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QUALITATIVE BEHAVIOR OF EIGENFREQUENCIES FOR 

FREE VIBRATION OF AEROSPACE VEHICLE APPENDAGES 

A. MAHER* and A. L. SCHLACK** 

ABSTRACT 

In this work, the changes in eigenfrequencies of flexible appendages with • 
:various mass ratios of space vehicles due to the allowance of a rigid body. 
motion are studied. These changes are governed by the difference eigen-
value problem [2] which is formulated in terms of the generated effective 

:mass and stiffness matrices. The computation techniques for calculating . 
• the upper and lower bounds of the dominant eigenfrequencies are performed : 
by the utilization of the bound formula approach [1] . An example of the 
transverse vibration analysis of the fuslage-wing combination with diff- 
erent mass ratios in different zones of vibratory motion is solved . A 	: 
'comparison between the computed calculations and previously published re-
sults [0] is presented 

INTRODUCTION 

In this paper an analysis is presented for the qualitative behavior of 
the deformed mode eigenfrequencies for small free vibrations about confi- • 
gurations of stable equilibrium for aerospace vehicle appendages, inclu-
ding major structural components. The deformed mode eigenfreuencies of a 
structural system moving freely in space undergo changes in attitude be- : 
cause of the variation in kinetic and potential energies assoicated with • 
rigid body and deformed motions. It is shown that allowing rigid body 

:motion results in an apparent decrease in the inertia characteristics of 
the system causing an increase (or no change) in the deformed mode eigen- : 
frequencies [2] . Moreover restricting elastic deformation modes of mot- ' 

:ion by imposing redundant con-constraints results in an increase in the 
'stiffness characteristics of the system, also causing an increase (or no . 
change) in the deformed mode eigenfrequencies [6] . In the limiting case,: 
•called herein the "stationarity state," the deformed mode eigenfrequencies 
:tend to their lowest possible values. This state arises for a structural 
system which neither performs rigid body motion nor possesses redundant 
constraints. The former state is denoted herein as the "underconstrained • 

:zone" and the latter state as the "overconstrained zone". The method pr-
esented has the capability of specifying the boundaries for the variations 

:of all natural frequencies for any elastic component or appendage. This 
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in turn identifies their respective resonance spectrums. Although the ex-
:ample presented to illustrate the general method is restricted to flexure, 
the procedure may be readily applied to complex systems involving any pos-; 
sible combination of axial, torsional and flexural degrees of system. 

This work is an attempt to help the analyst and designer gain a bett-; 
er physical understanding of the mutual effect of either underconstrained 

ior overconstrained motion for any particular appendage yr component of an 
aerospace vehicle. In the "underconstrained zone' the variations in the 
natural frequencies can be controlled by altering the effective inertia 

'characteristics of the particular component. Moreover in the overconst-
rained zone an alteration of the effective stiffness characteristics plays; 
the same role. The method is applicable throughout the entire range of 

'ratios of elastic appendage mass to the total mass of the system. This 
meets the requirements for analyzing aerospace vehicles with every massive; 

: appendages such as those currently being proposed for future design appl-
ications. 

EQUATIONS OF MOTION AND EIGENVALUE PROBLEM 

Assuming that a given physical body is idealized as a discrete syst-:  
: em, one can write the kinetic and potential energies respectively in matrix 
* form 

.T 	. 	.T. 	.T 	• 2T = q m (1(4  q + 2q m qpp + mippp „. 	-- 

2V pTk p, 
-PP- 

( 1 ) 

where q and p play the role of the generalized coordinate vectors for rigid 
and deformed modes of motion respectively. Applying Lagrang's equations 
to the expression given by equation (1), and solving the resulting equat-
ions for qi  in terms of the pi  coordinates, one obtains 

(m 	- m )p + k p = Q •  pp 	 pp- 
	 (2) 

 may be written more simply as 
• 

m* F k p = 	 (3) 

where 

mpp  and kTP (=t) are the mass and stiffness matrices of the system measured 
" in the p-coordinate system respectively, 

m* 	is the reduced mass matrix given by 

m* = m  - m  = m*T, 
-•Pp "•ef 

ref 	is the effective mass matrix given by 

T -1 
III 	 • ef

= 	
qp 

Note that the 	effective mass matrix results from allowing rigid body 
:motion of the system, such as translatory (t), rotary (r) or a combination: 
of these motions (tr). Therefore the expressions given in equation (1) 

Lexpress the kinetic and potential energies of the system in the 
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"underconstrained zone." In view of equation (3), equation (1) may then 
'be recast as 

1 .T 	. 
T = E 0* p 

1 T V = -2-1)k p 

In the "underconstrained zone", the kinetic energy for a given config7 
uration of the system is therefore decreased because of rigid body motion, 
while the potential energy is'unaltered [2] . Hereby the deformed mode 
natural frequencies cannot be less than the respective frequencies in the : 
Hstationarityzone". If the system under consideration is subjected to 
constraints which imply that (1) the rigid body motions are eliminated and 
(2) there are no differences between the number of dynamic and static deg-:  
rees of freedom of the system then the 111sf  effective mass disappears and ' 
equation (3) becomes 

m 6+ k p = 0 (5) 	• 

where ID and 15 play the role of D 	and 15 	in equation (1). Equation (5) 
is therefore the governing equation of mgPion of the physical body in the ; 
"stationarity state." Next, in order to simplify the concept, let us con-
sider the p generalized coordinate vector comprised of a dynamic vector p* 
and an excess+ static one p . Usually more static degrees of freedom are 

: used for a more accurate description of the system's elastic properties 
5,7] . Since by definition Ps  = 0, the kinetic and potential energies in 
the stationarity state may be written as 

T = 1 • T- •* 

1 	 1 T 	1 T V = p*
T 
 k* p* + p

T
k 

13*  + 2  ;-s1,Is81,3s77  2 	 1..c 
:where the mass matrix m is a condensed form of D, noting that the kinetic 
energy is invarient. The stiffness matrix measured in the new coordinate 
system 

(pi' Psi) may be partitioned as 

(4) 

p 
	(6) 

Applying Lagrange's equations to equation (6) and assuming that 

I 	

pI 
p lay the rol of master coordinates, while p play the role of slave 
coordinates . 5] , one obtains the alternate ?o

i 
 rm of equation (5) 

- . 
N p* + (k* 	Net  )p* = 0 .v 

• 
:where the effective stiffness matrix k c  = k

T 
k
-1 

k . Now, let us impose.  
s constraints to eliminate the excess ZVgtic"a.egnelsof freedom. The eq-
uation of motion of the overconstrained system is then given by 

!.7 
N p* + k* p* = 0 (8) , 

L.. 	 j _  

+excess static degrees of freedom are those in excess of the assigned 

(7) 
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:where V represents the stiffness matrix of the overconstrained system. 
The inverse is also true. The effective stiffness matrix begins to appear 
in equation (8) by the addition of the static degrees of freedom to the 
!overconstrained system and in the limit equation (8) takes the form of eq-
uation (7). The comparison of equations (7) and (8) shows that the isef  
effective stiffness matrix depends on the deformed body motion of the sys-
tem. Therefore the potential energy of a given configuration is increased 
•from its stationarity state by the addition of redundant constraints while 
its kinetic energy for the given motion is unaltered. The deformed mode 
:natural frequency cannot be less than the respective frequency in the 
"stationarity state". Moreover, in general the addition of redundant con-
straints to the system in the "stationarity state", tends therefore to in- ! 
;crease the potential energy. From this viewpoint equation (8) is consid-
ered the governing equation of motion for the physical system in the "over-.  
constrained zone. In summary, equation (5) may be viewed as the governing : 
:equation of motion of a physical body through a limiting process of (1) 
"underconstrained zone" where the deformed mode eigenfrequencies approach 
the stationarity zone from above by eliminating rigid body motion and (2) 
the "overconstrained zone" where the eigenfrequencies also approach the 
stationarity state from above by eliminating redundant constraints. 

:In each zone of vibratory motion for space vehicle appendages and major 
'components, the determination of the deformed mode eigenfrequencies req- 
uires the reduction of equations (3), (5) and (8) to the characteristic 	• 

•eigenvalue problem. Since the lower mode dominate the response, one may 
'reasonably ignore oscillations in higher mode [8] , and for that the eigen-
value problem may be arranged in the'form 

p = p. 	
(9) 

In such cases A.- 	, where (A) is the natural frequency and the dynamic 
;matrix 2 is the product of the flexibility and mass matrices giVen by 

, D = Df  = k-101-me f  )/ .no  

D = D
C 
 = (1L-Ic ef )

-1 
 ,1-51 

N 

for the "underconstrained zone" 	(10) 

for the "overconstrained zone" 	(11) 

D = D = k-1m, for the "stationarity state". 
0 

• 
Note that D= D - D 	= k-1m 	k-1 m 	. 	 (13) 

""f fs,o A-ef N /..v N /.ef 

:However, if title inverse dyngmic matrix is required for any case, the form 

E 
C = 	7 TN  - 	Nef 

-1 	-1 

One can now examine the qualitative behavior of deformed mode eigenfrequen-
cies for small free vibration of a space vehicle model or any of its struc-
tural components about a stable equilibrium configuration by this procedur. 
To this end the following conclusion is relevant. The deformed mode natur-
al frequencies of free vibrating system are lower in the"stationarity state" 

:defined by equation (12) than in either in the "underconstrained zone" de- :  
fined by equation (10) or in the "overconstrained zone" defined by equation 
(11), as shown in Figures 3 and 4. Mathematically this may be written as 

i 	
CA) 
oi  -

4: (.4) 
 ci ° 

for 	i = 1,2,3,... 	 (14) 

(12) 

L.. 



63 
EI , mw  64 

FIRST A.M.E. CONFERENCE 

29-31 May 1984, Cairo 
DYN -1 5 

6 EIGENANALYSIS PROCEDURE 

Eigenanalysis of the plane transverse vibrations of the fuselage-wing corn
: bination of reference [ICI is presented in order to demonstrate the appli- 
cation of the present procedure. The single element idealization of a 
uniform wing attached to a fuselage mass is shown in Figure 1. For the 
unification and comparison of results, the assumptions, notation and data 

• given on page 328, reference m are used. The element mass and-s-tiffne-.  

ss matrices measured in the local coordinate system may then be partition-,  

ed as 

m 	m •••••I 	....,I 	II 
• m = 	 . K = .., T 	

m 

NI 	 m "/I II ..II II 

NI I 	
kI II 

T 
HI 	k 
-,I II 	,,,II II 

 

Note that the ratio of the fuselage mass to the wing mass is denoted here- . 
• after as R = m /m F 1er 

Figure 1 Two node beam element idealization of a uniform wing 
attached to fuselage mass, where EI = flexural rigid-
ity, I = half span length, 2mw  = wing mass and 2mF 
= fuselage mass. 

The mass and stiffness submatrices measured in the generalized coordinate 
system can then be obtained by using the transformation equation 

C 

Q 

: Therefore 

T 
Rag = DI I 	C. MI1 119. - MI 	Y•Trj1 II ' 

kip = NI II - II IT , 

M = 'pp = W11 II ' 

k= 15pp = NII II , 

where U is a unit matrix and is a transformation matrix derived from 
the geometric conditions as shown in Figure 2. The suffix I and II denote 

• the node number. The results of the previous section have been evaluated 
numerically for various cases of free flexural vibration of the fuselage-

L.wing combination as-illustrated in Figure 2. There ia.a wide. variety of..j 
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:numerical methods 'available for solving the standard eigenvalue problem 
given by equation (12), [9] . The bound formula Li] will be selected for, 
the computation of upper and lower bounds for the fundamental frequency of 

!a space vehicle model for a variety of cases, applying the simplest form 

(Trp, ) 
-1/2 	,4 (TrZ

2/Tr2) 
-1/2 	 (15) 

In view of equations (9) and (12) the fundamental frquency at the "stat-
ionrity state" is then bounded by 

3,514675 -71 :1 	3, 532639/ 	t 

, 
:where the exact the value [3] is equal to 3,516 /EV% r 3 sec

-1
. For the 

sake of comparison with the numerical results of reference m , (pp. 331 
and 333), the bounds of the nondimensional fundamental frequency W were 

:computed for the cases 1.2 and 1.3 in Figure 2 for the mass ratios R = 0, 
1 and 3. The results are shown in Figure ,3 and also in Table 1. 

R 
	

Computed Values 	Results of [9] 

0 5,561 6(f,t) 5,651 	5,606 
 

1 	4,202 	Ct)(f,t) 
4a 4,257 	4,229 

3 	3,812,t5  C:5 (f,t) .. 
	3,857 	3,835 

17,019:= ..t.4  18,050 
(f,r) 

17,544 

, 
Table 1 Nondimensional fundamental frequency (7)= 6)/ ✓EV% 3  t for 

the uniform wing attached to a fuselage mass performing 
translatory (f,t) and rotary (f,r) rigid body motion, 
(* rotary inertia of the fuselage is neglable). 

For a complete analysis, the bounds of the fundamental frequency ratio 

T = a)/ (,)
o 
 for the cases shown in Figure 2 were computed for various values  

of mass ratio. The average value of each bound pair is then listed in 
Table 2 and141so shown in Figure 3. 

R 	0 	1 	2 	3 	4 	5 	10 	00 

T
(f,tr) 

7,5876 5,3458 5,1967 5,1425 5,1144 5,0972 5,0622 4,9636 

T
(f,t) 

1,5868 1,1972 1,1191 1,0854 1,0667 1,0546 1,0287 	1 

Table 2 The fundamental frequency ratio T of the wing fuselage 
combination performing rigid plane motion (f,tr) and 
translatory rigid motion (f,t) for various value of mass 
ratio. 

L.. 	 ..j 
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6 The results of the fundamental frequency ratio for the remaining cases wh-
ich are independent of the mass ratio are as follows 

T
(f,r) 

= 4,9636 , 	T(c,t) 
= 1,7491 , 	T(c,r) = 5,8012 

A review of the results listed in Tables 1 and 2 and also shown in Figure 
,3 indicates the following remarks 

1. The lowest "stationarity" values of the deformed natural frequencies 

• are reached for systems performing neither rigid body motion nor poss-
essing redundant constraints, regardless of the values of mass ratios. 

2. In general the natural frequencies decrease (or no change) for an in-
crease in the mass ratio concerned with any component of the aerospace 
vehicle as illustrated in Figure 4. 

:3. The case of a vanishingly small rotational inertia of the fuselage leads 
to an invariance in the natural frequencies for various mass ratios 
(i.e. point Q in Figure 4-b) due to rotary rigid body motion. In the 
limit when the mass ratio approaches infinity (i.e. boundary PQR), th-
ere is a sudden change in natural frequencies as indicated by the bou-
ndary of the variation region shown in Figure 4-b. A similar situat-
ion arises for the translatory rigid body motion of a system with neg-
liable mass and significant mass moment of inertia, such as an antenna. 

• 
4. If the mass moment of inertia of any appendage is considerable then the' 

concurrent point Q disappears. However the effects of rotary rigid 
body motion on the variations of natural frequencies increase as the 
mass moment of inertia increases. In this case the nature of the ch-
anges in natural frequencies would be similar to that of the translat-
ry rigid body motion shown in Figures 3 and 4. 

;5. In particular, for the mass ratio R = 0, there are appreciable changes ' 
in the natural frequencies. However this particular case conforms phy-
sically with the analysis of the vehicle as a whole. When the mass of 
the fuselage is significantly greater than the mass of the appendage 
in question, the variations in natural frequencies of the appendage have 
a nearly linear behavior and in the limit they tend to be invariant (as 
in the case of the overconstrained zone). 

6. The governing equality (14) permits one to conclude that the region of 
variation nor each defvmed mode natural frequency is similar to that 
of the fut.ddmental frequency for various mass ratios as illustrated in 
Figure 4. Nh 	investigation into the behavior of the system (particu- 
larly in the overconstrained zone), may be easily performed by applying 
the present procedure to a mathematical model involving higher degrees 
of freedom. The information included in Figures 3 and 4 efficiently 
specifies the resonance zone for each component of the aerospace vehicle. 

CONCLUSION 

The proposed procedure provides appreciable eigeninformation for various 
components of aerospace vehicles under axial, torsional, flexural or com-
bined vibratory motion. The procedure is a method of analysis applicable 
to a wide variety of related practical problems. The results of the ele-
mentary illustrative example clearly demonstrate that the proposed method 
is reliable for eigenanalysis of unconstrained systems, such as the wing- 

; fuselage combination analyzed herein for a variety of rigid and deformed 1 
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body motions. It is also uesful for specifying the variation boundaries 
of the deformed mode natural frequencies for various appendage mass ratios 
and for various types of rigid body motion as illustrated in Figure 3 and ; 

.4. This information, when used in conjunction with the resonance spectrum 

*
for various components of an aerospace vehicle, has considerable value to 

the design engineer. 
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