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ABSTRACT

.In this work, the changes in eigenfrequencies of flexible appendages with :
*various mass ratios of space vehicles due to the allowance of a rigid body-
motion are studied. These changes are governed by the difference eigen-
value problem [?] which is formulated in terms of the generated effective

‘mass and stiffness matrices. The computation techniques for calculating

* the upper and lower bounds of the dominant eigenfrequencies are performed
by the utilization of the bound formula approach [l] . An example of the
transverse vibration analysis of the fuslage-wing combination with diff-

.erent mass ratios in different zones of vibratory motion is solved . A

* comparison between the computed calculations and previously published re-
sults [10] is presented

INTRODUCTION

In this paper an analysis is presented for the qualitative behavior of

the deformed mode eigenfrequencies for small free vibrations about confi-
-gurations of stable equilibrium for aerospace vehicle appendages, inclu-
:ding major structural components. The deformed mode eigenfreuencies of a
structural system moving freely in space undergo changes in attitude be-
cause of the variation in kinetic and potential energies assoicated with
_rigid body and deformed motions. It is shown that allowing rigid body
-motion results in an apparent decrease in the inertia characteristics of
the system causing an increase (or no change) in the deformed mode eigen-
frequencies 2] . Moreover restricting elastic deformation modes of mot-
:ion by imposing redundant con-constraints results in an increase in the
"stiffness characteristics of the system, also causing an increase (or no
change) in the deformed mode eigenfrequencies [é] . In the limiting case, .
-called herein the "stationarity state," the deformed mode eigenfrequencies
‘tend to their lowest possible values. This state arises for a structural
system which neither performs rigid body motion nor possesses redundant
.constraints. The former state is denoted herein as the "underconstrained
‘zone" and the latter state as the "overconstrained zone". The method pr-
esented has the capability of specifying the boundaries for the variations
:of all natural frequencies for any elastic component or appendage. This -
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_in turn identifies their respective resonance spectrums. Although the ex-
‘ample presented to illustrate the general method is restricted to flexure,

the procedure may be readily applied to complex systems involving any pos-':
., Sible combination of axial, torsional and flexural degrees of system.

This work is an attempt to help the analyst and designer gain a bett-:

er physical understanding of the mutual effect of either underconstrained
‘or overconstrained motion for any particular appendage ‘or component of an
aerospace vehicle. In the "underconstrained zone' the variations in the
_natural frequencies can be controlled by altering the effective inertia
‘ characteristics of the particular component. Moreover in the overconst-
rained zone an alteration of the effective stiffness characteristics plays:
. the same role. The method is applicable throughout the entire range of
‘ratios of elastic appendage mass to the total mass of the system. This
meets the requirements for analyzing aerospace vehicles with every massive:
: appendages such as those currently being proposed for future design appl-
ications.

EQUATIONS OF MOTION AND EIGENVALUE PROBLEM

Assuming that a given physical body is idealized as a discrete syst-;
. em, one can write the kinetic and potential energies respectively in matrix
" form
T

T T

2T =gqm g+29dm p+pm po
T
2V = k ()
F ppk

where g and p play the role of the generalized coordinate vectors for rigid
and deformed modes of motion respectively. Applying Lagrang's equations
i to the expression given by equation (1), and solving the resulting equat-
ions for a; in terms of the P, coordinates, one obtains

(m - m )E + k

~pp ~ Ref’E T Jppb T Q- (2)

It may be written more simply as

mEp+kp=0 (3)

e ~

. where

and k_(=k) are the mass and stiffness matrices of the system measured
in the p-coordinate system respectively,
m* is the reduced mass matrix given by

T

m* = =m*’

h =~ Beg
is the effective mass matrix given by

-1

T
m = m m
Fef” ~qp¥qq @

ap
Note that the p effective mass matrix results from allowing rigid body )
‘motion of the system, such as translatory (t), rotary (r) or a combination?
of these motions (tr). Therefore the expressions given in equation (1)
qupre§§ the kinetic and potential energies of the system in ppe N i
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,“underconst;ained zone." In view of equation (3), equation (1) may then
‘be recast as

T=%—ég}*§ A
V = %-pTE P , (4)

In the "underconstrained zone", the kinetic energy for a given config?
uration of the system is therefore decreased because of rigid body motion,
iwhile the potential energy is unaltered [2] . ' Hereby the deformed mode

natural frequencies cannot be less than the respective frequencies in the
"stationarityzone". If the system under consideration is subjected to
i constraints which imply that (1) the rigid body motions are eliminated and
(2) there are no differences between the number of dynamic and static deg-,
. rees of fregdom of the system then the gef effective mass disappears and
‘equation (3) becomes

nf+kp=9 - (5)

" where m and k play the role of m and k in equation (1l). Equation (5)
is therefore the governing equatfgn of mggion of the physical body in the
: "stationarity state." Next, in order to simplify the concept, let us con-
"sider the p generalized coordinate vector comprised of a dynamic vector B*
and an excess+ static one p . Usually more static degrees of freedom are

.used for a more accurate déscription of the system's elastic properties
'[;,ﬂ,. Since by definition Pp_ = O, the kinetic and potential energies in
the stationarity state may be written as

l.T_.*
= e *
T=gp*np ?
1 _.T T 1 T 1T
= = p* k% p¥ * = = 6
V=B K B Rk BY t Pk epF 7Pk -

i
: where the mass matrix ﬁ is a condensed form of m, noting that the kinetic
energy is invarient. The stiffness matrix measured in the new coordinate
system (p;, Psi) may be partitioned as

T
k*
~ *
~ s B
k= g
L s
}‘SS ;ESS E:)S

Applying Lagrange's eguations to equation (6) and assuming that pI
play the rolt of master coordinates, while p ., play the role of slave
S

coordinatesi; ;» one obtains the alternate ?érm of equation (5)
o Ty * . * =
SR W bl R )
i where the effective stiffness matrix k = kT k—1 k . Now, let us impose’

~

: e ~vef | ~g ~ss
s constraints to eliminate the excess static aegrees of freedom. The eg-
.uation of motion of the overconstrained system is then given by

R

) B* + k* p* = 0 7 (8)
+

excess static degrees of freedom are those in excess of the assigned

=
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where k* represents the stiffness matrix of the overconstrained system.
'The inverse is also true. The effective stiffness matrix begins to appear
in equation (8) by the addition of the static degrees of freedom to the !
ioverconstrained system and in the limit equation (8) takes the form of eg-
uwation (7). The comparison of equations (7) and (8) shows that the k
effective stiffness matrix depends on the deforxmed body motion of the sys-
tem. Therefore the potential energy of a given configuration is increased
‘from its stationarity state by the addition of redundant constraints while |
its kinetic energy for the given motion is unaltered. The deformed mode
mnatural frequency cannot be less than the respective frequency in the
"stationarity state". Moreover, in general the addition of redundant con-
straints to the system in the "stationarity state", tends therefore to in-
icrease the potential energy. From this viewpoint equation (8) is consid-
ered the governing equation of motion for the physical system in the "over-
constrained zone. In summary, equation (5) may be viewed ‘as the governing
‘equation of motion of a physical body through a limiting process of (1)
"underconstrained zone" where the deformed.mode eigenfrequencies approach
the stationarity zone from above by eliminating rigid body motion and (2)
‘the "overconstrained zone" where the eigenfrequencies also approach the
stationarity state from above by eliminating redundant constraints.

.In each zone of vibratory motion for space vehicle appendages and major
‘components, the determination of the deformed mode eigenfrequencies reg-
uires the reduction of equations (3), (5) and (8) to the characteristic
:eigenvalue problem. Since the lower mode dominate the response, one may
‘reasonably ignore oscillations in higher mode Dﬂ , and for that the eigen-
value problem may be arranged in the  form

Qg=ﬂg. (9)

-2 :
In such cases A=0 , where w is the natural frequency and the dynamic
‘matrix D is the product of the flexibility and mass matrices given by

-1 .

D=D_ =%k (m-m ,), for the "underconstrained zone" (10)

~f ~ o wvef
- :
D = = (k~k ) m, for the "overconstrained zone" (11)
~ ~C ~ Nef W
-1 ; :

D=D =k m for the "stationarity state". (12) .

~ ~ 0 ~o H
: ' - ol -1
Note that B =D =-D..=k m-k " m.. (13)

:However, if the inverse dynagmic matrix is required for any case, the form

-1 -1
E = - = -
~C Eo gef = 5 Y Bef '

One can now examine the qualitative behavior of deformed mode eigenfrequen-
cies for small free vibration of a space vehicle model or any of its struc-
‘tural components about a stable equilibrium configuration by this proceduré.
To this end the following conclusion is relevant. The deformed mode natur=-
al frequencies of free vibrating system are lower in the"stationarity state"
idefined by equation (12) than in either in the "underconstrained zone" de-*
fined by equation (10) or in the n"overconstrained zone" defined by equation
(11), as shown in Figures 3 and 4. Mathematically this may be written as

wfié ‘%ié égi , for 1i=1,2,3,... (14)
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Eigenanalysis o

EIGENANALYSIS PROCEDURE

f the plane transverse vibrations of the fuselage-wing com-

: bination of reference |1 is presented in order to demonstrate the appli-
cation of the present procedure. The single element idealization of a
uniform wing attached to a fuselage mass is shown in Figure 1. For the

. unification and comparison of results, the assumptions, notation and data

‘ given on page 3

28, reference hﬂ are used. The element mass and- stiffne-

ss matrices measured in the local coordinate system may then be partition-—

. ed as

- IBI

&= T
~I II

Note that the r
after as R =

Figure

The mass and st
! system can then

Q2

: Therefore

qq

™ B

where J is a un
. the geometric c
‘ the node number
. numerically for
Lwing combinatio

1 11 K11 €1 13
~ o k
11 11 ST II SII II

atio of the fuselage mass to the wing mass is denoted here-

mF/mw.

1 Two node beam element idealization of a uniform wing
attached to fuselage mass, where EI = flexural rigid-
ity, { = half span length, 2mw = wing mass and 2mF
= fuselage mass.

iffness submatrices measured in the generalized coordinate :
he obtained by using the transformation equation

y 0 &
¢ w) U
7" T T
+
Br ¥ S 8rr 118~ Br % O % 11 ¢

m T
“L I~ Ny 1y

Sop T Brro1r’

5pp 811 11,

it matrix and ¢ is a transformation matrix derived from
onditions as shown in Figure 2. The suffix I and II denote
. The results of the previous section have been evaluated
various cases of free flexural vibration of the fuselage-
n as.illustrated in Figure 2. There is.a wide. variety of“J
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. numerical methods ‘available for solving the standard eigenvalue problem
'given by equation (12), [9] . The bound formula Ll] will be selected for,
the computation of upper and lower pounds for the fundamental frequency of’
: a space vehicle model for a variety of cases, applying the simplest form
(rep) "M% @ < (1ep?/2ep) T2 (15)
! In view of equations (9) and (12) the fundamental frquency at the "stat-
ionrity state" is then bounded by

3 Vf"""?
3,514675/BI/m ¢~ = ag=é 3,532639y EI/m, 4

: where the exact the value [}] is equal to 3,516 YEI/m 7 sec—l. For the
sake of comparison with the numerical results of reference EO » (ppP. 331
and 333), the bounds of the nondimensional fundamental frequency W were :

! computed for the cases 1.2 and 1.3 in Figure 2 for the mass ratios R = O,
1 and 3. The results are shown in Figure .3 and also in Table 1.

R Computed Values Results of [ﬁ]
0 5,561= 0, £ 5,651 5,606
c:)\frt)
P =
4,202 (£,t) 4,257 4,229
= W =
3 3,812 (£,1) 3,857 3;835
* = 2:) =t
17,019 (£,%) 18,050 17,544

Table 1 Nondimensional fundamental frequency &'J=w/ \/EI/mW[ for
the uniform wing attached to a fuselage mass performing
translatory (f,t) and rotary (£,x) rigid body motion,

(* rotary inertia of the fuselage is neglable).

{For a complete analysis, the bounds of the fundamental frequency ratio
T = W/ ¢y for the cases shown in Figure 2 were computed for various values
. of mass ratio. The average value of each bound pair is then listed in

‘ Pable 2 and lalso shown in Figure 3.

K 0 i 2 3 4 5 .10 oo
T(f £5) 7,5876 5,3458 5,1967 5,1425 5,1144 5,0972 5,0622 4,9636
!
T(f £ 1,5868 1,1972 11,1191 11,0854 1,0667 11,0546 1,0287 1
4

Table 2 The fundamental frequency ratio T of the wing fuselage
combination performing rigid plane motion (f,tr) and
translatory rigid motion (f,t) for various value of mass

ratio.

L.
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_fl . The results of the fundamental frequency ratio for the remaining cases wh-
"ich are independent of the mass ratio are as follows )
= : i = 7491 T = 5,8012
T(f,r) 4,9636 - T(c,t) 1,749 x ey ’

A review of the results listed in Tables 1 and 2 and also shown in Figure ‘!
. 3 indicates the following remarks

1. The lowest "stationarity" values of the deformed natural frequencies
are reached for systems performing neither rigid body motion nor poss-—
essing redundant constraints, regardless of the values of mass ratios.

. 2. In general the natural frequencies decrease (or no change) for an in-
crease in the mass ratio concerned with any component of the aerospace
vehicle as 1llustrateq in Figure 4.

{3, The case of a vanishingly small rotational inertia of the fuselage leads
to an invariance in the natural frequencies for various mass ratios
(i.e. point Q in Figure 4-b) due to rotary rigid body motion. In the
limit when the mass ratio approaches infinity (i.e. boundary PQR) , th-
ere is a sudden change in natural frequencies as indicated by the bou-
ndary of the variation region shown in Figure 4-b. A similar situat- :

: ion arises for the translatory rigid body motion of a system with neg-

liable mass and SLgnlflcant mass moment of inertia, such as an antenna.

. 4. If the mass moment of inertia of any appendage is considerable then the'
’ concurrent point Q disappears. However the effects of rotary rigid
body motion on the variations of natural frequencies increase as the
mass moment of inertia increases. In this case the nature of the ch-
anges in natural frequencies would be similar to that of the translat—
ry rigid body motion shown in Figures 3 and 4.

5. In particular, for the mass ratio R = O, there are appreciable changes ‘
in the natural frequeﬁcies. However this particular case conforms phy-
sically with the analysis of the vehicle as a whole. When the mass of |,
the fuselage is significantly greater than the mass of the appendage
in question, the variations in natural frequencies of the appendage have
a nearly linear behavior and in the limit they tend to be invariant (as
in the case of the overconstrained zone). :

" 6. The governing equality (14) permits one to conclude that the region of
variation for each defqrmed mode natural frequency is similar to that

of the fur.damental fre}iﬂncy for various mass ratios as illustrated in !
Figure 4. More investigation into the behavior of the system (particu-
larly in the overconstrained zone), may be easily performed by applying
the present procedure to a mathematical model involving higher degrees
of freedom. The information included in Figures 3 and 4 efficiently '
specifies the resonance zone for each component of the aerospace vehicle.

|

vee

CONCLUSION

The proposed procedure provides appreciable eigeninformation for various

: components of aerospace vehicles under axial, torsional, flexural or com- :
bined vibratory motion. The procedure is a method of analysis applicable
to a wide variety of related practical problems. The results of the ele-

‘ mentary illustrative example clearly demonstrate that the proposed method
is reliable for eigenanalysis of unconstrained systems, such as the wing-

: fuselage combination analyzed herein for a variety of rigid and deformed :
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_body motions. Tt is also uesful fox specifying the variation boundaries
‘of the deformed mode natural frequencies fox various appendage mass ratios
and for various types of rigid body motion as illustrated in Figure 3 and

:4.

This information, when used in conjunction with the resonance spectrum

' for various components of an aerospace vehicle, has considerable value to
the design engineer. ]
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