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ABSTRACT
Gene mutation may occur either in the parasite or in the host, which may be beneficial or harmful for each. As we 
previously discussed,  part I covered causes and types of gene mutations as well as their relation(s) to or effect(s) on 
parasitic diseases; part II deals with parasite gene mutations. The most apparent manifestation is drug resistance especially 
with anti-malarial drugs for falciparum malaria. The majority of P. falciparum isolates are able to undergo gene mutations 
in genes encoding enzymes that control drug uptake. Parasite gene mutations are suggested to influence parasite virulence 
in toxoplasmosis and malignant malaria, and to have impact on the occurrence of malignancy in schistosomiasis and 
clonorchiasis. It is intended in the present review to present mechanism(s) of drug resistance due to parasite gene mutations, 
with special emphasis on anti-malarial drugs, albendazole, metronidazole, and other drugs used in treatment of African 
trypanosomiasis and toxoplasmosis. The review also presents other effects of parasite gene mutations on disease outcome 
and progress as well as occurrence of false diagnosis in falciparum malaria using ICTs utelizing histidine rich protein.

1. Drug resistance: Drug resistance is one of the main 
obstacles in eradication of endemic parasitic diseases 
including malaria, schistosomiasis, visceral leishmaniasis, 
lymphatic filariasis, onchocercosis and African as well 
as American trypanosomiasis (Chagas’ disease). By 
definition, it is "the ability of a parasite strain to survive 
and/or multiply despite the administration and absorption 
of a drug in doses equal to or higher than those usually 
recommended but within the limits of the subject 
tolerance"[1]. Therefore, it is attributed to inability of the 
resistant strains to uptake the drug due to mutations in 
the parasite genes encoding the enzymes responsible for 
the uptake. A classification system into sensitive (S) and 
three degrees of resistance (RI, RII, RIII) was introduced 
to monitor results of in vivo drug resistance test, based on 
the parasitologic response[1].    

1.1. Anti-malarial drugs: P. falciparum is a complex 
parasite with high plasticity in its genome. To survive, it 
is able to 1) delete certain portions of its genes that are 
unessential for its growth; 2) evade immune response by 
antigenic variations; and 3) undergo gene mutations in 
enzymes controlling drug uptake[2]. As a consequence of 
the strong selection force of anti-malarial drugs, resistance 
point mutations have spread through malaria parasite 
populations over the last 25 years[3]. The dynamics of 

strong selection for parasite gene mutations and the 
obtained data indicated that the selection pressure on 
the drug-linked genes increased the spread of mutant 
P. falciparum isolates in the endemic areas.  Frequent 
population-based studies were strongly recommended to 
evaluate the efficacy of anti-malarial drugs[4]. To identify 
gene mutations responsible for drug resistance in a 
locality, the following were recommended: 1) mapping 
a genetic data base for the known gene mutations; 2) 
identification of the putative drug-resistance loci in 
each gene; and 3) identification of the genetic basis 
(if present) to all novel drugs before clinical use[5]. In a 
meta-analysis study, 220 clinical, pharmacological, in 
vitro and molecular studies were analyzed. The reviewers 
claimed that these studies missed the limitations in 
standardization regarding different geographic locations 
and different methods for gene mutations detection. So, 
the worldwide anti-malarial resistance network (WWARN) 
designed a centralized resistance data network for these 
types of studies to present valuable resources to the 
health authorities for development of action plans that 
identify and combat anti-malarial drug resistance in their                                                                                                                 
locality[6]. Another review article summarized mechanism(s) 
and genetic markers of chloroquine (CQ) resistance and 
their distribution frequencies in all endemic African, Asian 
and South American countries, with special emphasis in 
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India[7]. Several benefits materialized from investigating the 
genetic markers of drug resistance that frequently occurred 
in malaria chemotherapy. First, mapping the genetic 
epidemiological data for drug resistance gives a mirror 
image of parasite migration patterns of drug resistance[8]. 
In other words, leakage of parasite anti-malarial drug 
resistance from country to another should be considered and 
neighbor countries should implement regional rather than 
national policies to prevent genetic drug resistance spread 
between them[9]. Secondly, a baseline record is built before 
changing national drug therapy in an endemic locality. In 
this context, a study conducted in Pakistan revealed the 
presence of high CQ resistance, with absence of Fansidar 
(FAN) resistance[10]. Thirdly, investigating genetic markers 
provides the proficiency to describe drug status in a malaria-
endemic area. For example, a study conducted in Senegal 
investigating the prevalence of different genetic markers 
in P. falciparum isolates, concluded that there was: 1) a 
decreased level of CQ resistance; 2) an increased level of 
pyrimethamine (PYR) resistance; 3) a moderate resistance 
to amodiaquine; and 4) no resistance to FAN[11]. A study 
involving P. vivax isolates from China, also concluded 
relative susceptibility to CQ and FAN therapy[12]. Similarly, 
frequency distributions of the genetic markers linked 
to anti-malarial drug resistance in Haiti revealed normal 
CQ sensitivity[13]. Fourthly, the investigations showed 
that high prevalence of mutations in imported isolates 
indicated rapid development and spread of resistance 
against common anti-malarial drugs used nationally[14-16]. 
Lastly, several studies were conducted all over the world 
to investigate the efficacy of anti-malaria drugs and to 
regularly monitor their use. Mutations detected in certain 
P. falciparum genes were considered good predictors of 
potential FAN treatment failure in several countries[17- 21]. 
In contrast, absence of mutations suggested use of FAN as 
first choice treatment in other areas[22,23]. Similarly, other 
investigators suggested that use of amodiaquine was no 
longer effective in Tanzania[24] while combined atovaquone 
and proguanil therapy was efficient in Thailand[25].  In 
addition, it was recommended that both CQ and FAN 
should not be used in the near future in China[26], and CQ 
was not effective in Malaysia[27].Continuous investigation 
of P. vivax and P. falciparum molecular markers to monitor 
development of FAN resistance in Afghanistan isolates 
was recommended[28]. On the other hand, when CQ was 
replaced by artemisinin (ART) derivatives - combined 
therapy in treatment of uncomplicated falciparum malaria, 
the investigators detected known mutations frequently 
linked to anti-malaria drugs when combined with ART. 
Based on the obtained data, it was recommended to 
frequently monitor ART and the anti-malarial drugs in 
Zanzibar[29], China[30], Cameroon[31], India[32], Equatorial 
Guinea[33], Tanzania[34], Thailand[35], and Central African 
Republic[36]. In Yemen, which is a highly endemic area of 
falciparum malaria with high diversity, the investigators 
suggested that ART-combined therapy with FAN should be 
the first choice of malaria treatment[37]. Data obtained from 

two studies conducted in Equatorial Guinea showed high 
CQ resistance, and suggested use of ART-FAN combined 
therapy[38] or lumefantrine and mefloquine[39] as alternative 
drugs.

•Dihydrofolate reductase (dhfr) and 
dihydropteroate synthase (dhps) genes: Mutations 
in the dhfr and dhps genes of P. falciparum parasites 
have been associated with decreased parasite sensitivity 
to the anti-folate drugs. Pyrimethamine and the 
biguanides bind to and inhibit the bifunctional enzyme 
dihydrofolate reductase (DHFR)[40], and the sulfonamides 
and sulfones inhibit the enzyme dihydropteroate synthase                                    
(DHPS)[41]. On investigating the association between anti-
folate (sulphadoxine) resistance and mutation of dhps gene 
in P. falciparum isolates from India in vitro, 5 mutations 
at codons 436, 437, 540, 581 and 613 were detected. The 
investigators detected quadruple mutant alleles in 36.7% of 
their isolates, and ~ 97% of them were highly sulphadoxine 
resistant[42]. 

On the other hand, P. falciparum isolates with mutation 
(serine→asparagine) at position 108 in dhfr gene are 
resistant to PYR, while those with serine→threonine 
at the same codon associated with an alanine→valine 
substitution at position 16, are resistant to cycloguanil (the 
active metabolite of proguanil). In isolates resistant to both 
drugs, an additional dhfr gene mutation (alanine→valine) 
at codon 164 is present[43]. Since then, several articles 
were published to estimate frequency distribution of 
gene mutation responsible for PYR resistance in several 
countries; Brazil[44], New Guinea[45], Tanzania[46], and for 
proguanil resistance in 3 African countries (Niger, Senegal 
and Kenya)[47]. Resistance to both drugs was reported 
in Cameroonian isolates where the investigators found             
dhfr 108 point mutation in 14 out of 15 isolates resistant 
to both drugs[48]. In addition, another 2 mutations in dhfr 
gene were found in P. falciparum strains isolated from 
Thailand with PYR resistance[49]. However, low level of 
PYR resistance was suggested in Haiti due to the presence 
of mutation in pfdhfr gene at codon 108 and the absence of 
other codons (51, 59 and 164) with no mutations in dhps 
gene[50]. In contrast, all dhfr mutations were rarely detected 
in P. falciparum strains from 5 countries in Africa (Kenya, 
Tanzania, Malawi, Gabon, and Nigeria) where PYR was 
intensively used[51].

Since the anti-malarial drug resistance for 
monotherapy has emerged, sulfadoxine is always provided 
in combination with PYR, known as SP (sulfadoxine-
pyrimethamine combined therapy) or FAN (fansidar). In 
Pakistan, a single gene mutation (C59R) at codon 16 in 
dhfr gene was reported as the first field sample of a mutant 
dhfr allele where the 108 codon is unchanged[52]. One year 
later, Camerionian investigators found three dhfr gene 
point mutations at codons 51, 59 and 108 and assigned 
them as reliable genetic markers to predict FAN resistance 
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in Africa[53]. Since then, several studies were conducted 
for genetic mutations in FAN resistance. Simultaneous 
presence of mutations at 51 and 108 in dhfr gene and                                
at 437 and 581 in dhps gene were associated with high 
FAN resistance in Uganda[54] and Venezuela[55]. It was 
concluded from several studies that triple dhfr gene 
mutations at codons 51, 59 and 108 with double dhps 
gene mutations were associated with mild and moderate 
FAN resistance in Kenya[56], Cameroon[57], Nigeria[58], 
Ethiopia[59], Ghana [60], Sri Lanka[61] and Tanzania[62]. In one 
of these studies, the investigators claimed that the degree 
of association between gene mutation and drug resistance 
might vary regionally in the same country[60]. However, in 
a retrospective study conducted on Kenyan P. falciparum 
isolates from 2008 to 2012, the investigators concluded 
that triple dhfr gene mutations with or without double dhps 
gene mutations were associated with FAN resistance[63].

In Uganda, investigation of FAN resistance alone or 
in combination revealed that mutation in codon 540 of 
dhps gene is responsible for FAN resistance only, while 
the mutation in codon 59 of dhfr mediated resistance to 
the drug whether alone or in combination[64]. P. falciparum 
strains isolated from patients from Burkina Faso showed 
that mutations at codons 108 or 59 in dhfr gene would 
predict disease recrudescence after FAN treatment[65]. In 
other studies conducted in several African countries, the 
investigators suggested that the presence of triple mutations 
in both genes are genetic markers for FAN failure in 
pregnant women[66-68]. In Iran, mutations at codons 108                                                                                                       
and 59 (dhfr) and 436 (dhps) were the commonest 
mutations associated with FAN resistance[69]. In the same 
country and after three years of FAN treatment against 
falciparum malaria, high frequency of double mutations 
at codons 59 and 108 of pfdhfr and single mutation at 
codon 437 of pfdhps genes was detected in ~96% of the 
examined isolates. The investigators claimed that the 
parasite would potentially develop quintuple mutations, 
and advised the health authorities to monitor FAN clinical 
resistance at regular intervals[70]. In India, triple mutations 
in dhfr gene (codons 51, 59 and 108) and dhps genes (436, 
437 and 540) were associated with PYR and sulphadoxine 
resistance, respectively; while ~94% of the isolates with 
triple mutations in both genes were associated with high 
grade of FAN failure[71]. A novel mutation of isoleucine in 
dhfr gene (codon 108) was also recorded in India for in 
vitro resistance of P. falciparum isolates to FAN treatment. 
The investigators found double isoleucine mutations 
at codons 108 and 51 in more than three quarters of the 
resistant isolates. Together with the double mutations, 
one of 4 mutations in dhps gene was detected at codons 
436 or 437 or 581 or 613[72]. Due to the high frequency 
of mutations and the appearance of novel mutations 
in dhfr and dhps genes, the investigators asked health 
authorities to stop FAN therapy in treatment of falciparum 
malaria in Malaysia[73], Burkina Faso[74] and Tanzania[75]. 
Moreover, two novel mutations of dhps gene at codons 540                    

and 588 were associated with FAN resistant P. falciparum 
isolates from Indonesia[76]. However, it was suggested 
that resistance to FAN does not occurr in the presence of 
mutation in pfdhfr gene at codon 108 and the absence of 
other codons (51, 59 and 164), with no mutations in dhps 
gene[50]. With ART-FAN combined therapy and shortly after 
its adoption in Afghanistan, the majority of P. falciparum 
isolates developed double mutation in dhfr gene at codons 
59 and 108, while the minority developed triple mutations 
in dhps gene at codons 437, 540 and 581. The investigators 
claimed that all these mutations were previously linked to 
FAN  resistance[77].

For P. vivax, three mutations at codons 57, 58, and 
117 in dhfr gene were associated with high levels of FAN 
resistance in several strains isolated from widely separated 
countries from Asia and Africa[78]. The occurrence of three 
mutations at the same codons, but in dhps gene, in some 
P. vivax isolates suggested their association with increased 
resistance to sulfadoxine treatment[79], while increased 
frequency of mutations in both dhfr and dhps genes was 
associated with selection imposed by FAN therapy[80]. In 
contrast, frequency distribution of mutations of pvdhfr and 
pvdhps genes didn’t exceed 50% in the studied isolates from 
China, a result suggesting relative susceptibility to FAN 
treatment[81]; while prevalence of these gene mutations for 
FAN  resistance was low in Eastern and Central Sudan[82]. 
On the other hand, mutations at codons 58, 61 and 117 of 
pvdhfr gene were detected in PYR resistant isolates from 
China, and the most prevalent mutant allele was double 
mutations at 58 and 117[83]. A point mutation at codon 382 
of pvdhps gene was detected associated with CQ resistance, 
but the investigators recommended further studies to 
confirm this association in larger samples from Brazil[84].

•Multi-drug resistance (mdr) gene: It is also known as 
P-glycoprotein homolog 1 gene. There is much controversy 
regarding the point mutation (tyrosine→phenylalanine) at 
codon 86 in mdr gene of P. falciparum isolates and its link 
to CQ, mefloquine and halofantrine resistance in vitro. 
Some studies attributed this mutation to all mentioned 
drugs[85,86] and they considered it as a useful genetic marker 
to predict drug resistance levels if influenced by the history 
of drug selection of each population[87-89]. Moreover, double 
pfmdr1 mutation at codons 86 and 1246 was associated 
with the early CQ treatment failure in vivo[90]. In contrast, 
others were in incomplete agreement, and suggested that 
other genetic factors with mdr point mutation might be 
involved in CQ or mefloquine resistance in Africa[91,92], 
and Asia[93- 95]. Also, no association was observed between 
pfmdr1 mutations and resistance to quinine, mefloquine 
and ART in Brazil[96]. However, a strong association was 
detected between mdr 86 mutation and increased sensitivity 
to mefloquine and halofantrine in Gambia[97]. For P. vivax, 
gene mutation at pvmdr1 gene was found inappropriate to 
monitor CQ resistance in Madagascar[98]. Furthermore, in 
spite of presence of mutation (codon 1076) in pvmdr1 gene 
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in the majority of isolates investigated in vivo and in vitro 
drug studies, still all the Indian isolates were susceptible 
to CQ[99].

•Chloroquine resistance transporter (crt gene): 
Several studies showed that mutation at codon 76 in                                                                                                                    
P. falciparum CQ resistance transporter (pfcrt) gene 
encoding digestive-vacuole transmembrane proteins 
was linked with CQ resistance in Africa[100-102], and                                                    
Asia[103-107]. However, discrepancy between resistant                                                                                                     
P. falciparum strains (14%) and the frequency of the mutant 
crt at codon 76 (92%), suggested that other factors might 
be involved in CQ resistance in Tanzania[108]. In a study 
conducted in Afghanistan, high prevalence of amodiaquine 
resistance in vivo was associated with mutation in                                                                                                            
pfcrt gene at codons 72-76 (SVMNT; i.e. Ser-Val-Met-
Asn-Thr)[109]. Moreover, after 10 years of CQ withdrawal 
because of drug failure, single mutation (K76 CQ) and 
double mutations (K76T and C72S) in pfcrt were detected 
in 84% and 3% of Ethiopian P. falciparum isolates, 
respectively. As these mutations were more linked to 
isolates sensitive to CQ, the investigators anticipated 
the recurrence of CQ-sensitive isolates and that CQ 
should be considered as alternative therapy in CQ-based 
combination therapy[110]. On the other hand, the codon 76 
mutation was detected in pfcrt gene of all of 96 samples 
isolated in Brazil in spite of CQ withdrawal from treatment                                   
since ~35 years, while it was still CQ-resistant[96]. Recently 
in Yemen, mutations of crt gene (codons 76, 271, 326 
and 371) were highly associated with CQ resistance after 
4 years of treatment shift to ART combinations, and the 
investigators asked Health authorities to forbid the use 
of CQ in falciparum malaria with its careful use in vivax 
malaria[111].

•Combined genetic factors: Detection of combined 
mutations in pfcrt (codon 76) and in pfmdr1 (codon 86) were 
used to monitor development and spread of amodiaquine 
resistance in Africa[112]. In Burkina Faso, mutation at                                                                                                        
pfcrt (76) or pfmdr1 (86 or 1246) predicted recrudescence 
after amodiaquine treatment[65]. Both mutations were 
associated with amodiaquine and desethylamodiaquine 
resistance in Colombia[113], while in Nigeria, they were 
associated with amodiaquine in vitro resistance[114]. It was 
also confirmed that high prevalence of the mutations at 
pfcrt SVMNT and pfmdr1 at codon 86 was associated with 
high levels of CQ resistance and the investigators suggested 
their association with reduced efficacy of amodiaquine in 
Angola[115]. Meanwhile, mutations at codons 76 and 86 in 
pfcrt and pfmdr1 genes respectively, were present together 
in CQ resistant isolates in India[116-118]. However, mutations 
at codons 97 and 184 in pfcrt and pfmdr1 genes, respectively 
influenced the level of CQ resistance in Thailand[119]. 
In contrast, results of a study conducted in Philippine, 
isolates showed that both mutations were not predictive of 
in vitro CQ resistance[120]. The mutation at codon 423 in 
pfmdr2 and 51 and 59 or 108 in pfdhfr were independently 
associated with in vitro PYR resistance in Thailand[121]. For 

P. vivax, neither of pvmdr1 nor pvcrt genes mutations were 
associated with CQ resistance in Brazil[122]. High frequency 
distribution of mutations in pvmdr1 and pvcrt genes were 
associated with CQ resistance in the majority of P. vivax 
isolates from Ethiopia[123].

•Other genetic markers: Three mutations were detected 
in cytochrome b (cyt b) gene which resulted in resistance of 
P. berghei to atovaquone in vitro[124]. P. falciparum showed                                                          
a mutation at codon 268 (Tyr→Ser) of the cyt b gene after 
atovaquone-PYR combined treatment failure[125]. Another 
mutation at the same codon (Tyr→Asn) was detected in 
a patient with atovaquone/proguanil (Malarone) therapy                         
failure [126]. Similarly, the highest atovaquone resistance in 
P. falciparum Indonesian isolates carried both mutations 
at codon 268[127]. In contrast, only one study denied 
involvement of cytochrome b in atovaquone-proguanil 
resistance in P. falciparum isolates from Angola[128]. 

Twelve point mutations in cg2 gene, which is                          
a candidate for CQ resistance, was associated with in vitro 
resistance of P. falciparum strains to CQ[129]. The same 
investigators found that CQ resistant isolates had 16 repeat 
units in one of the polymorphic regions (omega region) of 
cg2 gene, while CQ-sensitive ones had either ≤ 15 or ≥ 
17 repeat units, but they recommended further studies on 
a larger number of isolates to consider this mutation as a 
reliable genetic marker for CQ resistance[130]. 

P. falciparum sodium hydrogen exchanger (pfnhe) gene 
is another gene investigated with pfcrt-76 and pfmdr1-86 
and their association with resistance against quinine, 
mefloquine and halofantrine in vitro. The results showed 
the importance of pfnhe with pfmdr1 (codon 86) mutations 
as indicators of reduced quinine susceptibility[131]. In 
studies conducted in China[132] and Viet Nam[133], the 
obtained results supported the association of pfnhe gene 
mutation in quinine resistance. In contrast, results from a 
study conducted in Thailand showed much doubt in the 
usefulness of pfnhe1 gene as genetic marker for quinine 
resistance in vitro[134]. 

On the other hand, no association was detected between 
mutation of sarcoplasmic and endoplasmic reticulum 
Ca2+ ATPase (pfatp6) gene and in vitro susceptibility of 
P. falciparum isolates to CQ, mefloquine and quinine[135]. 
In 2014 came the first study investigating P. falciparum 
multidrug resistance protein-2 (mrp2) gene and its 
association with anti-malarial drugs in Thailand. The 
investigators found frequent and complex variations, 
including single nucleotide polymorphisms (SNPs) and 
polymorphic microindels (Mis) which were associated 
with quinolines (CQ, piperaquine and mefloquine)                         
in vitro[136]. 

•Resistance to ART derivatives: Search for genetic 
markers associated with resistance to ART started in 
2006. No mutation was detected in mdr1, cg10 and genes 
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controlling translational controlled tumor protein (tctp), and 
atp6 genes, when the investigators sequenced these genes 
in P. chabaudi grown in increasing ART concentrations[137]. 
The first report was published on a field isolate resistant 
to ART in the Cambodian population[138]. This was 
followed later by two publications; the first discussed 
ART resistance in Weastern borders of Thailand[139], while 
the second dealt with reduced susceptibility to ART in 
Southern Myanmar[140]. Negative data were obtained 
also on investigating pfmdr1, pfatp6, mitochondrial 
genome and the gene encoding deubiquitinating enzyme                                                                     
(ubp1)[141]. There was diverse genetic mutations in atp6 
gene that enabled the investigators to conclude its negative 
association with ART resistance[142-147]. In addition, the 
frequency distribution of mutations of the genes pfmdr1                                                                                                                    
(6 codons),  pfcrt  (codon 76) and multidrug resistance protein 
1 (pfmrp1) (5 codons) were significantly unchanged after 
4 years of ART combined treatment in Iran[148]. However, 
6 mutations at P. falciparum atp6 gene were detected 
as baseline data before starting ART treatment in Niger. 
Three of them were newly detected while the mutation 
at codon codon 569 was the most predominant[149]. After 
three years of administration of ART-FAN combination 
in treatment of falciparum malaria in Sudan (2004-2007), 
high frequency (72-75%) of point mutations at pfcrt                                                       
(codon 76), pfdhfr (codons 51 and 108) and pfdhps                                                                                                     
(codon 436) was detected. Frequency of pfmdr1 gene 
mutation was ~55%, while almost the whole studied 
population harbored the wild type allele of pfatp6. The 
investigators advised the national health authorities 
to regularly monitor ART-based combination therapy 
especially in endemic areas of Sudan[150].

In the last decade, two genes were incriminated in 
ART resistance; cysteine protease falcipain-2 (fp2) and 
Kelch-domain 13 (kelch13). Only one article reported 
fp2 gene as genetic marker for resistance to ART; and the 
investigators found that this mutation was not prevalent in                                                                                            
Uganda [151]. Kelch-domains are proteins whose interruption 
results in a wide variety of different organism phenotypes 
through protein degradation. It was found that some                                                                                    
P. falciparum isolates from Southeast Asia and resistant 
to ART derivatives, have kelch13 mutations[152]. One of 
the main ART actions is to obligate ring stages to enter 
the dormant phase, facilitating their clearance by the host 
immune system and spleen; and mutations in kelch13 gene 
prevent ring stages from responding to oxidative stress 
clearing[153]. Investigating kelch13 gene in P. falciparum 
isolated from patients from 7 Asian and 3 African countries 
revealed its involvement in ART derivatives resistance. 
The investigators recommended prolonged ART-based 
combination courses in patients with standard 3-day 
treatments failures[154]. Several studies were conducted 
to confirm this link in P. falciparum strains isolated 
from several Asian countries; Bangladesh[155], China and 
Myanmar[156-159]. On the other hand, its mutation was 
not prevalent in several African countries; Uganda[151], 
Senegal[160] and Mali[161]. Neither of the mutations detected 

in Cambodia nor in Southeast Asia were detected in 
isolates from Sub-Saharan African countries; instead the 
investigators detected several novel mutations, but in very 
low frequencies[162].

1.2. Other anti-parasitic drugs	

•Drugs for schistosomiasis: In 1989, American 
investigators found an association of BamHI fragment in 
the oxamniquine resistant S. mansoni strains[163]. The same 
researchers investigated the molecular characterization 
generating this fragment in resistant strains and they 
compared the genomic DNA from resistant and sensitive 
strains. They suggested that a drug induced parasite 
genomic alteration produced this fragment in resistant 
strains[164]. Two years later, a group of scientists from Italy 
analyzed the genetic behavior responsible for oxamniquine 
resistant strains. Their results showed that schistosomes 
sensitivity to the drug was strictly related to specific 
chromosome(s) in a dominant gene encoding the enzyme 
that converts the drug to reactive ester[165].

•Albendazole: Albendazole resistance in giardiasis was 
conducted in vitro and it was demonstrated that mutation 
of the β-tubulin gene was not involved in the resistance. 
An alternative mechanism of resistance involving the 
cytoskeletal structure, particularly the median body, 
was suggested. This was attributed to evident major 
chromosome rearrangements indicating differences in the 
cytoskeleton between sensitive and resistant lines[166]. On 
the other hand, Jiménez-Cardoso et al.[167] found several 
mutations in the β-giardin gene in both albendazole-
resistant and recovered-sensitive G. lamblia strains 
indicating that resistance to albendazole is not necessarily 
caused by mutations in the β-giardin gene of G. lamblia.

•Metronidazole: Orozco et al.[168] reviewed multi-drug 
resistance in amoebiasis, and it was attributed to mutation 
of Entamoeba histolytica P-glycoprotein-like gene 
(EhPgp). However, several studies showed metronidazole 
resistance in intestinal giardiasis and amoebiasis as well as 
in cases of vaginal trichomoniasis[169-171]. In 1992, a study 
was conducted to investigate the role of ferredoxin gene 
mutation in T. vaginalis metronidazole-resistant isolates, 
and the investigators detected decreased ferredoxin levels in                                                                                                                            
50-65% of the resistant isolates. The investigators 
hypothesized that ferredoxin gene mutation could be 
implicated in metronidazole resistant clinical cases of 
trichomoniasis. They explained that ferredoxin gene 
mutation resulted in decrease of intracellular ferredoxin 
expression with a decrease in regulatory protein binding 
affinity; which would lead to inability of metronidazole 
activatation in its cytotoxic form[172]. In 2000, an American 
study was conducted to investigate metronidazole                         
T. vaginalis resistant isolates. A point mutation at the 
position 66 of the internal transcribed spacer 1 (ITS1) 
fragment was detected in 16 out of 109 isolates (~15%), 
and T. vaginalis virus (TVV) was detected in ~50% of 
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their isolates. Correlating these data with metronidazole 
resistance, the investigators concluded that isolates with 
TVV and ITS1 fragment mutation are significantly more 
likely to be sensitive and resistant to metronidazole[173]. In 
2009; it was shown that metronidazole-resistant isolates of 
G. lamblia, Entamoeba spp.and T. vaginalis have different 
combinations of gene mutations either similar to the 
metronidazole-resistant anaerobic bacteria Helicobacter 
pylori in nitroreductase (ntr) gene or to Bacteroides fragilis 
in nitroimidazole (nim) gene[174]. In two Iranian studies, the 
investigators detected point mutation at 209 of the ITS1 
fragment in 3.9%[175], and at position 239 of ferredoxin 
gene in 8.7%[176] of their T. vaginalis isolates.

•Drugs for African trypanosomiasis: The link 
between mutations in tbat1 gene encoding P2 adenosine 
transporter (P2) in variant T. gambiense isolates from 
Uganda and melarsoprol resistance was investigated. 
It was found that 58% of the resistant isolates had tbat1 
gene mutation. Although 58% of the resistant isolates had 
tbat1 gene mutation, several patients with relapse after 
melarsoprol therapy had the wild-type tbat1 gene. The 
investigators suggested that tbat1 gene mutations was 
not the only mechanism behind melarsoprol resistance or 
failure[177]. Two years later, another group of researchers 
investigated whether other factors contribute with tbat1 
gene in P2 activity responsible for mediation of melarsoprol 
uptake. Their hypothesis allowed them to identify and 
characterize two additional drug transport activities, a 
high-affinity and a low-affinity component of pentamidine 
transport (HAPT1 and LAPT1). Inhibition analysis of 
both factors confirmed the contribution of HAPT1 in P2 
activity[178]. In contrast, a study conducted in South Sudan 
observed that all resistant isolates were sensitive to the 
drug in vitro and in experimentally infected mice. The 
investigators also did not detect any of the previously 
described point mutations in tbat1 gene in their isolates, 
and they concluded the irresponsibility of drug resistance 
to melarsoprol failures[179]. However, data obtained from 
a study conducted on animal trypanosomiasis resistant 
to diminazene aceturate revealed that mutations in 
genes controlling P2 transporter favors parasite survival 
(i.e. drug resistance)[180]. In 2013, aquaglyceroporin 
transporter (TbAQP2) was identified as another transporter 
involved in melarsoprol/pentamidine resistance. It was 
found that mutations in the gene encoding TbAQP2 
significantly correlated with pentamidine and melarsoprol 
resistance in the clinical isolates[181]. On the other hand, 
isometamidium is a veterinary drug used against African 
trypanosomiasis, targeting the trypanosomes kinetoplast. 
British investigators screened mutations in 30 genes and 3 
protein complexes associated with kinetoplast-dependent 
growth to investigate the link between gene mutation 
and isometamidium resistance. They observed that non-
mitochondrial proteins and multi-subunit complexes 
were implicated in kinetoplast-independent growth, and 
mutations in their encoding genes might correlate with 
isometamidium resistance. The investigators also discussed 

failure of other drugs used in some flagellated protozoa to 
attack their kinetoplast[182].

•Drugs for toxoplasmosis: Parasitic gene mutations 
incriminated in drug resistance included cytochrome 
b, dhfr and dhps genes for atovaquone[183], PYR[184] and 
sulfonamide[185]. In contrast, a French study investigated 
the previous drugs against 17 T. gondii isolates in vitro, 
and they observed some variability in the susceptibilities 
of these isolates to atovaquone and PYR,  with neither 
clear evidence of drug resistance, nor defined mutations 
in the studied genes. On the other hand, they detected 3 
strains resistant to sulfadiazine, with several identical 
mutations in dhps gene[186]. Recently, another group of 
French investigators denied the link between sulfadiazine 
resistance and polymorphisms or overexpression in 
dhfr, dhps and ABC transporter genes family. They 
recommended further studies to investigate mechanism 
of sulfadiazine resistance in toxoplasmosis and the genes 
associated with it[187].

•Drugs for leishmaniasis: Drug resistance and its 
relations to parasitic gene mutations in leishmaniasis is a 
complex phenomenon of distinct genetic diversities. Since 
the 1990s, several studies were conducted investigating this 
strange relationship. Mutations in genes encoding pteridine 
reductase 1 (ptr1 gene)[188], mitochondrial apocytochrome 
b (cyb gene)[189], P-glycoprotein gene (pgpa gene)[190], and 
topoisomerase I gene[191] were incriminated in resistance of 
Leishmania spp. to methotrexate, antimycin A, oxyanions 
and 3, 3'-Diindolylmethane (DIM), respectively. Two 
Brazilian studies detected mutations at the genes encoding 
heat shock protein 70[192], and aquaglyceroporin 1 (aqp1 
gene)[193] contributed to resistance to antimonial drugs. 
However, three different mutations in the genes encoding 
the metabolic enzymes uracil phosphorybosyl transferase 
(UPRT), thymidine kinase (TK) and uridine phosphorylase 
(UP) were detected in L. infantum resistant to pyrimidine 
analogue 5-fluorouracil (5-FU)[194]. In contrast, no gene 
mutation was detected in paromomycin resistant L. tropica 
strains on nucleotide sequencing at both the DNA and RNA 
levels[195]. An Indian study denied the presence of point 
mutations in the miltefosine transporters (ldmt and ldros3 
genes) previously reported in parasites with experimentally 
induced miltefosine resistance in their clinical isolates[196].

•Other anti-parasitic drugs: In a short report, Japanese 
investigators found cytochrome b (cytb) gene mutation in 
Babesia gibsoni strains isolated from infected dogs that 
resist treatment with atovaquone[197]. American investigators 
applied real time PCR assays to screen development 
of benzimidazoles resistance in Ancylostoma caninum-
infected dogs. They found elevated levels of β-tubulin 
isotype-1 gene polymorphisms at codon positions 167, 198 
and 200 in hookworm resistant strains[198]. β-tubulin gene 
isoform 2 was also incriminated in benzimidazole resistant 
Echinococcus granulosus strains in post-surgical treatment 
of hydatid cyst in a study conducted in India[199]. On the 
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other hand, only two studies were conducted to investigate 
parasite gene mutation and drug resistance in Chagas 
disease. While one study did not detect any association of 
drug resistance and P-glycoprotein (pgp gene)[200], another 
study found acquired mutations in the gene encoding 
mitochondrial ntr gene and T. cruzi-resistant strains to 
benznidazole[201].

2. Virulence, pathogenesis and clinical manifesta�-
tions

•Toxoplasmosis: In congenital toxoplasmosis, the 
relationship between T. gondii virulence measured by 
newborn clinical manifestations, and allelic polymorphism 
in dhfr gene was investigated. The French investigators 
found that mutated clones with allelic replacement at 
certain loci (36, 83 or 245) of the tested gene displayed 
different outcomes suggesting a clear difference between 
virulence of wild and mutant types[202]. Several studies 
were conducted to screen T. gondii mutants using modified 
signature-tagged mutagenesis. This approach allowed the 
investigators to monitor in vitro growth of the mutants as 
well as their virulence and pathogenesis in vivo (animal 
model). When they detected mutants with growth 
impairment or low virulence, genetic complementation 
was done to identify genes required for T. gondii growth, 
virulence and pathogenesis. The investigators identified 
genes encoding regulators of chromosome condensation 
1 (RCC1), patatin-like protein, proteophosphoglycan 
and transmembrane pellicle protein 1 (TPP1) as essential 
genes for T. gondii growth and virulence[203], its survival 
and replication in activated macrophages[204], bradyzoite 
development[205], and virulence and invasion during acute 
toxoplasmosis[206].

•Malaria: On investigating the relation between 
mutations in Pfcrt and Pfmdr1 genes and clinical status 
(severe or uncomplicated falciparum malaria), all isolates 
had Pfcrt (codon 76) and ~80% had Pfmdr1 double 
mutations (codons 86 and 184), whatever their clinical 
status[207]. Similarly, gene mutations incriminated in CQ 
and antifolate drug resistance had no association with 
complicated malaria[208]. In contrast, there was significant 
association of Pfcrt (codon 76) mutation and malaria 
severity in both groups of patients (children 5 years or 
younger and above 5 years)[209].

3. Carcinogenesis

In a study conducted in Japan to evaluate the mutagenic 
activity of S. japonicum and C. sinensis crude extracts 
(adult and egg antigens) and their ability to induce 
tumor cells, the investigators found weak but significant 
activity reaction only to S. japonicum soluble egg extract 
suggesting its ability to promote induction of tumor 
cells[210]. Other Japanese investigators suggested low 
possibility of immediate gene mutation related to worm 

and/or egg extracts of S. haematobium and S. mansoni 
leading to carcinogenesis[211].

4. False diagnosis

Deletion or mutation in the gene encoding histidine-
rich protein 2 (HRP2) was attributed to false diagnosis 
of falciparum malaria cases using rapid diagnostic              
tests[212-217].

Concluding remarks

1. In drug resistance against anti-malaria drugs, 
molecular, genetic and biochemical analyses showed 
several criteria. 1) Impaired CQ uptake by the parasite 
vacuole is a common characteristic of resistant strains, 
and this phenotype is associated with mutations of the 
Pfmdr1, Pfcg2 and Pfcrt genes. 2) One to four point 
mutations of dhfr gene produce a moderate to high level 
of resistance to antifolates (PYR and proguanil). 3) 
Frequency of CQ resistant mutants varies among isolated 
parasite populations, while resistance to antifolates is 
highly prevalent in most malarial endemic countries. 4) 
The mechanism of resistance to sulfonamides and sulfones 
involves mutations of dhps gene. 5) Resistance to FAN 
is associated with dhfr gene mutations at codons 51, 59 
and 108, and dhps gene mutations at codons 436, 437 
and 540. 5) There is much controversy regarding gene 
mutations linked to resistance to quinine, mefloquine and 
halofantrine.

2. Regarding flagellated parasites, mutation in the 
gene encoding β-giardin may be involved in albendazole 
resistance in giardiasis, while two genes are suggested 
for metronidazole resistance in trichomoniasis, mutation 
in ferredoxin gene and ITS1 fragment. In African 
trypanosomiasis, there is still much controversy regarding 
the link between tbat1 gene (encoding P2 adenosine 
transporter) and melarsoprol, while aquaglyceroporin 
transporter involvement was recently identified in 
melarsoprol/pentamidine resistance. On the other hand, 
drug resistance and gene mutations in leishmaniasis 
showed some complexity due to distinct genetic diversities. 
However, mutations of the genes encoding heat shock 
protein 70, aquaglyceroporin transporter 1, and miltefosine 
transporters (ldmt and ldros3 genes) contribute to 
antimonial drugs and miltefosine resistance, respectively.

3. In congenital toxoplasmosis, mutation in T. gondii 
dhfr gene is suggested for strain virulence affecting the 
newborn outcome more than the wild strains. Certain genes 
encoding certain proteins and receptors were identified for 
T. gondii growth, virulence, survival and replication and 
bradyzoite development.

4. Mutation in the gene encoding histidine-rich                
protein 2 (HRP2) is incriminated in false diagnostic results 



11

Parasite gene mutations Abaza and El-Tonsy

using immunochromatographic tests (ICTs) in falciparum 
malaria.
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