DYN-6	51

MILITARY TECHNICAL COLLEGE
CAIRO - EGYPT

ANALYTICAL INVESTIGATION OF ELASTIC MECHANISMS

E.I. IMAM * M. EL-MADDAH *

Abstract

To achieve the performance of mechanisms and machines to a higher accuracy, : the elastic deformations of their members, under dynamic conditions, are to be taken into account. In the presented work each member in the linkage is treated as being elastic. The kinematic equations of constraints at the kinematic pairs are presneted. These equations are introduced into : the equations of motion through Lagrange multipliers, to obtain a coupled: system of nonlinear algebric and differential equations. The later system will have the same form for each element. So, the total set of equations, describing the linkage, can be generated automatically. Illustrative ex-. amples are given and the agreement of the results with those previously solved using other techniques is satisfactory.

INTRODUCTION

- During last decade, several researchs [1-9] have introduced improved mathematical models of planar systems taking into account the elastic behaviour of their members. The stiffness matrix approach of structural analysis : was used by Winfrey [1]. The technique developed in [2] was based on flexibility matrix approach. Recently, the finite element technique is used. $[3-5]$ for vibration analysis of general planar mechanisms. The effects of: both coriolis accelerations and centrifugal forces, arising due to elastic - deformations, are discussed and obtained in the governing equations of mo:tion in [6].

Due to the fact that the mechanism characteristics change with its position, :most researchs use the concept of instantaneous structure [1-6] . However, a sensitivity approach is introduced in [3] premitting the calculation of : eigensolutions as a function of the mechanism position. A few experimental :work $[6-8]$ have been carried out to verify the theoritical investigations.
In this work, a sofisticated technique is proposed for the analysis of planar mechanisms composed of elastic members. The compatability condit:ions at joints and the equations of motion are coupled to obtain a system of differential and algebric equations. The presented formulation can be applied to any planar linkage, Fig.l, having turning and/or sliding

* Lt. Col. Drs, Department of Mechanics and Elasticity, Military Technical College, Cairo, Egypt.

DYN-6	52

GENERAL BEAM ELEMENT

A general elastic beam element, moving in a plane, is shown in Fig.2, in : two frames of references. The inertial (x, y) and the local-body fixed (\bar{x}, \bar{y}) frames. The later frame being such that its origin coincides with the element mass center C. The position vector \vec{R} and the angle of rot- : \vdots ation θ define the position of the local frame with respect to inertia one. They represent the rigid body motion as well as the elastic deformotions at C.

Fig.2. General Beam Element.

Let u, v be the components of elastic deformations of any point $M(\bar{x}, 0)$, measured relative to local system. These deformations can be written in terms of relative nodal displacements $u_{j}, j=1,2, \ldots, 6$, by introducing shape functions. Thus, it is possible to locate the position of all
L. points of the element by specifying the..coordinates (x, y) of C, the
angle θ and the six relative nodal displacements u_{j}. These nine generalized coordinates are not all independent, three of them can be eliminated ; using boundary conditions.
: The position vector of point M, in its deformed position, is given by

$$
\vec{R}_{M}=\vec{R}_{C}+\vec{r}_{M}
$$

:
Or, in matrix form
$\begin{gathered}\vdots \\ \vdots\end{gathered} \quad\left\lceil\begin{array}{c}x_{M} \\ y_{M}\end{array}\right\rceil=\left[\begin{array}{l}x \\ y\end{array}\right\rceil+R(\theta)\left\lceil\begin{array}{c}\bar{x}+u \\ v\end{array}\right]$
where, the rotation matrix $\mathrm{R}(\theta)$ is given by

$$
R(\theta)=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

: The elastic deformations u and v are expressed in terms of nodal displacements as [10]

$$
\begin{align*}
& \mathrm{u}=\phi_{3} u_{3} \\
& \mathrm{v}=\varnothing_{1} \mathrm{u}_{1}+\phi_{2} \mathrm{u}_{2} \tag{2}
\end{align*}
$$

\vdots where the shape functions $\varnothing_{j}, j=1,2,3$ are

$$
\begin{align*}
& \phi_{1}=2 \mathcal{L}^{2}-4 \mathcal{L}^{3} \\
& \phi_{2}=2 \mathcal{L}^{2}+4 \mathcal{L}^{3} \tag{3}\\
& \phi_{3}=-2 \mathcal{L}
\end{align*}
$$

with $\mathcal{L}=\bar{x} / L$ is a nondimensional parameter, and L is the element length. : It should be mentioned that u, v are measured relative to the deformations at C. So, in addition to 6 boundary conditions at nodal points, one have at C

$$
u(0)=v(0)=v^{n}(0)=0
$$

where |'| indicates differentiation with respect to \bar{x}. \vdots

Kinetic and Potential Energies

\vdots The angular velocity, with respect to inertial frame, of any differential segment (Fig.2) on the center line of the element is given by

```
\vdots}\quad\stackrel{0}{0}+\mp@subsup{v}{}{\circ
```

where $\left.\right|^{\circ} \mid$ indicates differentiation with respect to time.
${ }^{\text {T }}$ The kinetic energy of the element is written as

$$
T=\frac{1}{2} \int_{-\frac{L}{2}}^{\frac{L}{2}}\left[m_{\bar{x}}\left(\dot{x}_{M}^{2}+\stackrel{y}{M}_{M}^{2}\right)+J_{\bar{x}}\left(\theta^{\circ}+v^{\circ}\right)^{2}\right] d \bar{x}
$$

where, $m_{\bar{x}}$ is the mass per unit length and $J_{\bar{x}}$ is the mass moment of inertia of the segment about an axis perpendicular to the plane of motion.
Assuming that $m_{\bar{x}}$ and $J_{\overline{\mathrm{x}}}$ are constants, then

$$
\begin{equation*}
T=\frac{M}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(x_{M}^{0}+y_{M}^{0}\right) d \mathcal{L}+\frac{M I}{2 A} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\theta^{0}+\frac{1}{L} \frac{\partial v^{0}}{\partial \mathcal{L}}\right)^{2} d \mathcal{L} \tag{4}
\end{equation*}
$$

where M, I and A are the total mass, the area moment of inertia about neutral axis and the cross sectional area of the element, respectively. Using Eqns (1), (2) and (3), the kinetic energy, in terms of generalized disp: lacements and velocities will be
\vdots

$$
T=\frac{M}{2}\left[x^{\circ}{ }^{2}+y^{\circ}+\frac{1}{12} L^{2} \theta^{\circ}+\frac{1}{3}\left(L \theta^{\circ} 2 u_{3}+\theta^{\circ} u_{3}^{2}+u_{3}^{\circ}\right)\right.
$$

$$
-\frac{1}{3} \theta^{\circ}\left(x^{\circ} \cos \theta+y^{\circ} \sin \theta\right)\left(u_{1}+u_{2}\right)+\frac{1}{5} \theta^{0}\left(u_{1}+u_{2}\right)^{2}
$$

$$
\begin{equation*}
-\frac{1}{3}\left(x^{\circ} \sin \theta-y^{\circ} \cos \theta\right)\left(u_{1}^{\circ}+u_{2}^{\circ}\right)+\frac{1}{5}\left(u_{1}^{\circ}+u_{2}^{\circ}\right)^{2} \tag{5}
\end{equation*}
$$

$$
-\frac{1}{5} \theta^{0} u_{3}^{0}\left(u_{1}-u_{2}\right)+\frac{1}{28} \theta^{0}\left(u_{1}-u_{2}\right)^{2}
$$

$$
\left.+\frac{1}{10} \theta^{0}\left(2 u_{3}-L\right)\left(u_{1}^{0}-u_{2}^{0}\right)+\frac{1}{28}\left(u_{1}^{0}-u_{2}^{0}\right)^{2}\right]
$$

$$
+\frac{M I}{2 A}\left[\theta^{\circ} 2-\frac{2}{L} \theta^{0}\left(u_{1}^{0}-u_{2}^{0}\right)+\frac{4}{3 L^{2}}\left(u_{1}^{0}+u_{2}^{0}\right)^{2}+\frac{9}{5 L^{2}}\left(u_{1}^{0}-u_{2}^{0}\right)^{2}\right]
$$

If a slider exists at one of the extremities of an element, it may be entered into the expression of T as a concentrated mass.
The potential energy of the general elastic beam can be obtained, using $E q n_{s}(1),(2)$ and (3), in terms of generalized displacements as follows

$$
\begin{equation*}
V=\frac{32 E I}{L^{3}}\left[u_{1}^{2}-u_{1} u_{2}+u_{2}^{2}\right]+\frac{2 E A}{L}\left(u_{3}^{2}\right) \tag{6}
\end{equation*}
$$

where E is Young's modulus, assumed to be constant.

Generalized Forces

The generalized forces $Q_{j}, j=1,2, \ldots 9$, associated with the corresponding
: generalized coordinates, are obtained from the expression of virtual work :
as follows as follows

$$
\begin{equation*}
w=Q_{x} \delta x+Q_{y} \delta y+Q_{\theta} \delta \theta+\sum_{j=1}^{6} Q_{j} \delta u_{j} \tag{7}
\end{equation*}
$$

DYN-6	55

COMPARABILITY CONDITIONS AT JOINTS

The chosen generalized coordinates are related to those of the adjacent element (s) through the equations of constraint. These equations are : kinematic in nature and specify the compatability conditions of elastic deformations at the kinematic pair ($\mathbb{K} \cdot \mathbb{P}$) between two elements.
: \vdots

Fig. 3. Turning Kinematic Pair.

Fig. 3, represents a turning $k . p$ between elements i and j with mass centers C_{i} and C_{j}, respectively. Two points $p_{i}\left(\bar{x}_{i}, 0\right)$, on element i, and $p_{j}\left(\bar{x}_{j}, 0\right)$, on element j, are located before deformations, by \vec{r}_{p}^{1} and $\vec{r} j$, respectively. The elastic deformations of p_{i} and p_{j} are specified $p_{b y}$ the $p_{\text {vectors }} \vec{e}_{i}$ and :
$\vdots \overrightarrow{e_{j}}$. From Fig.3, one can obtain the following vectorial equation
$\vdots \quad \vec{R}_{c}^{i}+\vec{r}_{p}^{i}+\vec{e}_{i}-\vec{e}_{j}-\vec{r}_{p}^{j}-\vec{R}_{c}^{j}=0$
or, in components, with respect to inertial frame, one have
$\vdots \quad x_{i}+\left(\bar{x}_{i}+u_{i}\right) \cos \theta_{i}-v_{i} \sin \theta_{i}-x_{j}-\left(\bar{x}_{j}+u_{j}\right) \cos \theta_{j}+v_{j} \sin \theta_{j}=0$
\vdots
The equations (9) and (10) imply that the points p_{i} and p_{j} have the same. deflections in any two perpendicular directions.
\vdots
Fig. 4 , represents a sliding K. P where the slider is attached to element j and considered to be a concentrated mass. The points p_{i} and p_{j} coincide
: after elastic deformations. Eq. (8) remains applicable in this case. However, $\left(\vec{r}_{p}^{j}\right)^{\circ} \neq 0,\left(\vec{r}_{p}^{i}\right)^{0}=0$ in case of sliding joint, while $\left(\vec{r}_{p}^{j}\right)^{0}=\left(\vec{r}_{p}^{i}\right)^{\circ}=0$ in case of turning joint. So, a relative displacement between the ${ }^{p}$ two elements is allowed at the slider. Another difference between the two joints is that in sliding joint the deflections of p_{i} and p_{j} in direction of \bar{y}_{i} are the same, while their deflections in \bar{x}_{j} direction are completely.
: independent. There is only one constraint equation for the sliding joint : and may be obtained by defining the component of Eq. (8) in \bar{Y}_{i} direction _.. follows

DYN-6	56

$$
\begin{align*}
& x_{i} \sin \theta_{i}-y_{i} \cos \theta_{i}-x_{j} \sin \theta_{i}-y_{j} \cos \theta_{i}-\bar{x}_{j} \sin \left(\theta_{i}-\theta_{j}\right) \\
& -v_{i}-u_{j} \sin \left(\theta_{i}-\theta_{j}\right)+v_{j} \cos \left(\theta_{i}-\theta_{j}\right)=0 \tag{11}
\end{align*}
$$

!

Fig.4. Sliding Kinematic Pair.
: Any member in the linkage may be divided into several elements. In this case, in addition to equations (9) and (10) one must have

$$
\begin{equation*}
\theta_{i}+v_{i}^{\prime}-\theta_{j}-v_{j}=0 \tag{12}
\end{equation*}
$$

: Eq. (12) implies that the orientation of the deformed th element at point ${ }^{\text {: }}$ p_{i}, elative to inertial frame, equals that of the fth element at point p_{j}. Any equation of constraint between the elements i and j may be written in the form

$$
\begin{equation*}
\phi^{i j}\left(q^{i}, q^{j}\right)=0 \quad i<j \tag{13}
\end{equation*}
$$

: where the vector $q^{n}=\left[x_{n} y_{n} \Theta_{n} u_{1}^{n} \ldots . u_{6}^{n}\right]^{t}$ is the vector of generalized coordinates of the nth element. The numbering $i<j$ is considered to

$$
\vdots
$$ avoid the repetition of the same set of equations.

EQUATIONS OF MOTION

: Assuming workless constraints, the equations of motion of the ith element are

$$
\begin{equation*}
\frac{d}{d t}\left\lceil\frac{\partial L}{\partial q^{\bullet}}\right\rceil-\left\lceil\frac{\partial L}{\partial q}\right\rceil=\lceil Q\rceil+\sum_{k=1}^{n}\left\lceil\frac{\partial \phi_{k}^{i j}}{\partial q}\right\rceil\left\lceil\lambda_{k}^{i j}\right\rceil^{t}+\sum_{k=1}^{m}\left\lceil\frac{\partial \phi_{k}^{j i}}{\partial q}\right\rceil\left\lceil\lambda_{k}^{j i}\right\rceil^{t} \tag{14}
\end{equation*}
$$

where, $L=T-V$ is the Lagrangian function, n, m are the number of constraint equations between elements i and j $\vdots \quad$ for $i<j$ and $i>j$, respectively.

DYN-6	57

: The $\lambda_{\text {, }}$ are the Lagrange multipliers. There are many λ_{0} s as the number of constraint equations. The equations of motion for the ith element are ; given in the appendix where they are arranged in a coupled system of non-
: linear algebric and differential equations of the form

$$
\begin{equation*}
f\left(y^{0}, y\right)=0 \tag{15}
\end{equation*}
$$

: where y is a vector of N time-dependent variables.
! For simultaneous numerical solution of Eq. (15), the total time interval $(0, T)$ is divided into short time intervals $h_{i}=t_{i+1}-t_{i}$. The progress i from t_{i} to t_{i+1} is carried out using Gear's algorithm [II], and for each
! time step corrector formulas are used such that iterative procedure is continued until all of the Newton differences Δy are below a specified ; ; tolerence level.

APPLICATIONS

! Fig.5. Slider Crank Mechanism

Fig.6. Four Bar Mechanism.
\vdots

S Slider Crank Mechanism (Fig.5)
The characteristics of the chosen mechansim are :
\vdots Crank length $=6$ in , crank angular velocity $=124.8 \mathrm{rad} / \mathrm{sec}$ connecting rod length=l2in, connecting rod diameter=0.25 in
: The two members are made of steel with:

$$
E=30 \times 10^{6} \mathrm{Ib} / \mathrm{in}^{2} ; \quad \rho=0.0007331 \quad \mathrm{Ib} \cdot \mathrm{sec}^{2} / \mathrm{in}^{4}
$$

\vdots The crank is considered to be rigid and the slider is assumed to be massless. In the initial position, $\varphi=0$, the elastic deformations are assLumed to be zero. The elastic deformation v_{c} at the midpoint of the ...

$D Y N-6$	58

connecting rod is shown in Fig.7. The results are obtained for two cases
of connecting rod modelling. First, it is taken as one element. Secondiy,
it is divided into two equal elements. The results are compared with th-
: ose obtained using another method [9] for the same mechanism. One can
note the agreement of the results.

Pig.7. Elastic Deformation at C
!
Four Bar Mechanism (Fig.6)
: All members are considered to be elastic and two equal finite elements for each link are used in the analysis. The characteristics of the mechansim are :

$$
\begin{array}{llll}
L_{1}=10 & \text { in } & , & L_{2}=5 \\
L_{3}=11 & \text { in in } & , & L_{4}=10.5 \text { in }
\end{array}
$$

where, L_{1}, L_{2}, L_{3} and L_{4} are the lengths of fixed, crank, coupler and follower links, respectively.

Each member is considered to be a steel rod with

$$
\begin{array}{llll}
\mathrm{E}=30 \times 10^{6} & \mathrm{Ib} / \mathrm{in}^{2} & \rho=0.000725 & \mathrm{Ib} \cdot \mathrm{sec}^{2} / \mathrm{in}^{4} \\
\mathrm{~A}=0.25 & \mathrm{in}^{2} & \text { and } & I=0.0208 \quad \mathrm{in}^{4}
\end{array}
$$

The input angular velocity is uniform and equals $125 \mathrm{rad} / \mathrm{sec}$. In the ini-m tial position, $\boldsymbol{\varphi}=0$, the elastic deformations are assumed to be zero. Tl lastic deformations e_{x} and θ at the joint A are shown in figures (8) and (9), respectively, where e_{x} is the x component of deformation at \mathbb{A}. : The results are in good agrement with those obtained in [5] for the same mechanism.

A general formulation is presented for the dynamic analysis of planar : mechanisms consisting of elastic members. The compatability conditions of the deformations, at the kinematic pairs, are investigated and introduced into the analysis through Lagrange multipliers. The governing eq: uations of motion combine both the rigid body motions and the small elastic deformations. The results, obtained by applying the suggested technique on numerical examples, show a good agreement with those previously solved using other methods. An important feature of this formulation is that linear combinations of the multipliers give the dynamic reacting forces at the kinematic pairs, which will be the interest of the authors for future work.
!

REFERENCES

!1. Winfrey, R.C., "Elastic link Mechanism Dynamics," J. of Eng. Ind., 268-272 (1971)。
:2. Erdman, A.G., Sandor, G.N. and Oakberg, R.C., "A General Method for
Kineto - Elasto Dynamic Analysis and Synthesis of Mechanisms", J. of Eng. Ind., 1193-1205 (1972).
;
!3. Imam I., Sandor, G.N. and Kramer, S.N., "Deflection and Stress Analysis in High Speed Planar Mechanisms with Elastic Links", J. of Eng. Ind., 541-548 (1973).
4. Imam I., and Sandor, G.N., "High Speed Mechanism Design- A General Analytical Approach", J. of Eng. Ind., 609-628 (1975).
${ }^{\text {5 }}$. Bahgat, B.M. and Willmert, K.D., "Finite Element Vibrational Analysis of Planar Mechanisms", Mech. \& Mach. Theory, 47-71 (1976).

$D Y N-6$	60

6. Imam, E.I., Der Hagopian, J. and Lalanne, M., "Contributıon to the Dynamic Behaviour of Flexible Mechanisms", Shock and Vibration Bulletin, 52, 125-133 (1982).
7. Alexander, R.M. and Lowrence, K.L., "An Experimental Investigation of the Dynamic Response of an Elastic Mechanism", J. of Eng., Ind. 268-274 (1974).
8. Sutherland, G.H., "Analytical and Experimental Investigation of High Speed Elastic Membered Linkage', J. of Eng. Ind., 788-794 (1976).
! 9. Chu, S.C. and Pan, K.C., "Dynamic Response of High Speed Slider Crank Mechanism with an Elastic Connecting Rod", J. of Eng. Ind., 542-550 (1975) 。
9. Przemieniecki, J.S.," Theory of Matrix Structural Analysis", McGrawHill Co. New York (1968).
:
1l. Gear, C.W., "Numerical Initial Value Problems in Ordinary Differential Equations", Printice-Hall, Englewood (1971).
;

A.PPENDIX

\vdots

$$
\begin{array}{rlrl}
\text { Denoting } & A_{q} & =\sum_{k=1}^{n} \frac{\partial \phi_{k}^{i j}}{\partial q} \lambda_{k}^{i j} & i<j \\
\vdots & B_{q} & =\sum_{k=1}^{m} \frac{\partial \phi_{k}^{j i}}{\partial q} \lambda_{k}^{j i} & i>j
\end{array}
$$

the equations of motion of ith element are :

$$
\begin{array}{ll}
* & p_{x}^{0}-Q_{x}+A_{x}+B_{x}=0 \\
\vdots & p_{y}^{0}-Q_{y}+A_{y}+B_{y}=0 \\
* & p_{\theta}^{0}-\frac{M}{2}\left[\frac{1}{3} d_{3}\left(d_{1} \sin \theta-d_{2} \cos \theta\right)\left(u_{1}+u_{2}\right)-\frac{1}{3}\left(d_{1} \cos \theta+d_{2} \sin \theta\right)\left(d_{4}+d_{5}\right)\right] \\
\vdots & \\
& -Q_{\theta}+A_{\theta}+B_{\theta}=0
\end{array}
$$

$$
\vdots \quad * \quad p_{u l}^{0}+\frac{M}{2}\left[\frac{1}{3} d_{3}\left(d_{1} \cos \theta+d_{2} \sin \theta\right)+\frac{1}{5} d_{3} d_{6}-\frac{1}{70} d_{3}^{2}\left(u_{1}+u_{2}\right)\right]+\frac{32 E I}{L^{3}}\left(2 u_{1}-u_{2}\right)
$$

$$
-Q_{u l}+A_{u l}+B_{u l}=0
$$

$$
\vdots \quad \mathrm{p}_{\mathrm{u} 2}^{0}+\frac{M}{2}\left[\frac{1}{3} d_{3}\left(d_{1} \cos \Theta+d_{2} \sin \theta\right)-\frac{1}{5} d_{3} d_{6}-\frac{1}{70} d_{3}^{2}\left(23 u_{1}+33 u_{2}\right)\right]+
$$

$$
+\frac{32 E I}{L^{3}}\left(2 u_{2}-u_{1}\right)-Q_{u 2}+A_{u 2}+B_{u 2}=0
$$

$\vdots \quad$ * $\quad p_{u 3}^{0}-\frac{M}{2}\left[\frac{1}{5} d_{3}\left(d_{4}-d_{5}\right)+\frac{1}{3} d_{3}^{2}\left(L+6 u_{3}\right)\right]+\frac{4 E A}{L} u_{3}-Q_{u 3}+A_{u 3}+B_{u 3}=0$

$$
* * \quad p_{u 3}+\frac{M}{2}\left[\frac{1}{5} d_{3}\left(u_{1}-u_{2}\right)-\frac{2}{3} d_{6}\right]=0
$$

$$
\begin{aligned}
\vdots & * * \\
& x^{0}-d_{1}
\end{aligned}=0
$$

$$
\begin{aligned}
& \text { ** } p_{x}-\frac{M}{2}\left[2 a_{1}-\frac{1}{3} d_{3}\left(u_{1}+u_{2}\right) \cos \theta-\frac{1}{3}\left(a_{4}+d_{5}\right) \sin \theta\right]=0 \\
& \text { ! } \\
& \text { ** } p_{y}-\frac{M}{2}\left[2_{2}-\frac{1}{3} d_{3}\left(u_{1}+u_{2}\right) \sin \theta+\frac{1}{3}\left(\alpha_{4}+\alpha_{5}\right) \cos \theta\right]=0 \\
& \text { ** } \quad p_{\theta}-\frac{M}{2}\left[\frac{1}{6} L^{2} a_{3}-\frac{1}{3}\left(d_{1} \cos \theta+d_{2} \sin \theta\right)\left(u_{1}+u_{2}\right)-\frac{1}{10}\left(d_{4}-d_{5}\right)\left(L-2 u_{3}\right)\right. \\
& \text { : } \\
& \text { : } \\
& \left.-\frac{1}{5} a_{6}\left(u_{1}-u_{2}\right)+\frac{2}{3} u_{3} a_{3}\left(I+u_{3}\right)+\frac{2}{5} a_{3}\left(u_{1}+u_{2}\right)^{2}+\frac{1}{14} a_{3}\left(u_{1}-u_{2}\right)^{2}\right] \\
& -\frac{M I}{A}\left[d_{3}-\frac{1}{L}\left(\dot{a}_{4}-d_{5}\right)\right]=0 \\
& \text { ** } p_{u l}+\frac{M}{2}\left[\frac{1}{3}\left(a_{1} \sin \theta-a_{2} \cos \theta\right)+\frac{1}{10} a_{3}\left(L-2 u_{3}\right)-\frac{1}{70}\left(33 a_{4}+23 a_{5}\right)\right] \\
& +\frac{M I}{2 A}\left[\frac{2}{L} d_{3}-\frac{1}{15 L^{2}}\left(94 d_{4}-14 d_{5}\right)\right]=0 \\
& \text { ** } p_{u 2}+\frac{M}{2}\left[\frac{1}{3}\left(d_{1} \sin \theta-d_{2} \cos \theta\right)-\frac{1}{10} d_{3}\left(L-2 u_{3}\right)-\frac{1}{70}\left(23 d_{4}+33 d_{5}\right)\right] \\
& -\frac{M I}{2 A}\left[\frac{2}{L} d_{3}-\frac{1}{15 L^{2}}\left(14 d_{4}-94 d_{5}\right)\right]=0
\end{aligned}
$$

