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VIBRATION ANALYSIS OF FULLY AND 
PARTIALLY DAMPED AND RIGIDAMPED 

SANDWICH BEAMS WITH VISCOELASTIC CORE 

S.H.FARGHALY*,M.M.EL-Maddah** and I1.K.Ismail*** 

ABSTRACT 

The reduction of vibratory energy transmission has been the subject of 
investigation within past years. The present paper is concerned with 
the increase of the internal damping in mechanical systems as a method 
for their vibration control. The inclusion of viscoelastic materials 
within the structural configurations of the mechanical system is proposed 
to increase its internal damping. 

Analytical solutions are presented for the fully damped sandwich beam. 
In addition, laboratory experiments have been performed to verify the 
analytical predictions. Moreover, the optimal damping distribution for 
partially damped and the case of rigidamped sandwich beams are considered 
experimentally as a practical design proposition. 

INTRODUCTION 

Vibration control has an important role in designing structures and 
mechanical systems to function within a dynamic environment. The reduc-
tion of the transmission of vibratory energy has been the object of 
investigation in many years. The high vibration and noise levels associa-
ted with modern high energy power sources exsist over a broad frequency 
range. The amplification of power source vibration by structural members 
creates large dynamic stresses and results in excessive noise,structure 
fatigue and component failure. 

The quality of some products depends on the vibration and noise levels 
which may cause discomfort to occupants. The increase of the internal 
damping in the mechanical system usually reduces its dynamic response. 
This reduction is caused by energy dissipation properties of the material 
and the system. Material damping, Lazan LIJ, is a name for the phenomenon 
by which energy is dissipated in a vibrating mechanical system consisting 
of a volume of macro continuous (solid) matter. However the system damp-
ing, involves configurations of distinguishable parts. 

In the presented paper we shall be concerned with the increase of the 
internal damping in the system as a method for its vibration control. 
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When layers of viscoelastic materials are applied to the surface of a 
conventional structural element, the bending of this element will 
produce predominantly extensional strains in these attached layers,Ungar 
[2] . This type of damping has been termed extensional, and the viscoelas-
tic layer have been designated as free. In contrast, constrained viscoela-
stic layer is bonded with two adjacent elastic in such way that flexural 
motion of the sandwich produces primarily shear strains and hence shear 
damping in the viscoelastic materials. Figs. 1-2, illustrates a compari-
son of damping capabilities for various materials and design configura-
tions. 
The analytical treatment of the sandwich beam is reported by many authors 

[4-10] . The optimal design problems are presented in the cases of fully 
and partially covered damped sandwich beams. In many cases,particularly 

when the weight saving is important. One may do well to cover a part 

of structural layer with a damped sandwich element. The location of this 
element may be chosen for damping some particular modes of vibration 
(see Fig.3). 

The excitations and loading may damage the bonding between layers and 
may cause an additional resonant frequencies. For these reasons the 
rigidamping treatment is suitable to be used from the design standpoint 
( see Fig.4). 

Laboratory experiments have been performed to verify the analytical 
analysis for the fully damped sandwich beam cases. The partially damped 
and rigidamped sandwich beam configurations are presented as practical 
design consideration problems. 

THEORY 

The fully damped sandwich beam considered in this paper consists of a 
pair of uniform structural and constraining layers separated by and 
bonded to viscoelastic core ( see Fig.5). All the layers have the same 
width. The differential equation of flexural vibration of sandwich 
beams is a complex equation of six order. This results from the follow-
ing essential assumptions: 

a- The shear strain in the core is uniform across the depth of the core. 
b- The longitudinal direct stresses and transverse direct strains in the 
• core are negligible. 

c- The shear strains in the face plates are very small. 
d- The rotary inertia of the whole layers is not taken into considera-

tion. 
e- The internal damping of the face plates are negligible compared to 

that of core layer. 
The non-dimensional form of the differential equation of motion can be 
wri-Aen as [4 j. 
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6 and * 
G2  = G2  ( 1+ j n2) 

= ( K1  + K3)/ K
3 

( the complex shear modulus) 

K1 = E1 
A
l 

K
3 
= E

3 
A
3 

C = Hi  + 2H2+ H3  

B = Ely E3I3  

X = X( 1 + J  n2) 

= v( 7‘,1) 
T( = x / L 
t = tit. 

7 4  = t / 	1  

(overall bending stiffness) 

Assuming transverse motion to be of the form 
v ( x,t)= V(x) Exp. j(Sit) 

and introducing  the dimensionless modal frequency parameter 

a
ns 

= 
wno 
	mL4  

where n is the mode number . 

After substituting eq.(4) into eq.(1) we obtain 
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vI 

- X
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s ( V

II
- X

*
V) 	= 0 	(6) 

The values of the composite modal frequency Parameters a and the 
composite loss factors for different boundary conditions are reported 
by, Rao [5J. 

The unknown function V(x) can be found in the form 
6 

V(x) = i=2:1  Ai  exp. jrix 	 (7) 

Substituting one term of eq.(7) into eq.(6) we obtain the characteris-
tic equation 

Z.
3 
 + X

* 
 (1+Y) Z.

2  
- a

2 
s ( Z.+ X

*
) = 0 	(8) 1 	n 	1 

where Zi  = r 2 

The real p rt of this complex characteristics equation represents the 
case of undamped sandwich beam. The solution of that equation gives 
three real roots: one positive and two negative. 

EXPERIMENTAL WORK 

The response of the different test specimens is acquired by an 
accelerometer mounted at the measuring point. The vibration exciter 
( 112 N) , which is driven by a sinusoidal exciter control (5Hz-10KHz) 
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through a power amplifier of (120 VA) power. The measurements include 
the loss factors and resonant frequencies for each test specimen of 
fullY and partially sandwich beams. Fig.6 indicates the outline of the 

experimental instrumentations. 

RESULTS AND DISCUSSION 

The use of rivets may increase the rigidity in the case of fully damped 

sandwich beam. This will be denoted as rigidamped design configuration. 
Table 1, indicates a typical comparison for the resonant frequencies and 
the composite loss factors, the theoretical results are in good agree-

ment with the experimental ones for the fully damped sandwich beam. 

Table 1. The effect of the rigidamping on the composite loss 
factor and resonant frequencies. 

Mode Parameter 

Fully Damped 
Experimental 

Ricadamped  
Experimental Analytical 

I 
0, Hz 89.32 110 125 

n 0.2 0.318 .229 

II 
fo, Hz 502.18 500 600 

n 0.0513 	0.082 .073 

For the case of partial coverage sandwich beam, the main structural 
specimen is divided into equal elements. Each of these elements has 
the length of the damping element in sandwich form. This damping 
element is displaced successively along the vibrating main structural 
specimen. The displacement has an equal pitch which is equal to the 
smallest length of the damping element,(see Fig. 7 ). The values of 
loss factors are plotted in a single graph as shown in Figs.6-11. 
For desired modes of vibration using damping elements for maximizing 
damping capability, the location of the damping element is preferred 
to be near the node of vibration. Thus the shear strain energy takes 
its maximum values at the nodal points of the modal shape. 

CONCLUSION 

Experimental verification of the theory for the fully damped sandwich 
beams are presented. The correlation between the analytical results 
and the experimental ones are in a good aoreement. The use of 
rigidamped beams proved to be a suitable design. This design is ful-
filled by using rigid rivets to protect the bonding adhesives between 
layers. 

Design graphs, practically considered for the partial covered beam with 
damped sandwich element, from which the composite loss factor and the 
composite resonant frequency can be read directly. One interesting 
conclusion which may be drawn from these experiments is that the higher 
damping occurs when the damping element location is near the nodal 

points. 
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NOMENCLATURE 

Latin letters 

a
n 	

Mode frequency factor for homogeneous beam. 
2 

B 	Uncoupled flexural rigidity (E1 11 + E3I1). 	tl.m 

C 	Central distance between structural and constraining layers. 
m
-2 Ei 	Young's modulus of i th layer 	 N.m 

f 	Resonant frequency 	 Hz 
-2 co 	 * 

Real part of the complex shear modulus,G2 	N.m 

Hi 
2 

Half thickness of ith layer 	 m  ........ 



Metals 

Assembled tructures 

Fee damping 
't322ms41='=z1471413"m"="a° 

andwich configu ration 

Viscoelas lc materials 
W.W.116.110WWLIWTOSMd...WCWPAW4ccalmOlanwpuoutoft., 
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Area moment of inertia of ith layer about its own 
midline. 	 m

4 

K
1 	

Extensional stiffness of structural layer per unit 
width. 	 N.m 

 

K
3 	

Extensional stiffness of constraining layer per unit 
N.m

-1  width 
- 

Stiffness ratio ( K
1
+K
3
)/K

3 
L 	Vibrating length of sandwich beam specimen 

X 	Shear parameter 

Length ratio (x/L) 

Geometrical parameter 

Greek Letters 

11 
	

Loss factor. 

on 
	Resonant frequency at mode n 	 rad.sec. 

Excitation frequency. 

Superscripts 

Designates the dimensionless parameters. 
Designates the complex parameters. 
Designates the derivation with respect to time. 
Designates the derivation with respect to x 

10-  ic5 I a' to 

Fig. 1 : Damping merits for different materials and 
systems, ( Santini []] ) 

* 

I 
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Fig. 3 :Partial damped beam 
configuration. 

Fig. 4 : Rigidamped beam element. 
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Fig. 8 ; Optimum element location for the 
smallest damping element. 
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Fig. 9 : Optimum element location 
for medium damping element. 

Fig. 10 : Optimum element location 

for large damping element. 
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Fig. 11 : Optimum locations for damping 

elements. 
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