylinder with  K = 1.5, K i = 1.25  subjected to 

shrinkage pressure of  Pc Pm
 = 0.1   and cyclic internal 

pressure of Pa Pm
 = 0.5 are p lotted in Fig. 4.9 against 

the normalized time t = 𝑓t at different passion of  R .  
 

 

 

 

 a  Normalized hoop stress distribution 

 b  Normalized radial stress distribution 

 
 𝐜  Normalized equivalent stress distribution 

Fig. 4.9: Stress distribution for compound cylinder due to 

internal cyclic pressure 

Figure 4.10 illustrates the resulting stresses for 

compound cylinder with  K = 1.5, K i = 1.25   under 

the effect of shrinkage pressure Pc Pm
 = 0.1, cyclic 

internal pressure  Pa Pm
 = 0.5, and constant 

temperature of   H Pm
 = 5. Also the stresses are plotted 

against the normalized time  t ̅=f t at different positions 
 R .  

 a  Normalized hoop stress distribution.
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 (b) Normalized radial stress distribution 

 

 𝐜  Normalized axial stress distributio 

 

 𝐝  Normalized equivalent stress  distribution 

Fig. 4.10: Stress distribution for compound cylinder 

due to internal cyclic pressure and constant 

temperature. 

5. CONCLUSIONS 
In this paper theoretical analysis was carried out for 

monoblock and compound cylindrical pressure vessels 

subjected to steady and dynamic loads. Mathematical 

models have been developed and solved by using the 

program package ANSYS as a numerical fin ite element 

method. The prior analysis of hoop, radial, longitudinal, 

and equivalent stresses for cylinder subjected to 

different loads and working conditions were evaluated 

theoretically and numerically. The comparison between 

the two methods of analysis was presented in graphical 

forms. 

From the present study it can be founded that finite 

element analysis is an extremely powerful tool for 

pressure vessel analysis when used correctly. Tested 

models were run and it is found a good agreement with 

analytical analysis and run in a relat ively short time.  

Therefore we recommend using finite element 

method for stress analysis of cylindrical pressure vessel 

under different loads and conditions. 
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