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ABSTRACT 

A calculation method incorporating the transfer matrix method and  

• the characteristic-vector locus method has been developed for stabi- 

. 

. lity analysis of the self excited vibration of a rotating shaft syst- 
em with many bearings and discs. The analysis is made for an elastic 
bearing mass, relatively large damping forces due to types of rotors 
• fit, anisotropic foundation and rotors gyroscopic effect. A two- 
: rotors-model is presented to show the influence of rotor and its 
gyroscopic 'action, support stiffness characteristics, internal and 
external damping on stability. A computer solution of the transfer 
matrix method shows the rotor stability is improved by damped suppo- 
• rt. The shrinkage fit type rotors are more stable than force fit, 	• 

: welding type and adhesion loctite or araldite type. The gyroscopic • 
moment effect of the overhanging disc decreased the stability region 
of the rotor. A computer solution of the governing equations of 
motion is presented showing the shaft stability region for various • 
• speed ranges and the effect of the bearing stiffness ratio on the 
• stability region. The effect of external damping on the stability 
'region of a rotor supported on anisotropic bearings is obtained. 

INTRODUCTION 

Several incidents, in practice, were encountered where a series of 
failures in machines designed to operate above the first critical 
speed. These machines were subjfected to occasional fits of more or 
less violent vibrations of unknown origin. It was observed that at 
the speeds above the first critical speed, the rotor would enter 
into a violent whirling in which the rotor centerline precessed at • 
a rate equal to the first critical speed. If the machine rotational 
speed was increased above its initial whirl speed, the whirl amplit-
ude would increase leading to eventual rotor failure, Newkirk [1] . 

r 
Kimball [2j , suggested that internal shaft friction could be res- • 
• ponsible for the shaft whirling. He postulated that below the rotor 
: critical speed the internal friction would damp out the whirl motion 
while above the critical speed the internal friction would sustain 
the whirl. Because of the small order of magnitude of the friction 
forces observed by Kimball, Newkirk concluded that the internal 

'friction created by shrink fits of the impellers and spacers was the 
predominant cause of the observed whirl instability. Kimball at 

.Newkirk's suggestion, constructed a special test rotor with rings on: 
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:hubs shrunk on the shaft Kimball [3] , he did indeed confirm Newkirk's :
1 

conclusion that the frictional effect of shrink fits is a more active.  
.cause of shaft whirling than the internal friction within the shaft 
'itself. 

The stability of the single mass rotor with internal friction on 
:damped anisotropip. supports was evaluated using the general Routh 
criterion, GunterL4 . This analysis includes the effects of bearing. 
mass and is .g.o restrictO,to small values of damping as is the nalys'- 

0 is of Gunter [5j 	Gunter4.11 	showed that a symmetric flexible found- 
ation will, reduce the rotor critical speed and alsO the whirl thre- 
shold in the absence of external damping. If external damping is 	. 
added, the stability threshold, can be greatly improved. It was also 
found that foundation asymmetry alone, without foundation damping, 
can create a large increase in the whirl threshold speed. This azaly-
sis showed also that there is a limiting value. of external damping 
that should be used. 

• 

The stability due to shrink fit of a single-disc shaft on daTpod 
isotropic and anisotropic supports was evaluated by Metwally16 

:He showed that the rotor stability is improved by damped supports 
with isotropic stiffness properties and Increasing the shrink fit 
effect will decrease the rotor stability. 

:Now, how " the stability is improved by the rotating shaft, Qn flex- 
ible supports" has been explained theoretically by OnnterL51 or 
TonditC2.1 . However, the former made numerical calculation ty Hurwitz 
method and did not obtain analytical values of the stability thre- ' 
shold. The latter obtained analytically the stability threshold for 
the case without gyroscopic effects using an approximate solving 
method of the stability problem of linear simultaneous differential 

; equations. But the derivation was rather involved. 

Nonami and Miyashita[8) tudied experimentally the structural damping 
caused by the method o. fitting the rotor into the rotating shaft, 

:the estimated values of the internal damping and stabilities of var- 
nus fits for a central and an overhanging rotor. From these experi-
mental results, it has been made clear that the fitting methods of 
the rotor and the shaft are very closely related with the structural 
damping, the internal damping and the stability of the whirling motion. 

Lund[9] derived the characteristic equation of a rotating shaft syst 
:em with many bearings and discs using the Myklestad-Prohl method. He 
used the QR method, Wilkinson110..! for the stability analysis of his 
system. Since the natural frequency of a shaft system is obtained at 
the same time, his method has several merits in analysis of the vib-: 

:ration of a rotating shaft system. On the other hand, it has demerits' 
such as the needs for excessive memory in the computer, large comput-
ing time, and good-approximation initial values in convergence carcu-
lation. 

• 
A calculatton method incorporating the transfer matrix method, Pestel 
and Leckiejlij is used to obtain the characteristic equation of the 

:rotating shaft system with many bearings and discs on flexible damped 
'supports. An analysis method only for the stability of the self-excit-
ed vibration of this shaft system is developed. not involving essent-
ially the convergence calculation. The stability.  Criterion used is 
the chav_ac- eristic-vector locus method (Mikhailov stability Criterion), 

'NetushiL12 . 

This paper deals with the analysis of an elastic bearing mass, relat4 
ively large damping forces due to types of rotors fits isotropic and 
anisotroplc foundation and rotors gyroscopic effect. A two-rotors-
model is presented to show the influence of rotor and its gyroscopic 

• action, support stiffness characteristics, internal and external 	• 
'damping on stability. A computer solution of the governing equations 
of motion is presented showing the shaft stability region for varions 

.speed ranges. 
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7,1-1ARACTERISTIC EQUATION 

6 
:In the derivation of the characteristic equation necessary in stabil-
ity analysis of a rotating shaft system with many bearings and discs .  
such as in Fig. 1, the transfer matrix is used. The distributed spat--; 
em as shown in Fig. 1 is replaced with an equivalent lumped parameter 

:system by dividing the system into several sections Fig. 2. The i—th 
section as a result is shown in Fig o3 and is coined a standard 

Fig. 1. Rotating shati. aystern . 

• 7Z PVIA1 

Fig 2. Rotor- %ht 51yiitsrrn 
b arg-tcpc, isinci two 

Fig, 3 ,, 'Standard (tie mewl . 
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:element of the rotating shaft-system. It consists of the following; 
a flexible shaft, an equivalent lumped mass of shaft, a disc, a spr-
.ing and damper. They are a direct spring and damper which have the 
'action of forces in proportion to displacement and velocity, respect-
ively. 

:For the free vibration of a rotating shaft system with 
rotational 

angular velocity w, the solution, taking u for example, is given as, 
t 

u = Re  != e
r 

Cos-X t - (1) Xt  

;where 

U =u + j u.  
(2' 

:Since the bending free vibration is now considered, the state vectcr 
will be composed of eight state quantities; that is, deflections u 
and v, inclinations 0 and Y, bending moments M and M , and shearing 

:forces V and V . Then the transfer matrix forY the x standard 
.2, 	v 

element as sbown in Fig .3 and including the internal friction due t:
-) 

the fitting method of the disc on the shaft is obtained as 
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6 = 
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(off 
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 - "jr f 

1 	12 

) w ] • 

'As seen in Eqs. (3) and (5), the transfer matrix T. is expressed as 

a function of the unknown-X. When the transfer matrix Ti 
for the i-th' 

!section is thus determined, from Eq. (Li) the Eq. (•results for the 
overall shaft system with n divided sections. 

Z = T . T 	... T
2 
T
1 
Z = TZ 

n n n-1 	o o  

In actual form, it is expressed as 

u 
1 	
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Assuming free boundary conditions at both ends of the shaft system, 

M 	=M 	=M 	= M 	= 0 ; 
x,n 	Yrn 	x,o 	y,o 
	

(8) 

V =V =V =V = 0  
x,n 	y,n 	x,o 	y,o 

• 
Applying Eq. (8) to Eq. (7) , therefore, 

o 	t 
	t32 

t
31  32 35 t36   

u 

o 	t 	0 
= 	41 	42 	45 	46 

0 	t 	t 	t 	t 	-v 
o 	

(9) 

o 	t 	t 
	t75 71 	72 	75 	76 	o 

	

81 	82 	85 	86 	Yo  

•

_ 	 . 

1_](.1. (10) must hold in order for Eq. (9) to have a solution with non-
zero values of u '0 , v and y . 
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(10) 

' Since t 	is a function of the unknown,\,4Lis alsO a function of ij 
3k . Therefore, Eq. (10) is the characteristic equation of the given 
shaft system. Eq. (10) is aApolynomial of the form: 

(\) . a 	+ ai m-l+  
a 	 7A 4. a = 0 
m-1 	in 

In a shaft system divided into n section,m=8 n 

STABILITY CRITERION 

The characteristic equation for a shaft system with n sections is 
:after all a polynomial of order 8 n with respect to-X. In actual 
calculation using a computer, however,it's notobtained as a polynom i al of degree m in ,N (Eq. (11)) with-Nbeing as unknown;Zlis derived only 
numerically. Such a stability criterion as Routh-Hurwitz is thus not 
applicable for this case. Therefore, considering that the charact-
eristic equation. in form is a:\  polynomial of higher order such ao 
Eq. (11), in the present analysis method a stability criterion by 

: the characteristic-vector locus .e,.,nod is utilized. 

With the formula (12) in Eq. (11), 

"X= j _a_ 	 (12) 

the characteristic vector as Eq. ( 3) is obtained: 

/30-Jr1-.) (r1.) jz (13) 
Then as shown in Fig. 4, the principle of stability criterion depends 
on whether the characteristic-vector locus starts withil= 0 at the 
positive real axis 	) onLIplane and then proceeds through an m 

number of quadrants turning around the origin ofZSplane in a posit-, 
ive direction (that is, anticlockwise) towards—l-oo. The system will:  
be found stable if the condition described above is satisfied. 

rn 24 

Asa  

"I "C We 	wawc 	(✓  a tec  

Stub Stability Unstable 
limit 

Fig, 4. Stability crttenon by the 
characteristic-vector locus 

As seen, the present method makes a stability criterion only through' . value of the characteristic vector, so it is applicable also in a 
numerical characteristic equation such as in the transfer matrix 
method. And further, it does not involve any convergence calculation:  iin the stability criterion; difficulty in numerical calculation is 
thus eliminated'. This is both advantageous and convenient. 

L.. 
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NUMERICAL CALCULATION METHOD 

In a rotating shaft system, the internal damping forces and the 
gyroscopic moment of the discs depend on the rotational angular 
velocity w, so the characteristic vector, Eq. (13), differs with 
the rotational angular velocity W. It is therfore necessary to 
make stability analysis at each rotational speed. 

(I) Stability Analysis at a Rotational Angular Velocity w 

In the characteristic-vector locus method,(Lis varied from zero to 
infinity. And, stability criterion can be made by: 

(1) Whether or not the characteristic-vector locus turns anticlock.,  
wjsysuccessively through respective quadrands oftheZSplane; 
(2) Whether or not the argument of .,the -characteristic-vector inereas- 

: es monotonously; and 
' (3) Whether or not zero points of the real anti the imaginary part 

in the characteristic-vector appear alternately. 

However, the second technique is employed. The variation of frequen-
cy.ais set automatically in the computer program. 

(II) Threshold Rotational Speed of the Self-Excited Vibration 

(Stability Limit) w : 
c 

The threshold rotational speed is obtainable by performing the 
stability Criterion of (I) at each rotational speed V finely given. 
Then, to obtain automatically the we  value by a sort of the bisec-
tion method, the region between stability rotational speed Wi, and : 
instability rotational speed w is successively divided, so we  with 

a desired accuracy is derived. 

(III) Whirl Frequency_n_ at the Threshold Rotational Speed of the 
c 

Self-Excited Vibration 

In occurrence of the salf-excited vibration, as indicated in Fig.4 
the characteristic-vector locus passes through the origin ofLNplane. 
Thellaralue when the vector locus is at the origin is thus the whirl. 
frequency in the self-excited vibration. Therefore, in numerical 
• calculation the-nLvalue closest to the origin in locus with li;.-w 

can give a value °fan_ as accurate as the w 
c  
value. 	f 

c 

RESULTS AND DISCUSSION FOR TWO DISC SYSTEM 

These results are obtained for the model shaft system shown in Fig. 
2 with the following data: 

(m ) = 0.01078 Kg., (m ) =0.02156 kg., (m )0=0.0861784 Kg., 

(ms)o  = 0.1507968Kg.,(ms)1=0.0861784Kg., (M y =0.04158 Kg., 

(ms)3  = 0.03612224Kg., Nii) =0.00532224, (m,)5=(m ) =19.2 kg. 
• s, 6 	 pb5 
(m ) 	1.57kg., (M

d
)
6
=1.1 4., (I ) =2 (I ) =0.0157 m-4  

d 	 P 3 	d 3 -  

(I 
p  )6 

 =2(I 
d 
)

6 
 =0.00891 m

4 
 ,(k 

xx 
) 
1 
 =(K 

 yy 
 ) 
1
=0.331683 x 10

5 
 N/m, 

(k ) =(k ) =0.331683 x 105  N/m, (Cxx)1=(C)1=Ce NS/m, 
xx 5 yy  5 	 yy  

(

• 	

C ) 	(C ) =c 	Ns/m. 
xx 5 	yy 5 e 

The computer results for the model shaft system with two discs mount` 
ed on the shaft by different types of fit is shown in Fig. 5. This 
.figure gives the relation between the external damping coefficient 
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toe,  lo" 10.904 8.832 3.674 7.703 1.460 1.400 

ifa.10-4  

Ter* 04 1:: 

3.494 3.484 1•111$ 1.033 1.210 0.643 

Adhesion Adhesion Force Fit Welding Shrink Fil Shrink fit 

100 200 300 400 500 600 700 800 900 
VS "1  

Fig. 5 • The external damping coefficient and the stability 
region for different kinds of fit . 

. 
and the stability region. The left hand side 'of each curve represents 
the stable region whereas the right hand side of it represents the 
unstable region. The internal damping coefficient of the central 
rotor (C i ) 3 and the overhanging rotor (c

i
)
6* 

The gyroscopic effect of the central rotor and the overhanging rotor' 
for the beSt shrink fit type is shown in Fig. 6. The stability region 
is on. the left hand side of each_curve. 

c*  
With overfismeing velar Glyiv 

b 	With osechonteing and contors: rotors . 
c - With contorce rob( enty .  
d - sAtRodt taw relax/ • 

00 	300 6 00 900 

IS 

Fig. 6 . Ebect of gyroscopic action on stability 
The effect of bearing stiffness on stability is shown in Fig. 7. 
The left hand side of each curve is the stable region. 

L.. 
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Fig. 7. Etfect of haring stillness on stability . 
The optimum values of the external damping for the given model shaft 
:with a specified bearing stiffness and running at a certain speed can 
'he estimated from Fig. 8. 

Ce as3.96 4=10 	 •=30 	4=60  

t i 
100 200 300 400 500 600 

I I I  

700 	800 900 .o 
1/5 

Fig, 8 The. optimum •ettrmal dart 	,„, to ditleretnt bearing 
slitin•si , 

CONCLUSION 

I. The estimated values of the internal damping due to the type of 
:fit by which the two-disc-rotors are mounted on the shaft have a 
large influence on the stability in certain shaft system. The type 
of fit of the overhanging rotor will affect greatly the stability 

:region. The more the coefficient of internal damping for the over- . 
-hanging rotor, the less will be the stability region. The shrink fit' 
type will have greater stability region than taht of the welding 

:type, the force fit type, the adhesion by loctite and araldite. 
L_ 
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- • 	— -• -• 	-• -• 	- — — 
Therefore, with a rise of the value of the coefficient of internal 
damping for the overhanging rotor, the rotational speed initiating 	• 
the self-excited vibration decreases and the stability region will be 
!decreased. 

2. The gyroscopic moment plays a big role in the stability region, 
.itdecreases the region of stability by a large amount for the case • 
Of overhanging rotor rather than the case without gyroscopic action 

as shown in Fig. 6. 

3. Changing of the bearing stiffness from isotropic to anisotropic 
:will vary the stability region as shown in Fig. 7, 
4. We can estimate the optimum values of external damping for any 
shaft system having a specified bearing stiffness and running at a 
;certain speed as shown in Fig. 8. 

5. For the improvement of the stability, it is important to minimize : 
the internal damping of fitted parts. In particular, for rotor syst- • 
ems having fitted parts, the shrinkage fitting is desirable. 
6. Generally, the stability region increases with• the increase of the:  
external damping for both isotropic and anisotropic bearings for a 	' 
:certain value of bearing stiffness. 
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C 	C 
• xx yy 

. Ci  

C11, C12,  C22 	
stiffnesses of the shaft. 

E Yoling's modulus. 
e base of natural logarithm. 
f 
11-  , f12 	

coefficient of forces of internal, friction. 
'  
f , f 	coefficient of moments of internal friction. 
21 -  22 

I 	second moment of shaft area . 

I , I 	moments of inertia of disc (polar, diametral, 
p 	d 	respectively)  

j 	 imaginary unit (j = FT). 
k , k 	support stiffness in the x and y directions, 
xx yy 	respectively. 

1 	length of shaft . 
M 	mass of shaft . 
M , M 	bending moments. 

. y  
 m

s 	

x 	
effective mass of shaft. 

n number of sections. 

: T 	transfer matrix. 

t 	time . 

t element of transfer matrix. 
ij u, v 	deflections in directions x,y, respectively. 
U etc. 	complex variable's . 
✓ , V 	shear forces. 
x Lir 

characteristic equation. 

LS 	real part of 46(..s7L) 

r. imaginary part of,6(-L-1..) . 

A 	complex eigenvalue (?■= -Nr 
 + j)y. .,1 

angular velocity. 

whirl frequency . 
w 	rotational angular velocity. 

w 	threshold rotational speed. 
c 

L 

NOMENCLATURE 
damping coefficients at support in the x and y 
directions, respectively. (Cxx

=C
yy

=C
e
) 

coefficient of internal damping. 




	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

