

CAIRO - EGYPT

OPTIMUM UONTROL OF A GYROSCOPIC STABILIZER
WITH STOCHASTIC DISTURBANCE
F.A. TOLBAH

ABSTRACI

The problem of optimum control of a moment compensating ver- : :tical gyro frame is considexed. The transfer function matrix. of the stabilizer has been derived. The optimum compensator of the stabilizer had been obtained such that the dispersion :of the error signal is minimized for a certain value of the settling time. The proposed technique had been compared by the conventional methods. The analytical methods as well as the simulation results proved the superiority of the proposed. method over the conventional approaches.

INTRODUCTION

The problem of improving the accuracy of the gyroscopic stabilizers had been developed by several authers. However, the design problem of optimum compensators minimizing the dispersion of the exror signal-in case of stochastic disturbance:and providing certain predetermined settling time of the gyroscopic stabilizer, has not yet developed. The present research deals with the problem of optimum control of a moment compensating stabilized vertical gyro frame. The -gyro system consists of two identical gyro elements suspen:ded on the stabilized frame. The two gyro elements are spining in opposite directions and are coupled such that the spining axis of each gyro can precess by the same angle but in opposite directions. Such elements can be used for stabilization purposes on a swinging navigation vehicles.

DERIVATION OF THE MRANSFER FUNCTION MATRIX OF THE STABIUIZER

Fig. I shows a schematic representation of the stabilizer with its two gyroacopic elements. Determining the magnitudes and directions of the inertia, gyroscopic and the

- Associate Professor. Dept. of Machine Design \& Production Eng., The Faculty of Eng., Ain Shams University, Cairo, Egypt.

Fig. 1
The gyroscopic system

Fig. 2
The eqivalent block diagram

DYN-5	43

「viscous friction moments [i], the equations of motion - can be obtained in the following forms:

$$
\begin{align*}
& \therefore \quad I_{y} \ddot{\alpha}+2 H \ddot{\beta}+C_{I} \alpha^{0}-\mathbb{M}_{\mathrm{n}}=I_{0} \ddot{\theta}+C_{1} \theta^{0}+\mathbb{M}_{I} \tag{1}\\
& 2 I_{g} \beta^{\ddot{ }}-2 H \alpha^{\circ}+C_{2} \beta^{\dot{0}}=-M_{2} \\
& \text { where } H \text { - the kinetic moment of the gyroscop } \\
& \text { : } \mathrm{C}_{1}, \mathrm{C}_{2} \text { - the coefficientsof viscous friction } \\
& \begin{array}{l}
\quad \mathbb{M}_{m} \text { - the servomotor moment } \\
I_{g}, M_{0} \text { - external disturbing moments } \\
I_{0} \text { and moments of inertia of the gyro element }
\end{array} \\
& \begin{array}{l}
\quad \mathbb{M}_{1}, M_{m} \text { - the servomotor moment } \\
I_{g}, I_{0} \text { - external disturbing moments } \\
\text { and the motor inertia of the gyro element }
\end{array} \\
& \begin{array}{l}
\quad \mathbb{M}_{1}, M_{m} \text { - the servomotor moment } \\
I_{g}, I_{0} \text { - external disturbing moments } \\
\text { and the motor inertia of the gyro element }
\end{array} \\
& \dot{\theta}, \theta^{\circ} \text { - the angular velocity and acceleration of } \\
& \text { rolling. } \\
& \therefore \quad 2 I_{g} \beta^{\ddot{ }}-2 H \alpha^{+}+C_{2} \beta^{\dot{0}}=-M_{2} \\
& \text { } \tag{1}\\
& \text { rolling. } \\
& \text { where } H \text { - the kinetic moment of the gyroscop } \\
& 1 \mathrm{~g}, \mathrm{I}_{0} \text { and the motor gro element }
\end{align*}
$$

of inertia of the servomotor refered to the frame axis. Fig. 2 shows the equivalənt block diagram for the gyroscopic sta-: bilizer with its compensator and servomotor. The transfer
function matrix of the gyro frame can be obtained in the following form:
$:\left[\begin{array}{l}\alpha(s) \\ \beta(s)\end{array}\right]=\left[\begin{array}{llll}W_{\alpha \theta}(s) & W_{\alpha M 1}(s) & w_{\alpha M 2}(s) & w_{\alpha \mathbb{M}}(s) \\ W_{\beta \theta}(s) & W_{\beta \mathbb{M} 1}(s) & w_{\beta \mathbb{M} 2}(s) & W_{\beta \mathbb{M} M}(s)\end{array}\right]$

$$
\left[\begin{array}{l}
\theta(s) \\
M 1(s) \\
\mathbb{M} 2(s) \\
M_{m}(s)
\end{array}\right]
$$

\square -

DYN-5	44

$$
\begin{array}{ll}
\varepsilon & \varepsilon(t)=\varepsilon_{g}(t)+\varepsilon_{m}(t) ; \\
\vdots & \varepsilon_{g}(t)=g(t)-\int_{0}^{T} g(t-T) w(T) d T
\end{array}
$$

Expanding the function $g(t-\tau)$ in the form:

$$
\begin{equation*}
g(t-\tau)=g(t)-\tau g(t)+\frac{T^{2}}{2!} g^{n}(t)-\ldots+(-1)^{x} \frac{T^{x}}{x!} g^{(x)}(t) ; \tag{6}
\end{equation*}
$$

:
the necessary condition for $\varepsilon_{\mathrm{g}}(t)=0$ can be formulated as

$$
\begin{align*}
& \text { follows: } \\
& g(t)=\mu_{0} g(t)-\mu_{1} g^{0}(t)+\frac{\mu_{2}}{2!} g^{n}(t) \cdots+(-1)^{r} \frac{\mu_{r}}{m!} g^{(r)}(t) \tag{7}\\
& \vdots \\
& \text { where: } \mu_{i}=\int_{0}^{1} r^{i} w(\tau) d T \quad i=1,2, \ldots r^{0} ;
\end{align*}
$$

Equation (7) leads to the following constraints:

$$
\begin{equation*}
\mu_{0}=I_{1} \mu_{1}=\mu_{2}=\cdots=\mu_{x_{1}}=0 \tag{9}
\end{equation*}
$$

It is possible to get the impulse response of the optimum filter $w(t)$ which minimizes the dispersion of the error sig$n a l \varepsilon_{m}(t)$ when taking into consideration the constraints given by equation set (9). In the present research, the signal $g(t)$ is considered to be in the following form:

$$
\begin{equation*}
g(t)=\sum_{i=0}^{\mathbb{M}} a_{i} t^{i} \tag{10}
\end{equation*}
$$

io assume further that the signal $g(t)$ has a spectral density function in the region ($-w_{0}, W_{0}$) and the signal met) has a spectral density function in the region $|w| \geqslant w o$. Accordingily, the signal $x(t)$ can be spited as shown in Fig. 40 The considered assumption simplifies the solution given in[2] and the filter $w(t)$ can be obtained in the form:

$$
\begin{equation*}
w(t)=A_{0}+A_{1} t+A_{2} t^{2}+\cdots+A_{r} t^{N} \tag{11}
\end{equation*}
$$

The impulse response of the other filter $w^{\infty}(t)$ can be obtainned by the same approach which was proposed by Wiener. Using the constraints given by (9) and equations (8). (11), it is : possible to derive the following set of equations which are innear in A_{i} :

Fig. 3
The optimum filter

Fig. 4
Spliting the signal

Fig. 5
Gyroscopic system transformation

DYN-5	46

$$
\left.\begin{array}{c}
A_{0} T+\frac{A_{1} T^{2}}{2}+\ldots+\frac{A_{r} r^{2}(r+1)}{r+1}=1 \\
A_{0} \frac{T^{2}}{2}+A_{1} \frac{r^{3}}{3}+\ldots+\frac{A_{r}(r+2)}{r+2}=0 \tag{12}\\
\vdots
\end{array}\right\}
$$

For any value of N, the previous set of equations can be solved w.r.t. A_{i}, e.g. for $N=2$ we get:

$$
\begin{equation*}
\vdots \quad A_{0}=\frac{9}{T}, \quad A_{1}=-\frac{36}{T^{2}}, \quad A_{2}=\frac{30}{T^{3}} \tag{13}
\end{equation*}
$$

For $N=3 ;$

$$
\begin{equation*}
A_{0}=\frac{1}{T}, \quad A_{1}=-\frac{120}{T^{2}}, A_{2}=\frac{240}{T^{3}}, A_{4}=-\frac{140}{T^{4}} \tag{14}
\end{equation*}
$$

Substituting the previous values in expression (11), the corresponding optimum transfer functions can be derived in : the following forms:

$$
\begin{align*}
& \vdots \quad W_{2}(s)=\frac{9}{T s}-\frac{36}{T^{2} s^{2}}+\frac{60}{T^{3} s^{3}}-e^{-T s}\left(\frac{3}{T s}+\frac{24}{T^{2} s^{2}}+\frac{60}{T^{3} s^{3}}\right) \tag{15}\\
& \vdots W_{3}(s)=\frac{1}{T s}-\frac{120}{T^{2} s^{2}}+\frac{480}{T^{3} s^{3}}-\frac{840}{T^{4} s^{4}} \\
& \quad-e^{-s T}\left(\frac{19}{T s}-\frac{60}{T^{2} s^{2}}-\frac{360}{T^{3} s^{3}}-\frac{840}{T^{4} s^{4}}\right) \tag{16}
\end{align*}
$$

The previous transfer functions satisfies the condition that
the corresponding impulse responses vanish for $t \leqslant 0^{-}$and $\mathrm{t}>\mathrm{T}$ 。
$\vdots \quad$ CHOISE OF THE FILTER MENORY (T)
The settling time of the optimum system should be obtained
: from the condition that the signal $g(t)$ is to be obtained with certain predeformined accuracy. If the signal $g(t)$ has a spectral density function within the intenval ($-w_{0}, w_{0}$)
then [3]:

$$
\begin{equation*}
\left|g_{\max }^{(k)}\right| \leqslant w_{0}^{k} g_{\max } \tag{17}
\end{equation*}
$$

Considering expression (10) and the prevous inequality, we
have:

$$
\begin{align*}
a_{k} & \leqslant \frac{\left|g_{\max }\right|}{k!} w_{0}^{k} ; \\
\sum_{k=0}^{N} a_{k} t^{k} & \leqslant \sum_{k=0}^{N}\left|g_{\max }\right| \cdot \frac{w_{0}^{k}}{k!} \cdot t^{k} \tag{18}
\end{align*}
$$

DYN-5	47

$$
\text { Considering the limit as } N \rightarrow \infty \text { : }
$$

$$
\begin{equation*}
g(t) \leqslant \sum_{k=0}^{\infty} \frac{\left|g_{\max }\right|}{k!} \cdot\left(\frac{2 \pi T}{T_{0}}\right)^{k}=\left|g_{\max }\right| e^{\left((2 \pi T) / T_{0}\right)} \tag{19}
\end{equation*}
$$

${ }_{\text {where }} T_{0}=2 \pi / w_{0}$
Accordingly, the maximum possible relative error can be obtained from the relation:

$$
\begin{equation*}
\frac{\varepsilon}{\left|g_{\max }\right|}=e^{\left(\frac{2 \pi T}{T_{0}}\right)}-\sum_{k=0}^{N} \frac{1}{k!}\left(\frac{2 \pi T}{T_{0}}\right)^{k} \tag{20}
\end{equation*}
$$

Assigning an acceptable value of the relative error
$\varepsilon /\left|\mathrm{g}_{\mathrm{max}}\right|$, equation (20) can be used for determining the corresponding value of T as a function of T_{0} and N 。

GYROSCOPIC SYSTEM TRANSFORMATION AND THE OPTIMUM COMPENSATOR
Considering the schematic diagram shown in Fig. 2, the gyroscopic system under consideration can be transformed to the equivalent system shown in Fig. 5. The transfer function relating the angles α, β can be obtained by the servomotor channel via $W_{\alpha M m}(s), W_{\beta M m}(s)$, i.e.:

$$
\begin{equation*}
\vdots \quad W_{\alpha \beta}(s)=\frac{\alpha(s)}{\beta(s)}=\frac{2 H}{2 I_{g} s+C_{2}} \tag{21}
\end{equation*}
$$

:The equivalent signal $m_{e q}(t)$ can be formulated in the form: :

$$
\begin{equation*}
\mathbb{M}_{e q}(s)=\theta(s) W_{\alpha \theta}(s)+\mathbb{M}_{1}(s) W_{\alpha \mathbb{M} I}(s)+\mathbb{M}_{2} W_{\alpha \mathbb{M} 2}(s) \tag{22}
\end{equation*}
$$

:The equivalent system in Fig. 5 is used to determine the transfer function of the optimum compensator. The transfer function of the optimum system is related to the equivalent : system in Fig. 5 through the relation:

$$
\begin{equation*}
: \quad \Phi^{0 p t} \cdot(s)=\frac{W_{\alpha \beta}(s) W_{c}^{*}(s) W_{\alpha \mathbb{M}}(s)}{I+W_{\alpha \beta}(s) W_{c}^{*}(s) W_{\alpha \mathbb{M} m}(s)} \tag{23}
\end{equation*}
$$

: Accordingly, the optimurn filter $W_{c}^{*}(s)$ can be deduced in the : form:

$$
\vdots
$$

$$
\begin{equation*}
W_{c}^{*}(s)=\frac{\Phi^{\circ p t}(s)}{W_{\alpha \beta}(s) W_{\alpha N M}(s)\left(I-\Phi^{\circ p t}(s)\right)} \tag{24}
\end{equation*}
$$

The transfer function $\Phi^{0 p t}(s)$ can be obtained from expression (11), and the system memory T is to be choosen from expression (20) for certain predetermined accuracy level.

\vdots

DESIGN OF AN OPTIMUM COMPENSATOR WITH INFINATE MEMORY

Considering the block diagram in Fig. 2 and the transfer function matrices given by expression (2), it is possible to: get the following relation:

$$
\begin{equation*}
\alpha(s)=\frac{W_{\alpha \theta}(s) W_{\beta \theta}(s)\left(1+W_{c}(s) W_{\beta M m}(s)\right)-W_{c}(s) W_{\alpha, \mathbb{M m}}(s)}{W_{\beta \theta}(s)\left(1+W_{C}(s) W_{\beta M m}(s)\right)} \cdot \theta(s) \tag{25}
\end{equation*}
$$

To remove the effect of θ on α, the following relation should be satisfied:

$$
\begin{equation*}
W_{\alpha \theta}(s) W_{\beta \theta}(s)\left(I+W_{c}(s) \quad W_{\beta M m}(s)\right)-W_{c}(s) W_{\alpha \mathbb{M m}}(s)=0 \tag{26}
\end{equation*}
$$

:ie.

$$
\begin{equation*}
W_{c}(s)=\frac{W_{\alpha \theta}(s) W_{\beta \theta}(s)}{W_{\alpha M m}(s)-W_{\beta M m}(s) W_{\alpha \theta}(s) W_{\beta \theta}(s)} \tag{27}
\end{equation*}
$$

Using the different expressions given in (2), it is possible: to get the following expression for $W_{C}(s)$:

where:

$$
\begin{equation*}
w_{c}(s)=s \cdot \frac{a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}{b_{4} s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}} \tag{28}
\end{equation*}
$$

$$
\begin{aligned}
& a_{4}=4 \mathrm{HI}_{0} I_{y} I_{g} ; a_{3}=2 \mathrm{HI}_{0}\left(2 I_{\mathrm{g}} \mathrm{C}_{1}+I_{y} \mathrm{C}_{I}\right)+8 \mathrm{HC}_{I} I_{I} I_{y} I_{g} ; \\
& :_{2}=4 \mathrm{HC}_{1} I_{0}\left(2 I_{\mathrm{g}_{2}} \mathrm{C}_{I}+\mathrm{I}_{\mathrm{y}} \mathrm{C}_{2}\right)+4 \mathrm{HC}_{1}^{2} I_{y} I_{\mathrm{g}}+2 \mathrm{HI} \mathrm{I}_{0}\left(4 \mathrm{H}^{2}+\mathrm{C}_{1} \mathrm{C}_{2}\right) ;: \\
& \mathrm{a}_{1}=4 \mathrm{HC}_{1} I_{0}\left(4 \mathrm{H}^{2}+\mathrm{C}_{1} \mathrm{C}_{2}\right)+2 \mathrm{HC}_{1}^{2}\left(2 I_{\mathrm{g}} \mathrm{C}_{I}+I_{y} \mathrm{C}_{2}\right) \text {; } \\
& : a_{0}=2 \mathrm{HC}_{1}^{2}\left(4 \mathrm{H}^{2}+\mathrm{C}_{1} \mathrm{C}_{2}\right) ; \mathrm{b}_{4}=4 I_{\mathrm{g}} \mathrm{I}_{\mathrm{y}} \text {; } \\
& b_{3}=2 I_{g} I_{y}\left(2 I_{y} C_{1}+I_{y} C_{2}\right)+\left(2 I_{g} C_{I}+I_{y} C_{2}\right): \\
& { }^{b_{2}}=2 I_{g} I_{y}\left(2 I_{y} I_{g}+C_{1} C_{2}\right)+\left(2 I_{g} C_{I}+I_{y} C_{2}\right)^{2}+ \\
& +2 I_{g} I_{y}\left(C_{1} C_{2}+4 H^{2}\right)-4 H^{2} I_{0}^{2} \\
& b_{I}=\left(2 I_{g} C_{I}+I_{y} C_{2}\right)\left(2 I_{y} I_{g}+C_{I} C_{2}\right)+ \\
& +\left(\mathrm{C}_{2} \mathrm{C}_{2}+4 \mathrm{H}^{2}\right)\left(2 I_{\mathrm{g}} \mathrm{C}_{I}+I_{y} \mathrm{C}_{2}\right)-8 \mathrm{HC}_{I} I_{0} ; \\
& b_{0}=\left(C_{1} C_{2}+4 H^{2}\right)\left(2 I_{g} I_{y}+C_{1} C_{2}\right)-4 H^{2} C_{1}^{2} \text { 。 }
\end{aligned}
$$

EXAMPLE

Consider the following practical data [4] for the gyroscopic system given in Fig. I:

$$
I_{y}=275.85 \mathrm{~N} \cdot \mathrm{~m} \cdot \sec ^{2} \quad ; \quad I_{0}=24.72 \quad \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{sec}^{2} ;
$$

DYN-5	49

$$
\begin{array}{ll}
\quad I_{g}=5.88 \times 10^{3} \quad \text { N.m.sec } ; & H=21.582 \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{sec}
\end{array}
$$

It is required to design the gyroscopic system to follow the
:signal $\alpha(t)=g(t)=a_{0}+a_{1} t+a_{2} t^{t 2}$ with an error not exceeding 0.05. The spectral density function of the premvious signal is intercepted in the region ($-2,2$) rad/sec. The disturbances θ, M_{1}, M_{2} have spectral density functions in the region $w>2 \mathrm{rad} / \mathrm{sec}$.
: Using the given data, it is possible to get the following transfer functions:
$:_{\alpha \theta}(s)=\frac{1}{\Delta(s)}\left(0.29 s^{2}+0.24 s+0.05\right) ;$
$W_{\alpha M m}(s)=\frac{1}{s \Delta(s)} \cdot(0.012 s+0.005) ; \quad W_{\alpha M 2}(s)=\frac{43.1}{s \Delta(s)} ;$
$\Delta(s)=3.24 s^{2}+1.45 s+465.8 ;$
$W_{\beta \theta}(s)=\frac{1}{\Delta(s)}(1067 s+423.4) ;$
$\vdots_{W_{\beta M 2}}(s)=\frac{1}{s \Delta(s)}(275.85 s+9.81) ; \quad W_{\beta M 2}(s)=\frac{43.1}{s \Delta(s)} ;$
$\vdots_{\alpha \beta}(s)=\frac{43.1}{0.0117 s+4.9 \times 10^{-3}} \cong \frac{3683.76}{s}$
U Using expression (15) it is possible to get the optimum transfer function $\Phi \circ p t(s)$, and the transfer function of the
: optimum compensator can be obtained from expression (24) in : the form:

$$
W_{c}(s)=\frac{s^{2} \Delta(s)}{7.95 \times 10^{4}} \cdot \frac{L(s)}{T^{3} s^{3}-L(s)}
$$

where $L(s)=9 T^{2} s^{2}-36 T s+60-e^{-s T}\left(3 T^{2} s^{2}+24 T s+60\right)$: Considering the following approximation:

$$
e^{-s T}=\frac{1-0.5 \mathrm{Ts}}{1+0.5 \mathrm{Ts}}
$$

:an expression for $W_{C}(s)$ can be obtained in the form:

$$
W_{c}(s)=\frac{s^{3}}{7.95 \times 10^{4}} \cdot \frac{9.72 T^{3} s^{4}+\bar{a}_{3^{3}}+\bar{a}_{2} s^{2}+\bar{a}_{1} s+\bar{a}_{0}}{T^{4}-7 T^{3} s^{3}+35 T^{2} s^{2}+24 T s-240}
$$

where:
$\bar{a}_{3}=4.35 T^{3}-77.75 T^{2} ; \bar{a}_{2}=-\left(81 T+34.8 T^{2}-1397.4 T^{3}\right) ;$
$\bar{a}_{1}=-\left(36.25 \mathrm{~T}+11179.2 \mathrm{~T}^{2}\right) ; \bar{a}_{0}=-11645 \mathrm{~T}$.
To choose T for an accuracy level of 0.05 and $N=2$, expre-
mission (20) can be used. Equation (20) is solved graphically

$D Y N-5$	50

for Ts and it i\& found that $T=0,314$ seo. Substituting sox : I in the previoua expression we get:
$W_{0}(s)=\frac{s^{3}}{7.95 x 10^{4}} \cdot \frac{0.03 s^{4}-7.52 s^{3}+14.4 s^{2}-1113.6 s-3656.5}{9.72 \times 10^{-3} s^{4}-0.21 s^{3}+3.84 s^{2}+7.53 s-240}$
:
The unitmstep response of the closed loop syatem with the previous optimurn filter can be obtained using expressions
(11) and (13): i, e.

$$
\begin{aligned}
\phi(t) & =A_{0} t+0.5 A_{1} t^{2}+0.333 A_{2} t^{3} \\
& =28.66 t-182.56 t^{2}+323 t^{3} ; 0 \leqslant t \leqslant 0.314 \text { sec. }
\end{aligned}
$$

The previous unit step response is plotted in Fig. 6.
Now the problem will be solved again using the given data and expeession (28), the following transfer function can be obtalned\&
$W_{c}(s)=s \cdot \frac{\left(500 s^{4}+357 s^{3}+198 s^{2}+151.7 s+1\right) \times 10^{-3}}{0.0012 s^{4}+0.002 s^{3}+0.0018 s^{2}+0.0008 s+1}$

CONCLUSIONS

The proposed technique for optimum compensator design represents a good tool for gyroscopic system accuracy improvements. The simulation results verified that the obtained optimum compensator increases the accuracy of the gyroscopic system if it is compared by the conventional design approaches. The simplified model of the optimum filter with limi-: ted memory is due to the adopted assumption that, the spectral density functions of the signal and the noise are not intersecting. The problem of practical implementation of the proposed optimum filter is not considered in the prosent research, and it representa another problem fox fusther invistigation.

REFERENCES

1. Bames F.N., "Stable Member Equations of Motion for a Three Axis Gyro Stabilized Platform". IEEE Trans., Vol. AES-7, Sep. 1971.
2. Solodovnikov V.V., "Introduction to the statistical dynamics of automatic control systems" $\mathrm{N}^{11} \mathrm{Y} .1975$.
3. Hannan E.J., "Multiple Time Series". John Wiley and Sons Inc. New York, 1970.
4. Magnus K. "Kreisel, Theorie und Anwendungen", SpringerVerlag, Berlin - Heidelberg - New York, 1971.
