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ABSTRACT

Avian influenza viruses became widely distributed in most Middle
Eastern countries, causing high mortality rate and severe economic losses
in poultry industry especially when complicated with other pathogens. The
continuous evolution of highly pathogenic H5N1 avian influenza viruses
(HPAI- H5N1) has resulted in multiple diverse groups based on their
haemagglutinin (HA) sequences. In this study, samples from 40 broiler
chicken farms during 2014 - 2017 were screened for HPAI- H5N1 Results
showed that 15 flocks (37.5%) were positive for HPAI-H5 all of them non
vaccinated . Furthermore, full sequencing of HA and NA gene for 3
isolates isolated during 2017 showed that the viruses were clustered with
Egyptian viruses from clade 2.2.1.2 and closely related to viruses from
neighboring countries.
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in the Middle East region. Genetic and antigenic analysis of the circulating
field viruses in vaccinated flocks revealed subtype antigenic variation and
antigenic drift of the virus in comparison to vaccine strains (Abdelwhab et
al 2012 b).

1. Introduction

Avian influenza (Al) viruses are members of the genus influenza virus
A in the family Orthomyxoviridae and possess a single-stranded RNA
genome composed of eight gene segments encode at least ten viral proteins
(Yoon et al 2014). The two envelope glycoproteins hemagglutinin (HA)
and neuraminidase (NA) are responsible for virus attachment to and release
from the host cell, respectively. HA is the main determinant of virulence
and immunogenicity (Yoon et al 2014).

Based on the haemagglutinin (HA) and neuraminidase (NA), the two
main surface transmembrane glycoproteins, there are at least 18 HA and
probably 10 NA subtypes. According to their pathogenicity in chickens,
AlVs which cause asymptomatic infection are recognized as low
pathogenic AIV (LPAIV). Meanwhile those AlVs causing high mortalities
are recognized as highly pathogenic AV (HPAIV) (Tong et al 2012).

The natural reservoir of all avian influenza viruses is wild waterfowl,
where they appear to be asymptomatic or show low pathogenicity
indicating the evolutionary adaptation of the virus in the host (Horimoto
and Kawaoka, 2001).The introduction of H5 or H7 subtypes of LPAI
viruses to susceptible poultry flocks is the basis of a chain of infection
events which may lead to the new development of highly pathogenic
subtypes. The risk that infection will be transmitted from wild birds to
domestic poultry is greatest where domestic birds roam freely, share a
water supply with wild birds, or use a water or food supply that might
become contaminated by dropping from carriers wild birds (Henzler et al.,
2003).

In February 2006, severe outbreaks of HPAIV H5N1 emerged in several
Egyptian Governorates and were associated with drastic mortality up to
100% in infected birds (Aly et al 2006). The Egyptian strains belonged to
subclade 2.2 of the H5N1 virus of Eurasian origin, which is also circulating
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These mutations allowed the virus to evade the receptor of host immune
responses after vaccination (Cattoli et al 2011). Studies have reported that
stable lineages of H5N1 viruses are found in vaccinated chickens and
humans in Egypt (Abdelwhab et al 2011). Two different HSN1 groups of
viruses are currently co- circulating in Egypt referred to as classic strains
2.2.1 which is usually isolated from backyard birds (rarely from vaccinated
small commercial farms) and humans and variant strains 2.2.1.1 and
2.2.1.2 subclades, isolated from vaccinated and backyard birds,
respectively (Abdelwhab 2012-a).

The diversity of viral HA gene found in Egypt (Abdelwhab et al., 2016)
may be partially explained by the wide range of poultry production
systems coexisting in the Nile River Delta, ranging from backyard and
household ownership to large commercial and industrial farms. Each
system is associated with specific mixes of domestic species, different
levels of biosecurity, differences in vaccine coverage, different production
cycles and value chains (Ali et al., 2013) resulting in a wide diversity of
selection pressures for the HPAI A (H5N1) virus. Although gallinaceous
species dominate the commercial and industrial meat and egg production,
ducks, geese, turkeys, pigeons and quails are also intensively reared and
are very essential and palatable sources of meat in Egypt. The survival,
transmission rate and susceptibility for HPAI A (H5N1) infection varies
considerably between poultry species, with notably ducks showing less
mortality and clinical signs of infection than chickens, turkeys and geese
for the clade 2.2.1.2 circulating in 2014 and 2015 (Kandeil et al., 2017).

Vaccination should only be used as part of a comprehensive control
strategy that also includes biosecurity, quarantine, surveillance, eradication
and elimination of infected and at-risk poultry. Although properly used
potent Al vaccines can prevent disease and death, increase resistance to
infection, reduce virus replication and shedding and transmission but they
cannot completely prevent Al virus replication. Only inactivated whole Al
virus vaccines and recombinant H5-Al vaccines have been licensed and
widely used. Al vaccination programmes should be adapted to local
condition to guarantee efficacy and sustainability. Different vaccination
performed in endemic areas, emergency vaccination in the face of an
epidemic and preventive vaccination whenever a high risk of virus
incursion is identified (Marangon et al., 2008).

In endemic area, vaccination of poultry flocks by inactivated or gene
vaccines become the only solution in the long-term strategy. Vaccination
is targeting to lower losses from mortality, reduce the viral load in the
environment and the risk of human infection as well as eradication of
positive cases (Lushow et al., 2001).

This study was planned to (1) Study the prevalence of Al viruses HSN1
among broiler chicken farms in west delta during 2014-2017 using (rRT-
PCR). (2) Sequence analysis of full gene of Haemagglutinin (HA) and
Neuraminidase (NA) glycoproteins of HPAI H5N1.

2. Material and methods
2.1. Specimens

Samples were collected from 40 broiler chicken flocks (from 4
Egyptian governorates in West Delta) suspected to be infected with AV
during period from Jan., 2014 to May, 2017 (Table 1). Tissue samples
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included trachea and lung. Out of the examined flocks, only 12 were

vaccinated against HPAIV while 28 flocks were non-vaccinated.

Table 1: History of positive broiler chicken flocks for HPAI- HSN1

Serial no. Location Sampling date  Total No.  Age (days) Vaccination against H5 Mortality during the week of sampling

1 El-Behera* Mar. 2017 3000 32 42%

2 El-Behera Mar. 2017 3500 29 35%
Kafer

3 Elsheikh Mar. 2017 2500 26 46%
Kafer

4 Elsheikh Mar. 2017 3800 32 51%

5 El-Gharbia Feb. 2017 4200 32 52%

6 El-Behera Oct0.2016 4000 18 60%

7 El-Behera Jan. 2016 4500 25 . 24%

. Non vaccinated

8 Alexandria Mar. 2016 3000 19 47%

9 Elgharbia Mar. 2016 2800 23 55%
Kafer

10 Elsheikh Mar. 2015 4300 18 32%

11 El-Behera Apr. 2015 4500 29 40%

12 El-Gharbia May. 2015 3000 15 51%

13 El-Behera Mar. 2014 3500 20 42%

14 Alexandria Mar. 2014 4500 27 44%

15 El-Behera Feb. 2014 3000 22 53%

Table 2: Primers used in this study
Virus Primer and Probe Sequences Reference
Al type A (matrix gene)  Sepl: 5- AGA TGA GTC TTC TTA CCG AGG TCG-3 Spackman et al., 2002
Sep2: 5-TGA AAA AAC ATC TTC AAG TCT CTG3-
SEPRO: 5-{6-FAM}-TCA GGC CCC CTC AAA GCC GA {TAMRA}

H5N1 H5 LH1: 5-ACATATGACTACCCACARTATTCAG-3 Londt et al., 2008
H5 RH1: 5-AGACCAGCTAYCATGATTGC-3
H5 PRO: [FAM] 5-TCAGGCCCCCTCAAAGCCGA-3 [TAMRA]

HION2 HIF: 5° GGAAGAATTAATTATTATTGGTCGGTAC ’3 Ben Shabat et al. 2010
H9R: 5 GCCACCTTTTTCAGTCTGACATT ’3
HI9PRO: FAM-5 AACCAGGCCAGACATTGCGAGTAAGATCC-3
TAMRA

NDV matrix protein MF 5> AGTGATGTGCTCGGACCTTC °3 Wise et al. 2004
MR5’ CCTGAGGAGAGGCATTTGCTA °3
Probe [FAM] 5- TTCTCTAGCAGTGGGACAGCCTGC -3 [TAMRA]

1BV XCE3: F 5'CAGATTGCTTACAACCACC ’3 Adzhar et al. 1997
BCEIl: F S AGTAGTTTTGTGTATAAACCA ’3
DCEL: F 5’ATACAATTATATCAAACCAGC ’3
MCE1: R5'AATACTACTTTTACGTTACAC

Table 3: History of AIV H5N1isolates selected for sequencing.

Flock no. Code no. Seq. code Species Location Date Subtype Mortality%
1 1 B1 Broiler Behera Mar.2017 H5N1 42%
2 2 B11 Broiler Behera Mar.2017 H5N1 35%
3 5 G15 Broiler Gharbia Feb. 2017 H5N1 52%
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Figure 1: Phylogenetic tree showing the genetic relationships between representative HPAI (H5N1) and 3 isolates of 2017 for HA gene
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Figure 2: Phylogenetic tree showing the genetic relationships between representative HPAI (H5N1) and 3 isolates of 2017 for NA gene.
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19 |15 |38 |44 |43 |42 |36 |38 |36 |33 |29 |36 |25 |26 |22 222219 959 (964 (959 | 19 A-chicken-Egypt-1891N3-CLEVB-2007
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Figure 3: Amino acid identity of the 3 sequenced HPAI H5N1 isolates.



Abdou et al.

2.2.Virus isolation

Virus isolation and propagation was carried out on 75 Specific
Pathogen Free Embryonated Chicken Eggs (SPF-ECE) through allantoic
inoculation (9-11 day old), then incubated at 37 °C for 3-5 days for the
positive flocks only. The harvested allantoic fluids were tested for virus
haemagglutination activity by HA assay (OIE, 2015).
2.3.Real Time Reverse Transcriptase Polymerase Chain Reaction (rRT-

PCR):

QlAamp® viral RNA mini kit (Cat. No. 52904, Qiagen, Germany) was
used to allow extraction of viral RNA from positive HA allantoic fluid
samples as described by manufacturer manual of Qiagen RNA extraction
kit (Spackman et al., 2002). Specific rRT-PCR primers as type A (Matrix
gene), H5 were used for virus identification as mentioned by (Londt et al.,
2008) as well as detection of NDV, LPAI (HIN2), and IBV using specific
primers (Table2).

2.4. Sequencing and sequence analysis of HPAI-H5 isolates

Three H5N1 isolates were selected for full HA and NA sequencing.
Total RNA extraction using Qiampviral RNA mini Kit (Qiagen USA)
according to the manufacturer’s instructions of the kit. Sequencing was
performed using Applied Biosystems 3130 genetic analyzer, USA.
Sequence similarity to each gene segment of the virus isolated in this study
was conducted by Basic Local Alignment Search Tool (BLAST) database
available at the NCBI (Altschul et al., 1990). The phylogenetic analysis
was done by using maximum likelihood (ML) tree method by Mega 6
software (Tamura et al., 2013)

3. Results and Discussion

A total number of 15 out of 40 commercial broiler flocks were identified
as HPAI-H5 positive by rRT-PCR using type A and H5. All the positive
isolates were obtained from non-vaccinated flocks against HSN1. Only 3
samples (No 4, 6, and 11) out of the 15 were positive isolates for each of
LPAI-HIN2, NDV or IBV viruses, respectively, using specific primers.

Endemic HPAI H5N1 subclade 2.2.1.2 strains from Egypt in 2014, 2015
and 2016 regarding both genes (Fig. 1 & 2). The amino acid identities % of
the selected isolates ranged from 95.4 to 98.2 with the Egyptian isolates
from 2005 and 2016, respectively (Fig. 3).

The Egyptian H5N1 viruses have undergone significant antigenic
diversification and the antigenic diversity of these viruses may represent a
potential challenge for the development of an effective vaccination
program for poultry in Egypt (Beato et al., 2013).

Therefore, more efforts are required to better understand changes in the
evolution and epidemiology of the virus. Constant monitoring for the
possible emergence of resistant variants and rigorous evaluation of the
potency of vaccines against Egyptian strains of H5N1 is essential to
effectively control the disease in poultry. Ideally, this should be conducted
frequently either annually or biannually under representative field
condition (Abdelwhab et al., 2012a).

From this point of view, we detected the endemic HPAI- H5N1
subclade 2.2.1.2 virus in broiler chicken flocks in the Egyptian West Delta
during 2014-2017. Concerning the rRT-PCR results, HPAI- H5N1 was
detected in 15 out of 40 examined broiler flocks (37.5%) with a mortality
rate ranged from 24-60%. All positive flocks were non vaccinated against
AIlV- H5. One third of the isolates was during 2017 and the remaining 2/3
were during 2014-2016 which indicate an increase in the incidence of the
disease. Also, it was noticed that 60% (9/15) of the strains were collected
during March, isolates no. (1-4) during 2017, (8, 9) during 2016, (10)
during 2015, and (13, 14) during 2014 indicating the high incidence of
HPAI- H5N1 subclade 2.2.1.2 during this month of the year. These results
matched with those of WHO (2010) and in accordance to the national
veterinary services who declared that HSN1 became endemic in Egypt
resulting in severe losses in the poultry industry. On other hand, Abd EI-
Hamid et al. (2017) reported that HPAI- H5N1 isolated in Upper Egypt
from January 2015 to January 2016 with a percentage of 21.3% with the
highest incidence during the winter season with a mortality rate ranged
from 10-25%.

Full HA and NA gene sequencing for the 3 isolates of 2017 have a close
relation with HPAI- H5N1 strains to the genetically diverse classical
endemic subclade 2.2.1.2 from Egypt during 2014, 2015 and 2016
regarding both genes. Previously, partial haemagglutinin (HA) gene
sequencing for 5 isolates of HPAI-H5N1 from Upper Egypt during 2015-
2016 revealed that all strains were clustered with H5N1 viruses to subclade
2.2.1.2 of Eurasian origin which is also circulating in the Middle East
region and was introduced into Africa since 2008. This indicated the
predominance of this clade (Abd El-Hamid et al., 2017). Although the
dominant clade from 2006 till 2014 was 2.2.1, the analysis of virus
population dynamics of the entire data set of the Egyptian H5N1 viruses
showed a rise in genetic diversity in the 2.2.1.2 cluster from early 2008.
From 2009 to 2014, the 2.2.1.2 cluster exhibited a constant progressive
adaptation to poultry environment and was considered to be an endemic
cluster. This endemic clade 2.2.1.2 showed a high evolution rate and this
reflects the continuous adaptation of Egyptian viruses to the poultry and to
their environment with persistent changes every season (El-Shesheny et al.,
2014; Arafa et al., 2016; Kayali et al., 2016).

In conclusion, continuous circulation of HPAI subtype H5N1 of clade
2.2.1.2 specially in non-vaccinated commercial and backyard flocks
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resembles a ring alarm threatens the poultry industry in the next years.
Vaccination using a matched clade prepared vaccine is very important to
control the disease spreading.
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