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ABSTRACT

A calculation method incorporating the transfer matrix method and

+ the characteristic-vector locus method has been developed for stabi-

' lity analysis of the self excited vibration of a rotating shaft syst-
em with many bearings and discs. The analysis i3 made for an elastic
bearing mass, relatively large damping forces due to types of rotors

. fit, anisotropic foundation and rotors gyroscopic effect. A two—

* rotors-model is presented to show the influence of rotor and its
gyroscopic action, support stiffness characteristics, internal and
external damping on stability. A computer solution of the transfer
matrix method shows the rotor stability is improved by damped suppo-

* rt. The shrinkage fit type rotors are more stable than force fit, :

. welding type and adhesion loctite or araldite type. The gyroscopilc
moment effect of the overhanging disc decreased the stability regicn
of the rotor. A computer solution of the governing equations of
motion is presented showing the shaft stability region for various

: sgeed ranges and the effect of the bearing stiffness ratio on_the

- stability region. The effect of external damping on the stability

‘region of a rotor supported on anisotropic bhearings 1is obtained.

INTRODUCTION

Several incidents, in practice, were encountered where a series of
failures in machines designed to operate above the first critical
speed. These machines were subfected to occasional fits of more or
_less violent vibrations of unknown origin. It was observed that at
. the speeds above the first critical speed, the rotor would enter
“into a violent whirling in which the rotor centerline precessed at -
a rate equal to the first critical speed. If the machine rotational
' speed was increased above its initial whirl speed, the whirl amplit-
- ude would increase leading to eventual roter failure, Newkirk [1] .

Kimball [2] , suggested that internal shaft friction could be res-

- ponsible for the shaft whirling. He postulated that below the rotor

i critical speed the internal friction would damp out the whirl motion
while above the critical speed the internal friction would sustain
the whirl. Because of the small order of magnitude of the friction

. forces observed by Kimball, Newkirk concluded that the internal

" friction created by shrink fits of the impellers and spacers was the
predominant cause of the observed whirl instability. Kimball at

. Newkirk's suggestion, constructed a special test rotor with rings on:
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:hubs shrunk on the shaft Kimball[}] , he did indeed confirm Newkirk's

conclusion that the frictional effect of shrink fits is a more active

.cause of shaft whirling than the internal friction within the shaft
‘itself.

.The stability of the single mass rotor with internal fricticn on
‘damped anisotropif supports was evaluated using the general Routh
4

criterion, Gunter g . This anualysis includes the eftfects of bearing .
mass and is gof restricted_to small values of damping as is the nalys-
is of Gunterfﬁﬁ o Gunter_&] showed that a symmetric flexible found-
ation will reduce the rotor critical speed and alsé the whirl thre-
shold in the absence of external dampiang., If externsal damying is
added, the stability threshold can be greatly improved. It was also

:found that foundation asymmetry alone, without foundaticn damping,

can create a large increase in the whirl threshold speed. This analy-

sis showed also that there is a limiting value of external damping

~that should be used.

.

The stability due to shrini fit of & single-disc shaff on damgpd
isotropic and anisotropic supports was evaluated by Mebwallyi 1 e

iHe showed that the rotor stabilily is improved by damped suppoits

with isotropic stiffuness propexrties and increasing the shrink fit
effect will decrease the rotor stability. :

or
v Hurwitz

:Now, how " the stability is improved by the rotating shaft on flex-
9 ¥ P 3 &
7

ible supports" has been explained thecretically by Gunter|5
Tondl-f?ﬁ » However,; the former made numerical calculation
method and did not obtain analytical values of the stability thre-
shold. The latter obtained analytically the stability thresheld for

the case without gyroscopic effects using an appreximate solving
method of the stability problem of linear simultanecus differential

equations. But the derivation was rather involved.

Nonami and Miyashi&a[8 studied experimentally the structural damping
caused by the method of fitting the rotor into the rotating shaft,
the estimated values of the internal damping and stabilities of var-

ous fits for a central and an cverhbanging rotor. ¥rom these experi-

mental results, it has been made clear that the fitting methods of

:the rotor and the shaft are very clesely related with the structural’

damping, the internal damping and the stability of the whirling motion.

Lund[9] derived the characteristic equation of a votating shaft syst-

:em with many bearings and disgs psing the Myklestad~Prohl method. He
used the {R methoed, Wilkinsontl@ for the stiability analysis of his

system. Since the natural frequency of a shaft systew is obtained at
the same time, his method has several merits in analysis of the vib-:

:ration of a rotating shaft system. On the other hand, it has demerits
such as the needs for excessive memory in the computer, large comput-

ing time, and good-approximation initial velues in convergence calcu-

.lation.

"Netushi

A calculation method incorperating the transfer matrix method, Pestel
and Leckietl?] is used to obtain the characteristic equation of the
rotating shaft system with many bearings and discs on flexible damped
supports. An analysis method oniy for the stability of the self-excit-
ed vibration of t%is shaft system is developed nct involving essent-
ially the convergence calculation. The stability Criterion used is

: the chatég eristic-vector locus method (Mikhailov stability Criterion),
1

-action, support stiffness chavacteristics, internal and e
“damping on stabilit

This paper deals with the analysis of an elastic bearing mass, relat-
ively large damping forces due to types of roleors fits, isotropic and
anisotropic foundation and votors gyroscopic effect, A two-rotors-—
model is presented to show the influence of rotor and its %yroscopic
xternal :
¥. A computer solution of the governing equations
of motion is presented showing the shaft stability region for varions

. speed ranges.
pcpeed ranges.
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CHARACTERISTIC EQUATION

:In the derivation of the characteristic equation necessary in stabil-

ity analysis of a rotating shaft system with many bearings and discs
such as in Fig., 1, the transfer matrix is used. The distributed syst-

em as shown in Fig. 1 is replaced with an equivalent lumped parameter
FTig. 2. The i-th

section as a result is shown in Fig.3 and is called a standard
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‘element of the rotating shaft-system., It consists of the following;

a flexible shaft, an equivalent lumped mass of shaft, a disc, & fpr“
.ing and damper. They are a direct spring and damper which have the "
'gction of forces in proportion to displacement and velocity, respect-
ively.

‘For the free vibration of a rotating shaft system with rqtat@onal.r
angular velocity w, the solution, taking u for example, is given &as,

t
-7\1}‘? r . . 3
u = Re {Ué 1=e {u Cosj\.t = 4, Slnjk_t) (1)
1 i i i
;where
. N i o\
U = u 4 J o ¥ }\=.>\ ot J->\ (“/'
T i v i
iSince the bending free vibratiocn 1s now considered, the state vector

will be composed of eight state guantities; that 18, deflectlonsbgr
and v, inclinations § and\/, bending moments M and M , gnd shearing
:forces V and V . Then the transfer matrix forY the X standard

X \ . o
element as showh in Fig.3 and including the internal friction due U0
the fitting method of the disc on the shaft is obtained as
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5 [(m{f21 *B’f‘.l‘..’)w +-2§1p w>{l, ()8= [(Pf:'-o(l‘

‘dl = - [(mS + M) x.j, d2: [{biig - llll)>\—l(ms+M)j\ ’
.d3 = [(X 2 2 ~o(f“)>‘a ~0((m5+t‘() \}\“] , d,= [:1,+(o<f12—p fll)7\-p(me+M)>s,;
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a4 =[ (12, -2t,) w] v dn = [(dfu -¥1L,,) w]’

[(pfll —0(i12 ) w] -

‘As seen in Eqs. (3) and (5), the transfer matrix T, is expressed as
i

a function of the unknownj\ When the transfer matrix T for the i- th

isection is thus determined, from Eq. (4) the Eq. (6)results for the

overall shaft system with n divided sectiouns.

Z =T . T .. T T 7 = TZ 6
n n n-1 2 1 o 0 ( )

:In actual form, it is expressed as

ad of - [— @
u } 1 t . v u
I 1 12 18
i {
! . .t
p "o 20 28 g
M . . M
Y p 4
_V . ° . ""V
X ; X
= . (7)
-V . » ) -V
M| . i M
x - x
\ t t t v
y 81 82 88 y
e Jn" b ' - - 40

Assuming free boundary conditions at both ends of the shaft system,

M =M M 0 ;
X,n y,n X,0 y,0 (8)

il
=
I

=V =V =V =
X,n y,n X,0 VERY

‘Applying Eq. (8) to Eq. (7) , therefore,

o 5 - - o~ -

0 it 1 t . t35 t36 u
& (8]
0 ¢ ¢ t t [}
- 41 42 45 46 0

0 t t t t N (9)
71 72 75 76 0
0 t t % t \V
- | 81 g2 85 86 | o

‘Eq. (10} must hold in order for Eq. (9) to have a solution with non-
u

zero values of ,ﬁ 5 q}.

o

r
L.
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= -0
t t ¢ t :
31 32 35 36
o t i t
41 42 45 46
L= | 1 t I - = 0 (10)
71 72 75 76
t T t t
81 82 85 36

‘ Since t ~is a function of the unknownj\,this also a function of

1]
:\ « Therefore, Eq. (10) is the characteristic equation of the given
: shaft system. Eq. (10) is éhpclynomial of the form:

d:&(jk) = a;)? + al :Ké—1+ e 4 am—;h + a =0 (11)

m

In a shaft system divided into n section$,m=8 n
STABILITY CRITERION

The characteristic equation for a shaft system with_n sections is
i after all a polynomial of order 8 n with respect toA . In actual
calculation using a computer, hovever,iths notobtained as a polynomial
of degree m in A (Eq. (11%) with Abeing as unknown; is derived only
. numerically. Such a stability criterion as Routh-Hurwitz is thus not
‘applicable for this case. Therefore, considering that the charact-~
eristic equation in form is a A polynomial of hifher’order such as
Eq. (11), in the present analysis method a stability criterion by
: the characteristic-vector locus wecoiod is utilized.

With the formula (12) in Eq. (11),
A= jn (12)

the characteristic vector as Eq. (13) is obtaineds:

A ) =D (@) + D, () (13)

Then as shown in Fig. L4, the principle of stability criterien degend&
on whether the chargcteristic-vector locus starts with{h= 0 at the :
i positive real axis ) on /\ plane and then proceeds through an m

number of quadrants tugning around the origin of;f}plane in & posit-

ive direction (that is, anticlockwise) towards€k--w., The system will,

. be found stable if the condition described above is satisfied. ’
i maék

&1 ;
=0
———
by Swilc
W We weWe o we
Stable Stability  Unstable
limit

Fig. &. Stability criterion by the

characteristic-vector locus
.As seen, the present method makes a stability criterion only through:
"value of the characteristic vector, so it is applicable also in a
numerical characteristic equation such as in the transfer matrix
.method. And further, it does not involve any convergence calculation,

:ip the stability criterion; difficulty in numerical calculation is
thus eliminated. This is bLoth advantageous and convenient.
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NUMERICAL CALCULATION METHOD

In a rotating shaft system, the internal damping forces and the
gyroscopic moment of the discs depend on the rotational angular
velocity w, so the characteristic vector, Eq. (13), differs with
the rotational angular velocity w. It is therfore necessary to
make stability analysis at each rotational speed.

(1) Stability Analysis at a Rotationgl Angular Velocity W

In the characteristic-vector locus method,£nis varied from zero to
infinity. And, stability criterion can be made by:

: (1) Whether or not the characteristic-vector locus turns anticlock~
wisesuccessively through respective quadrands of.thQASplane; ) _
tQSWhether or not the argument of the .characteristic-vector increas-—
es monotanously; and o ' ' ‘ o
(3) Whether or not zero points of the real and the imaginary part
in the characteristic-vector appear alternately.

However, the second technique is employed. The variation of frequen-
cyfLis set automatically in the computer program,

(I1) Threshold Rotational Speed of the Self-Excited Vibration
(Stability Limit) w :
¢

The threshold rotational speed is obtainable by performing the
stability Criterion of (I at each rotational speed W finely given.
Then, to obtain automatically the wg value by a sort of the bisec-
tion method, the region between stability rotational sgeed W, and :
instability rotational speed w2 is successively divided, so Wy with

a desired accuracy is derived.

(III) Whirl Frequency) at the Threshold Rotational Speed of the
c
Self-Excited Vibration

In occurrence of the self-excited vibration, as indicated in Fig.4
the characteristic-vector locus passes through the origin of&ﬁplane.
Theflvalue when the vector locus is at the origin is thus the whirl,
frequency in the self~excited vibration. Therefore, in numerical :
calculation the.flvalue closest to the origin in locus with wsw

can give a value of Q. as accurate as the w value.
c c

RESULTS AND DISCUSSION FOR TWO DISC SYSTEM

These results are obtained for the model shaft system shown in Fig.
2 with the following data:

(m ) =0.01078 Kg., (m ) =0.02156 kg., (w ) _=0.086178% Kg.,

1 "
(m:); = 0.1507968Kg.,(ms)4=0.0861784Kg., (n ) =0.04158 Kg.,
(m)), = 0.03612224Kg.., fms) =0.00532224, (m) =(m,) =19-2 ke.
()5 = 1.57ke., (1) =11 kgoy (1) =2 (Id?3;0.0157 m4

I ) 5
(Ip)6 =2(I ) =0.00891 w ,(kxx)lz(Kyy)1=0.331683 x 10" N/m,
(kxx)5=(kyy)5=0.331683 x 107 N/m, (cxx)1=(cyy)l=ce NS/m,
(Cxx)5 = (ny)5=Ce Ns/m.

: The computer results for the model shaft system with two discs mount+
ed on the shaft by different types of fit is shown in Fig. 5. This
Lf1gure gives the relation between the external damping coefficient ]
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and the stability region. The left hand side of each curve represents
the stable region whereas the right hand side of it represerts the
. unstable region. The internal damping coefficient of the central
‘ rotor (C_)3 and the overhanging rotor (C. g
o1 i

The gyroscopic effect of the central rotor and the overhapgplg I‘ot(')rE
 for the best shrink fit type is shown in Fig. 6. The stability regim
is on the left hand side of each curve.
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Fig. 6.Effect of gyrescopic actisn on stability . ) )
The effect of bLearing stiffness on stability is shown in Fig. 7.
: The left hand side of each curve is the stable region.

L.
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Fig. 7. Etlect of bearing stiffness on stability.

The optimum values of the exiernal damping for
with a specified bearing
‘be estimated from Fig. 3.
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Fig. 8. The optimum external darypiig for different bearing
sliftness .
CONCLUSION

1. The estimated values of the internal damping due o Lhe Lype of
:fit by which the two-disc-rotors are mounted on the shaft have a

large influence on the stability in certain shaft system. The lype
of fit of the overhanging rotor will affect greatly the stability
.region. The more the coefficient of internal damping for the over-

the given model shaft .
stiffness and running at a certain speed can’

‘hanging rotor, the less will be the stability region. The shrink Pige

~type will have greater stability region than taht of the welding
itype, the force fit type, the adhesion by loctite and araldite.

1

s
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‘Therefore, with a rise of the value of the coefficient of internal
damping for the overhanging rotor, the rctational speed initiating
the self-excited vibration decreases and the stability region will be
‘decreased.

2. The gyroscopic moment plays a big rele in the stability region,

.it decreases the region of stability by a large amount for the case
overhanging rotor rather than the case without gyroscopic action
as shown in Fig. 6. ‘ ‘

3. Changing of the bearing stiffness from isotropic to anisotropic

:will vary the stability region as shown in Fig. 7.

4. We can estimate the optimum values of external demping for any
shaft system having a specified bearing stiffuness and running at a
icertain speed as shown in Fig. 8.

5. For the improvemeni of the stability, it is important to minimize
the internal d&mging of fitted parts. In ﬁarticglar, for rotor syst-
iems having fitted parts, the shrinkage fiilting is desirable.

6. Generally, the stability region increases with the increase of the.
.external damping for Woth isctropic and anisctropic bearings for a
‘certain value of bearing stiffness.
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NOMENCLATURE

damping coefficients at su port in the x and y
directions, respectively. ?C =C =C
XX Yy e

coefficient of internal damping.
stiffnesses of the shaft.

Young's modulus.

base of natural logarithm . .
coefficient of forces of internal friction.

coefficient of moments of internal friction.
second moment of shaft area

moments of inertia of disc (polar, diametral,
respectively

imaginary unit (j = v- 1).

support stiffness in the x and y directions,
respectively.

length of shaft .

mass of shaft .

bending moments.

effective mass of shaft.
number of sections.
transfer matrix.

time .

element of transfer matrix.

deflections in directions x,y, respectively.
complex variables .
shear forces.

characteristic equation.

real part of A(_ﬂ_) s

imaginary part of ZS(-(LJ .

complex eigenvalue ()\:7\r + j)\i).
angular velocity.

whirl frequency .
rotational angular velocity.

threshold rotational speed.
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