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ABSTRACT 

To achieve the performance of mechanisms and machines to a higtlet accuracy,•  
: the elastic deformations of their members, under dynamic conditions, are 
• to be taken into account. In the presented work each member in the link-
age is treated as being elastic. The kinematic equations of constraints 
• at the kinematic pairs are presneted. These equations are introduced into 
:the equations of motion through Lagrange multipliers, to obtain a coupled • 
system of nonlinear algebric and differential equations. The later system 
will have the same form for each element. So, the total set of equations, 
•describing the linkage, can be generated automatically. Illustrative ex- • 
samples are given and the agreement of the results with those previously 
solved using other techniques is satisfactory. 

INTRODUCTION 

'During last decade, several researchs [1-9] have introduced improved math-
ematical models of planar systems taking into account the elastic behaviour 
of their members. The stiffness matrix approach of structural analysis 

:was used by Winfrey [1] . The technique developed in [2] was based on fl-
exibility matrix approach. Recently, the finite element technique is used. 
[3-5] for vibration analysis of general planar mechanisms. The effects of 
both coriolis accelerations and centrifugal forces, arising due to elastic 
-deformations, are discussed and obtained in the governing equations of mo- 
tion in [6] . 	 • 

• 
Due to the fact that the mechanism characteristics change with its position, 
:most researchs use the concept of instantaneous structure [1-6] . However, 
'a sensitivity approach is introduced in [3] premitting the calculation of • 
eigensolutions as a function of the mechanism position. A few experimental 
:work [6-8] have been carried out to verify the theoritical investigations. 

In this work, a sofisticated technique is proposed for the analysis of 
planar mechanisms composed of elastic members. The compatability condit- : 
:ions at joints and the equations of motion are coupled to obtain a system 
of differential and algebric equations. The presented formulation can be 
.applied to any planar linkage, Fig.1, having turning and/or sliding 
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kinematic pairs. The degree of freedom of its rigid body motion is one. 

Fig.l. General Planar Mechanism. 

GENERAL BEAM ELEMENT 

A general elastic beam element, moving in a plane, is shown in Fig.2, in 
two frames of references. The inertial (x,y) and the local-body fixed 
(7,-17) frames. The later frame beiny uCli that its origin coincides with 
the element mass center C. The position vector R and the angle of rot- 

! ation 6 define the position of the local frame wih respect to inertia 	' 
one. They represent the rigid body motion as well as the elastic defor-
mations at C. 

0 

Fig.2. General Beam Element. 

Let u,v be the components of elastic deformations of any point M(R,0), 
measured relative to local system. These deformations can be written 
in terms of relative nodal displacements u., j=1,2,...,6, by introducing • 
shape functions. Thus, it is possible toJ locate the position of all 

L. points of the element by ,specifying the...coordinates (x,y) of C , the 
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angle 6 and the six relative nodal displacements u.. These nine generaliz-
' ed coordinates are not all independent, three of tRem can be eliminated 
using boundary conditions. 

• The position vector of point M, in its deformed position, is given by 

RM  = Rc + rM  

Or, in matrix form 

xM 	
x+u 

I 
+ R(8) 

where, the rotation matrix R(8) is given by 

(1) 

cos 8 	-sin 8 

R(8)= 
sin 6 	cos 

The elastic deformations u and v are expressed in terms of nodal displace-
ments as [10] 

u = 03u3  

v = 01u1  + 02u2 	 (2) 

'where the shape functions OD  ., J =1,2,3 are 

01= 222 
 - 423 

02= 222  + 423 
	

(3) 

o3= - 2L 

with = ii/L is a nondimensional parameter, and L is the element length. 
It Mould be mentioned that u,v are measured relative to the deformations 
at C. So, in addition to 6 boundary conditions at nodal points, one have 
at C 

• u(0) = v(0) = v"(0) = 0 

where I I indicates differentiation with respect to R. 

Kinetic and Potential Energies 

•The angular velocity, with respect to inertial frame, of any differential 
segment (Fig.2) on the center line of the element is given by 

4+ v 

where I °  I indicates differentiation with respect to time. 

'The kinetic energy of the element is written as 

L.. 
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L 
2 

o2 	02 
M 	e(xM  + y ) + 3- ( ° + v‘e  

where, m2  •is the mass per unit length and J_ is the mass moment of inertia 
of the segment about an axis perpendicular to the plane of motion. 
Assuming that m- and J_ are constants, then 

1/2 

T=M  	( 
2 ... x M 	

ym  (12 + .- ;T : 	(eo  + i- .z 	Z 
MI j 	1 a V)  2d  (4)  

0 2 
+ 

o 2
) 
 

1  

	

-- 2 	 -II 
where M, I and A are the total mass, the area moment of inertia about neu-
tral axis and the cross sectional area of the element, respectively. Using 
Eqns (1), (2) and (3), the kinetic energy, in terms of generalized disp- ; 
lacements and velocities will be 

T =T 
Lx 

2 +y  2  + TT  
m 	. 	. 	1 I.2 	1 	• 2 A0 2 T + (L60 2 u3+ e u2

3  
+ u°2  ) 3  

1 	 . 	1 _02 - -y. 9(x° cose+y°  sin A) (ui+u2) + -s- 6 (111-1-u2) 2 

_ 1
1 	5 

0 	1 0 	
u a
2 
 2 

3 (x sin e. - y°  cos 6) (u1 + u
2  ) + --(u1  + 

	) 

1 0 0 	1 	°2 	.2 
5 3 

- -6 u (u
1  -u )+ -- e (u1-u2

) 2 .28 

+ 	 ,---) 1  em: (2u
3-L) (ul - u2)+ -21-6- (uel  - u2)2] 

..„ MI [eo 2 ..... 2_ ea , ue 
- u.2)  + 4 

' 2A 	L 	' 1 
3L2 1 2 5L

2 1 
(u°+u°)2+ —9- (uu 	u02) 2] 

If a slider exists at one of the extremities of an element, it may be en-: 
tered into the expression of T as a concentrated mass. 

The potential energy of the general elastic beam can be obtained, using 
Eq5.1.3 (1),(2) and (3), in terms of generalized displacements as follows 

V 	 EI
u 
2 
- ulu2+u 	2EA 	2 2 	+ 	(u3 )L 

where E is Young's modulus,assumed to be constant. 

Generalized Forces 

The generalized forces Q,, j=1,2,...9, associated with the corresponding 
generalized coordinates,3are obtained from the expression of virtual work .  
as follows 

T = 

(5)  

L3 	1  
(6)  

W = Q Sx + Qy 	+ 126, Se + (7) 

L 
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COMPATABILITY CONDITIONS AT JOINTS 

The chosen genezalized coordinates are related to those of the adjacent 
element (s) through the equations of constraint. These equations are 

'• kinematic in nature and specify the compatability conditions of elastic 
deformations at the kinematic pair (K.P) between two elements. 

P.=1). 

Fig.3. Turning Kinematic Pair. 

Fig.3, represents a turning K.P between elements i and j with mass centers 
C. and C., respectively. Two points p.(7.,0), on element i, and p. (R., ,0) , 
1 	 1 	-0-1 
on element j, are located before deformati

1 
 ons, by r and -"r'i, respeti4ely. 
• . 

The elastic deformations of p. andp.aresPecifledP 
	-* 	
b and i 

• • ---.. • e.. From Fig.3, one can obtain 
	 i 
n the ?allowing vectorial equation 

3 

-0.i. 	-.0.i 	-.0.. 	-.... 	-.01 	-0.1 

	

R
c 
+ rP 
	i 
+ e - e. - r'

P 
 - RC  = 0 	(8) 

cr, 	

3  

in components, with respect to inertial frame, one have 

	

x.
1 
 +(7

i
+u
i
)cos O.- v.1 

 sin 8.-x.-(R.
3
+u.)cose.+v,sinG. = 0 	(9) 

1 	1 3 	3 	3 3 3 

Y1  

	

. +(x.
1
+u.)sin 8.+ v.

1 
 cos G.-y.-(R.+u.)sinG.-v.

3
cosa.

3 
 = 0 	(10) 

1 	1 	1 3 3 3 	3  

The equations (9) and (10) imply that the points p.1 
 and p. have the same 

	

 3 	• 
deflections in any two perpendicular directions. 

Fig.4, represents a sliding K.P where the slider is attached to element j 
and considered to be a concentrated mass. The points p. and p. coincide 
after elastic deformations. Eq. (8) remains applicable in this case. 
However, (r3)° (?1)0=0 in case of sliding joint, while (r3)° =0 

in case of turning jEint. So, a relative displacement betweEn thePtwo 

elements is allowed at the slider. Another difference between the two 
joints is that in sliding joint the deflections of pi  and p. in direction 

of -17I are the same, while their deflections in RI direction3
are completely 

independent. There is only one constraint equation for the sliding joint' 
and may be obtained by defining the component of Eq.(8) in 17i  direction 

Las follows 

--]
DYN -6 S5 
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x.
1  sin 6.1 y. 1 cos e. 1 - x. sin 8. 1 - y. cos e. 1  - sine.-e.).-8.) 

1 	3 

- v.
1-u, sin(6.1

-8.
J
)+v. cos(8.1-0.3) = 0 J  

Fig.4. Sliding Kinematic Pair. 

x. 
J 

Any member in the linkage may be divided into several elements. In this 
case, in addition to equations (9) and (10) one must have 

8. + v. - 6. - v. = 0 1 	1 .(12) 

: Eq. (12) implies that the orientation of the deformea ith element at point' 
p 	relative to inertial frame, equals that of the jth element at point p.. 
Any equation of constraint between the elements i and j may be written inJ 

the form 

Oij  (qi, qj) = 0 
	

i < j 	(13) 

-1 t :where the vector q
n 
= Ex

n 
y
n 
e u 	 u

6
n 
 j 	is the vector of general- 

ized coordinates of the nth ele
n 
 men

l 
 t. The numbering i ‘..j is considered to 

avoid the repetition of the same set of equations. 

EQUATIONS OF MOTION 

;Assuming workless constraints, the equations of motion of the ith element 
are 

ji 
d 2L1 I _ 1 	 t 	-3951c 	t  
dt Ocio 19q r' 	q k 	n 

	

k=1 	k=1 vg 

(14) 
where, L = T - V is the Lagrangian function, 

n,m are the number of constraint equations between elements i and j 
for i .<.:j and i>j , respectively. 

L.. 
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The "vs are the Lagrange multipliers. There are many A,s as the number 
of constraint equations. The equations of motion for the ith element are 
given in the appendix where they are arranged in a coupled system of non-

! linear algebric and differential equations of the form 

f(Y
0

Y) = 0 
	

(15) 

where y is a vector of N time-dependent variables. 

For simultaneous numerical solution of Eq.(15), the total time interval 
(0,T) is divided into short time intervals h. = t 	t.. The progress 

1  
1 	i+ 1 	r 4.1 

from t. to t. 	is carried out using Gear's algorithm Llij , and for each 
time step corrector formulas are used such that iterative procedure is 
continued until all of the Newton differences Ay are below a specified 
tolerence level. 

APPLICATIONS 

Fig.5. Slider Crank Mechanism Fig.6. Four Bar Mechanism. 

Slider Crank Mechanism (Fig.5) 

The characteristics of the chosen mechansim are : 

• 
	

Crank length = 6 in , 	crank angular velocity =124.8 rad/sec 
connecting rod length=l2in,connecting rod diameter= 0.25 in 

The two members are made of steel with: 

E = 30 x 106 Ib/in = 0.0007331 Ib.sec
2
/in

4 

The crank is considered to be rigid and the slider is assumed to be mass-
less. In the initial position, ‘P = 0, the elastic deformations are ass- 

LIAmed to be zero. The elastic deformation v at the midpoint of the 	J 
c 



----.one element 
-----two elements 
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connecting rod is shown in Fig.7. The results are obtained for two cases 
of connecting rod modelling. First, it is taken as one element. Secondly, 
it is divided into two equal elements. The results are compared with th- ' 
ose obtained using another method [9] for the same mechanism. One can 
note the agreement of the results. 

Fig.7. Eidetic Deformation at C 

'112(reti.) 

Four Bar Mechanism (Fig.6) 

All members are considered to be elastic and two equal finite elements 
for each link are used in the analysis. The characteristics of the mech-
ansim are : 

L1  = 10 	in 	L
2 
= 5 	in 

L
3 
= 11 	in 
	L

4 
= 10.5 in 

where, L
1
,L
2
,L
3 
and L

4 
are the lengths of fixed, crank, coupler and foll-

ower links, respectively. 

Each member is considered to be a steel rod with 

E = 30 x 10
6 

Ib/in
2 	

= 0.000725 Ib.sec2/in4  

A = 0.25 	in
2 	

and 	I = 0.0208 	in
4 

Tie input angular velocity is uniform and equals 125 rad/sec. In the ini-; 
tie.! position, P = 0, the elastic deformations are assumed to be zero. 
Tt , 	l.astic deformations e and 8 at the joint A are shown in Figures (8) 
and (9), respectively, where e is the x component of deformation at A. 

' The results are in good agremen
x 
 t with those obtained in [53 for the same 

mechanism. 

L 
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T (deg.) 

rig.B. Deformation e - Four Bar Mechanism x   

 

if (deg.) 

Fig.9. Deformation 0 - Four Bar mechanism. 

CONCLUSION 

 

A general formulation is presented for the dynamic analysis of planar 
:mechanisms consisting of elastic members. The compatability conditions 
of the deformations, at the kinematic pairs, are investigated and intro-
duced into the analysis through Lagrange multipliers. The governing eq- 

:uations of motion combine both the rigid body motions and the small elastic 
deformations. The results, obtained by applying the suggested technique 
on numerical examples, show a good agreement with those previously solved : 

:using other methods. An important feature of this formulation is that 
'linear combinations of the multipliers give the dynamic reacting forces 
at the kinematic pairs, which will be the interest of the authors for 
future work. 
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the equations of motion of ith element are : 
• 

• PI - Qx A + B = 0 x x 
• pe - Q

y 
 + A

y  + By  = 0 y  

1 
- 1? 	d3(disine - d2cos 8)(ul+u2)- 3(dicos8+d2sine)(d4+d6) 

- Q + A
e 
 + B = 0 

	

* 	p 

• + 

	-5c13(dicose+d2sine)+ -6- d3d6 	1

- - 

	2 
ul 	 L3 (2u1-u2); 

M 	

1 	
d3  (1.114-u2] + 32E1  

- Qul + Aul + Bul 
= 0 

O ▪ M 

• 	

Pu2 	
2 1[1 	1 	1 7c13(dicos6+d2sine)- s- d3d6  - 	d3

2 
 (23u1+33u2) + 

32E1  
(2u2-u1) - u2 + Au2 

+ B
u2 

= 0 3 

• _0 	(d 	1 ,4 2
(L+6u3) + 

4EA  
L'u3 - 2 5 3 4--5

)
+ -3- -3 	L 

u
3 
Qu3

+A
u3
+Bu3 

= 0 

L.. 
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r- 	 1 
Px 	2  2d1 	

1 d3  - 	(u +-u2 )cos9 	-3-(d4+d5 )sinel = 0 
m 

k 	3  

1 	 1 P 	2 42  - —3 d3 (u1+u2 ) sine + —3 (d4+d case] = 0 

- 2 6 	3(d icos8+d2sin8) (ui+u2)- 	(d4-d )(L - 2u3 )  10 

- — d 1 	 2 	 2 	2 1 u3d3 (L+u3 )+ -5- d3 cui+u2 ).0 5 	2 	 14 d3 (u1-119 )  

1 - MI 
 F 3  

M 1 	 1 pul 	- 2 _ [ - --5 	 1 d-(disine - d2cos8)+ lo 3(L-2u3) -,---(33d4+23d5 )11 

MI [2 	1 
+ 2A L d 3 - 	(94d4 - 14d5  I = 

151,` 

Pu2 	[ 3(d1 sin 8 - d2 dose) - 10  d3  (L-2u3  )- —1" 70  (23d4+33d5 ) 

MI[2_ - 	
` 2A L 	 (14d4-94d5 )] = 0 

15L 

* * 

*** 

*** 

***. 

*** 

*** 

*** 

M 	1 	 2 pu3 + 2  [-5- d3(ul-u2) 	3 d6 	= 0 

x0 - dl 	= 0 
y° - d2 	=0 
8* - d3 	= 0 

0 ul- d4 	= 0 
u° - d 	= 0 2 	5 
u° - d 	= 0 3 	6 

* * 

* * 

* * 

* * 

* * 
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